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Abstract

Biomedical Named Entity Recognition
presents significant challenges due to the
complexity of biomedical terminology and
inconsistencies in annotation across datasets.
This paper introduces SRU-NER (Slot-based
Recurrent Unit NER), a novel approach
designed to handle nested named entities while
integrating multiple datasets through an effec-
tive multi-task learning strategy. SRU-NER
mitigates annotation gaps by dynamically
adjusting loss computation to avoid penalizing
predictions of entity types absent in a given
dataset.1 Through extensive experiments,
including a cross-corpus evaluation and
human assessment of the model’s predictions,
SRU-NER achieves competitive performance
in biomedical and general-domain NER tasks,
while improving cross-domain generalization.

1 Introduction

Named entity recognition (NER) is a crucial step in
several natural language processing pipelines, such
as information extraction, information retrieval,
machine translation, and question-answering sys-
tems (Sharma et al., 2022). Given unstructured
text, the task of NER is to identify and classify text
spans according to categories of interest. These cat-
egories are defined depending on the downstream
application and can range from general (people,
locations, organizations) to specific domains such
as biomedical entities (genes, diseases, chemicals).

In particular, Biomedical Named Entity Recog-
nition (BioNER) is challenging due to the com-
plexity of biomedical nomenclature. Morphologi-
cally, these entities can contain Greek letters, digits,
punctuation (α-tubulin, IL-6), form variations (in-
hibitor vs. inhibitory), and compound terms (tumor
necrosis factor-alpha vs. TNF-α). Semantically,
polysemy (e.g., p53 referring to a gene, protein,

1Code is publicly available at https://github.com/
Priberam/sru-ner.

or condition) adds ambiguity. These challenges
make human annotation costly, leading to BioNER
datasets that are smaller and often focus on a lim-
ited number of entity types (Greenberg et al., 2018).

One approach to addressing data scarcity while
building a BioNER model is to leverage multiple
datasets, each annotated with a specific subset of
entities. However, simply training a single model
on the union of all available datasets assumes that
every entity type is consistently annotated across
all training instances, which is not the case. This
leads to a high prevalence of false negatives, as en-
tities that are labeled in one dataset may be entirely
ignored in another. On the other hand, training sep-
arate models for each dataset fails to exploit shared
statistical patterns across datasets and introduces
the challenge of resolving conflicting predictions at
inference time (Greenberg et al., 2018). Therefore,
an effective strategy must balance learning from
multiple sources while accounting for missing an-
notations and inconsistencies in labeling schemes.

Our contributions are three-fold: (i) we intro-
duce SRU-NER (Slot-based Recurrent Unit NER),
a model which is able to solve nested NER through
generating a sequence of actions; (ii) we propose an
effective multi-task training strategy to handle the
complex challenges of leveraging multiple NER
datasets in a single model; and (iii) we show how
the SRU-NER can handle multiple datasets on a sin-
gle shared network through multiple experiments,
including cross-corpus evaluations and a human
evaluation on corpora of disjoint entity sets.

2 Related work

Named entity recognition has evolved significantly
in the last decades. Early systems relied on rule-
based methods, which were interpretable but lacked
flexibility. The introduction of machine learning en-
abled more adaptable approaches, further enhanced
by deep learning techniques that captured complex
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Figure 1: Action selection process for the sentence given in section 3.1, at time step t = 9. The gold nested
mentions are "NF - chi B site", "chi B", of type DNA (D), and "NF - chi B" of type Protein (P). To compute the
logits u(9), the model leverages the logits of the previous time steps, action embeddings and word embeddings.

linguistic patterns. Recently, Transformer-based
architectures have set new benchmarks, driving
significant advancements in NER performance (Li
et al., 2022; Keraghel et al., 2024). In the CoNLL-
2003 dataset (Tjong Kim Sang and De Meulder,
2003), a benchmark for NER tasks, performance
has improved substantially, with F1 scores that
have soared above 94% (Wang et al., 2021). The
same phenomenon is seen for the GENIA cor-
pus (Kim et al., 2003), a nested BioNER dataset,
with test F1 scores exceeding 80% (Yu et al., 2020;
Tan et al., 2021; Shen et al., 2021, 2022).

To tackle the proliferation of BioNER datasets,
several studies have turned to multi-task learning
(MTL; Park et al., 2024). Traditional deep learn-
ing NER models trained on a single dataset are
referred to as single-task models, as they specialize
in identifying mention spans for the specific entity
types annotated within their training data. Single-
task models often underperform on out-of-domain
settings. In contrast, MTL frameworks leverage
multiple datasets, each corresponding to a differ-
ent task, allowing the model to learn from diverse
sources. The fundamental premise is that differ-
ent datasets share information which can be jointly
leveraged to encourage the learning of more gener-
alized representations, hence improving a model’s
robustness (Mehmood et al., 2019; Li et al., 2022).

MTL learning frameworks can be categorized
into two types, depending on which modules are
shared across tasks: (i) those that share the encod-
ing layers while maintaining task-specific decoding
layers (Crichton et al., 2017; Wang et al., 2018;
Khan et al., 2020), and (ii) those that share all lay-

ers (Greenberg et al., 2018; Huang et al., 2019;
Banerjee et al., 2021; Luo et al., 2023; Moscato
et al., 2023). SRU-NER resembles models of type
(ii), which share its decoding layers across all tasks.
Typically, these models have a natural problem with
false negatives, as the unified decoder may strug-
gle to distinguish task-specific entity boundaries
and labels, leading to the omission of valid entities.
Our approach avoids this issue through an effective
multi-task learning strategy.

3 Effective Multi-Task Learning for
Named Entity Recognition

The proposed model, SRU-NER, solves the task of
nested named entity recognition similar to that of
a transition-based parser (Dyer et al., 2015; Mar-
inho et al., 2019). Given a sequence of words
S = [w1, w2, . . . , wN ], the model generates a se-
quence of actions. At each time step, the actions
are chosen depending on the words of the sentence
and on the previously chosen actions. At the end
of the parsing procedure, the complete sequence of
actions is decoded into mentions.

3.1 Action encoding

Consider the system is trained to recog-
nize mentions of entity types belonging to
E = {e1, e2, . . . , eM}. Let AE stand for the
system’s 2M + 2 possible actions: two special
tokens (SH and EOA) and, for each entity type ei, a
pair of actions denoted TR(ei) and RE(ei). TR(ei),
short for "transition to entity ei", indicates the
start of a mention of type ei; one says that this
action opened a mention of type ei. RE(ei), short
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for "reduce of entity ei", indicates the end of the
mention of type ei that was opened more recently;
one says that a mention was closed by this action.
SH, short for "shift", indicates that the input pointer
should move to the next token; therefore, there is
one SH for each word in the sentence. Finally, EOA
is the end action.

These actions encode nested mentions effec-
tively through the order in which they are chosen.
If a mention of type ek starts at the word wi and
ends at the word wj , TR(ek) appears before the
SH representing the i-th word, and RE(ej) appears
after the SH representing the k-th word; if two men-
tions start at the same word, the TR() of the longest
mention appears first; conversely, if two mentions
end at the same word, the RE() of the shortest men-
tion appears first. Consider the following sentence
from the GENIA dataset (Kim et al., 2003):

a defective NF - chi B site was completely . . .

Protein DNA

This sentence has nested mentions, e.g. the men-
tion "NF - chi B" of type Protein is contained in
the mention "NF - chi B site" of type DNA. The
action encoding of the sentence with its mentions
is: SH → SH → TR(DNA) → TR(Protein) → SH
→ SH → TR(DNA) → SH → SH → RE(DNA) →
RE(Protein) → SH → RE(DNA) → SH → SH →
. . . → EOA.

3.2 Overall architecture

Using the previous notation, suppose one wants to
detect mentions of E in the sentence S. The model
consists of three consecutive steps: the encoding
of S into a dense contextual embedding matrix S,
the iterative action generation procedure, and the
decoding of the chosen actions into the mentions
present in the sentence.

Contextual embeddings For the first step, S
is passed through a BERT-like encoder to gen-
erate a matrix of contextual embeddings. For
each word wi, its dense embedding, denoted by
wi, is obtained by max-pooling across the em-
beddings of its subwords. In this way, the en-
coded sentence S is a tensor of size (N + 2, denc),
S =

[
CLS, w1, w2, . . . , wN ,SEP

]
, where denc is

the encoder embedding dimension, CLS (respec-
tively SEP) is the embedding of the classification
(respectively, separator) token of the encoder.

Action generation Given S, the model enters an
iterative action selection process, where at each
time step t, logits are computed for each possible
action in AE.2 Figure 1 shows a schematic repre-
sentation of a time step of the cycle.

More concretely, define u(t)ai to be the logit value
of action ai ∈ AE for time step t. Suppose the
system has already computed these values for the
first T ≥ 1 time steps, and is therefore about to
compute them for time step t = T + 1. According
to the last section, the SH action corresponds to
advancing a token in the sentence S. Hence, define

p(t) =
∑

t0 ≤ t

1

(
arg max

ai∈AE

(
u(t0)ai

)
= SH

)
, (1)

where 1 stands for the indicator function. p(t)

is therefore the number of tokens that have al-
ready been parsed at a previous time step t, for
1 ≤ t ≤ T . Lastly, define, for each 1 ≤ t ≤ T ,

Ω(t) =
∑

ai∈AE

β(t)
ai ai, (2)

where ai is a trained embedding of size denc and

β(t)
ai =

{
u
(t)
ai if u(t)ai ≥ u

(t)
SH

0 otherwise

In other words, Ω(t) is a weighted embedding of
the actions chosen at time step t, where actions
with logits lower than the logit of SH are excluded.

Let u(T+1) be the vector of logits u
(T+1)
ai over

ai ∈ AE. These are computed as

u(T+1) = MLP
(
f
(
p(T ),Ω(T )

))
, (3)

where the MLP is composed of a dropout layer,
a fully-connected layer, a tanh activation, and a
linear layer with output nodes corresponding to
each action in AE. The input of this MLP is

f
(
p(T ),Ω(T )

)
= Sp(T )+1 ⊕ SRU

(
Ω(T ) , p(T )

)
,

i.e. the concatenation of the embedding of the next
token, Sp(T )+1, and an embedding of the last state

2Unlike token-based labeling approaches, the total number
of time steps is not determined a priori, although always
bounded below by N , the number of words in S.
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of a "processed actions memory". This memory
holds an action history and computes weighted em-
beddings at each call by leveraging a set of internal
latent representations. This module is refered to
as the Slot-based Recurrent Unit (SRU), and is
described in section 3.3.

In order to make the first prediction, u(1), the
system is initialized by setting p(0) = 0, and Ω(0) to
be another trained embedding of size denc, denoted
by BOA.3 The action generation cycle terminates
when a time step t = Tfinal is reached such that

Sigmoid
(
u
(Tfinal)
EOA

)
> 0.5 . (4)

Decoding At the end of the action generation cy-
cle, the output logits from all time steps are passed
through a sigmoid function. This produces a set of
independent probability scores for each action in
AE, from which mention spans are extracted. The
decoder module maintains separate stacks of open
spans for each entity type in E, allowing spans of
different types to overlap.

The decoding process iterates through the list of
probability scores until reaching a time step where
the highest-scoring action is EOA4. Before such a
time step is reached, the decoder proceeds follow-
ing two rules: (i) if the highest-scoring action is SH,
a pointer that counts the number of parsed words is
incremented; and (ii) if the highest-scoring action
is a TR() or a RE(), the entity mention stacks are
updated. In the latter case, only actions with proba-
bility scores above 0.5 are considered. Transition
actions open new spans, while reduce actions close
the most recent span of the corresponding entity
type, as discussed in section 3.1.

3.3 Slot-based Recurrent Unit
The Slot-based Recurrent Unit (SRU) is a stateful
function that, at each time step, takes a pair of
inputs, updates its internal state, and produces an
output embedding.

At each time step t, the SRU updates its internal
state according to

C(t+1) = m
(
C(t), Ω(t), p(t)

)
,

where C(t) ∈ RQ×d is the SRU’s internal state
matrix, Ω(t) ∈ Rd is an input vector, and

3In this text, a zero-indexing notation is adopted for tensors,
and so Sp0+1 = w1.

4This stopping condition was shown to provide better re-
sults empirically, despite being different to that of the action
generation procedure, present in equation (4).

Figure 2: SRU unit at time step t. Its internal state
is updated depending on its current state C(t) and the
weighted action embeddings Ω(t). This stateful function
also leverages a set of latent representations. It produces
an output embedding h(t+1) by applying an attention
mechanism to the updated state.

p(t) ∈ {0, 1, . . . , Q− 1} is an input integer. It also
produces an output embedding h(t+1) ∈ Rd via

h(t+1) = g
(
C(t+1), p(t)

)
.

A schematic representation is present in Figure 2.
Q and d refer to the number of rows (or slots) in
the internal state matrix and the hidden dimension
of the input and output embeddings, respectively.

The function m updates C(t) by summing the
input vector Ω(t) to its p(t)-th row, i.e.

m
(
C(t), Ω(t), p(t)

)
:= C(t) + δp(t)

(
Ω(t)

)T

where δp(t) ∈ RQ is a one-hot vector with 1 in its
p(t)-th coordinate.

The output embedding h(t) ∈ Rd is obtained via
the function g, defined as

g
(
C(t+1), p(t)

)
:= wT

(
C(t+1)D1

)

where D1 is a trained diagonal matrix of size d and
w ∈ RQ are weights computed via an attention
mechanism inspired by Ganea and Hofmann, 2017,
detailed as follows. First, C(t+1) is enhanced by
adding positional information,

C
(t+1)
pos = α C(t+1) +Dropout

(
P
(
p(t)
))

(5)

where α is a trained scaling parameter, and
P
(
p(t)
)

∈ RQ×d are positional embeddings.5

5These positional embeddings are relative, in the sense
that each row of P

(
p(t)

)
is selected from a table of trained

embeddings based on its distance to the row with index p(t).

228



Next, a set of J trained latent embeddings of size d
are used to compute an attention score for each row
in C(t+1). Defining L ∈ RJ×d to be the matrix
of latent embeddings, an attention score matrix is
computed by

A = Dropout(L) D2

(
C

(t+1)
pos

)T
,

where D2 is a trained diagonal matrix of size d. An
attention score for each slot is obtained by setting
s = max

j
(Ajq) for q ∈ {0, 1, . . . , Q− 1}. Finally,

the scores s are normalized through a softmax to
get the weights w ∈ RQ.

The SRU module is used at each action gen-
eration time step to compute an embedding that
models the current state of a "processed actions
memory" stack. For each time step t, the input
integer p(t) is the one defined by equation (1), and
the input vector Ω(t) is the one defined by equation
(2). Furthermore, d is set to be the encoder em-
bedding dimension denc, the number of slots to be
Q = N+2, and the number of latent variables J to
be an integer multiple6 of |AE| = 2M + 2. The in-
ternal state matrix is initialized by setting C(0) = S.
Taking this choice of initialization into account, and
referring back to equation (3), for the computation
of h(T+1) = SRU

(
Ω(T ) , p(T )

)
, all the slots of the

updated internal state matrix C(T+1) are filled with
the embeddings of the encoded sentence S. In ad-
dition, a history of the previously chosen actions
is present in C(T+1) since, at each call of the SRU
module in previous time steps 0 ≤ t ≤ T , the
weighted action embeddings Ω(t) of equation (2)
were summed to the slots pointed to by p(t).

4 Multi-task training strategy

Suppose the model is trained on an ensemble of K
datasets D = {Di}Ki=1, where each dataset Di is
annotated with spans of entity types Ei. In order to
account for differences in labeling schemes, during
training, the entity types of distinct datasets are al-
ways considered to be distinct as well.7 Therefore,
the model is trained to recognize spans of entity
types in the disjoint union set Ê =

⊔K
i=1 Ei.

The training objective of the model is to mini-
mize the mean loss of the samples in a batch. Each
batch is constructed by randomly selecting samples

6For the experiments conducted, it was set to 2 or 10 (see
Table 12 in Appendix B).

7In practice, this is implemented by simply changing the
name of an entity type e ∈ Ei belonging to Di, to i_e in E.

from D. To ensure a balanced contribution from
all datasets, the probability of selecting a sample
from a given dataset is inversely proportional to
the total number of sentences in that dataset. The
total number of samples per epoch is the average
number of sentences in the datasets of D.

Let S be a sentence in the batch, coming from
dataset Di, and thus annotated with gold spans of
entity types Ei. The output of the action generation
cycle is a matrix

U =
(
u(t)ai

)
t=1, ... , Tfinal ; ai∈AE

,

where each row u
(t)
∗ contains the logits, for time

step t, over all actions AÊ associated with the dis-
joint union set Ê.8 To compute a loss value for U,
the following constraints are enforced:

i) on one hand, the model should be penalized
for failing to predict the TR() and RE() ac-
tions that correspond to the gold spans of the
entity types Ei, for which S is annotated; but

ii) on the other hand, the model should not be
penalized for predicting TR() and RE() ac-
tions of entity types in Ê \ Ei, which are not
annotated in S.

In practice, this strategy is applied as fol-
lows. The list of actions corresponding to the
gold annotations of sentence S (constructed as
detailed in section 3.1 and considering the dis-
joint entity type set Ê) is augmented to a ma-
trix G =

(
G

(t)
ai

)
∈ RTinitial×|AÊ| such that each row

G
(t)
∗ is a multi-hot vector representing a distinct

timestep t, with 1’s in the columns that correspond
to the gold actions. This conversion is done such
that the SH and EOA actions always occupy different
time steps, but TR() and RE() actions of different
entity types can coexist at the same time step. Then,
G is changed during the action generation cycle
by incorporating the probabilities of the model’s
decisions on TR() and RE() actions from other
datasets. More concretely, at time step t of the
cycle, for ai ∈ AÊ \ AEi , G

(t)
ai is set to be equal

to σ
(
u
(t)
ai

)
, where σ is the sigmoid function. In

addition, when G
(t)
SH = 1 and u

(t)
ai > u

(t)
SH for some

8At inference time, the action generation procedure halts
when the probability of the EOA action exceeds a threshold, as
described in section 3.2. However, during training, in order to
guarantee that all gold actions are considered, the cycle halts
only after all tokens have been parsed (i.e. shifted).
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Dataset SRU-NER Wang et al., 2018 Huang et al., 2019 Khan et al., 2020 Moscato et al., 2023Merged Disjoint

BC2GM 78.80 83.95 80.74 * 79.1 83.01 * 84.84
BC4CHEMD 90.42 92.05 89.37 * 87.3 — —
BC5CDR 89.37 90.26 88.78 * — 89.50 * ⋄
JNLPBA 72.15 76.00 73.52 * 83.8 72.89 * —
Linnaeus 88.82 — 83.9 — —
NCBI Disease 87.32 88.71 86.14 * 84.0 88.10 * 89.20

Average 84.48 86.63

Table 1: Micro-F1 scores of several multi-task models trained on subsets of an ensemble of six biomedical datasets.
For SRU-NER, scores are reported by considering two evaluation scenarios, Merged and Disjoint, as explained in
section 5.2. Best scores are bold, and second best scores are underlined. Symbol reference:
— : dataset was absent in training;
* : model was trained on both the training and development splits of the corpora;
⋄ : model was trained using only the ’Chemical’ annotations of BC5CDR, obtaining an F1 of 93.95; for the same
tag, SRU-NER gets an F1 of 93.77 on the disjoint evaluation and 93.18 on the merged evaluation.

ai ∈ AÊ \ AEi , that is, when the model is trying
to open/close a new span of an entity type of other
dataset Dj (j ̸= i), the value G

(t)
SH is changed to

σ
(
u
(t)
SH

)
. In this case, a one-hot vector is inserted

in G after G(t)
∗ , so that, on the next time step t+ 1,

G
(t+1)
SH = 1 and G

(t+1)
ai = 0 for all ai ∈ Ê \ {SH}.

This procedure ensures that G still reflects the orig-
inal gold annotations in the columns corresponding
to TR() and RE() actions of entity types in the
source dataset, but incorporates the model’s proba-
bilities for other actions. Then, by setting, for each
1 ≤ t ≤ Tfinal,

L(t) =− 1

|AÊ|
∑

ai∈AÊ

(
G(t)

ai log
(
σ
(
u(t)ai

))

+
(
1−G(t)

ai

)
log
(
1− σ

(
u(t)ai

)))

the total loss of the sample is computed as

L =
1

Tfinal

Tfinal∑

t=1

L(t) .

Given how G is constructed, this ensures the afore-
mentioned constraints i) and ii) on the loss function
are satisfied.

5 Experiments and Results

To evaluate the performance of the proposed archi-
tecture for the NER task, single-task experiments
were conducted on benchmarks datasets, specifi-
cally the English subset of CoNLL-2003 (Tjong
Kim Sang and De Meulder, 2003) and GENIA

(Kim et al., 2003). The model’s multi-task per-
formance is also assessed by training it with an
ensemble of six biomedical datasets that have been
extensively used in previous research. In order to
demonstrate the viability of SRU-NER for down-
stream applications, a model is evaluated in a cross-
corpus setting by replicating the experimental setup
of Sänger et al., 2024. Finally, two further experi-
ments are conducted to quantify the reliability of
the multi-task models’ predictions for entity types
that are not explicitly annotated in the test corpora,
providing a more comprehensive assessment of
their generalization capabilities.

The datasets used across the following sections
and respective experimental setup are described
in Appendix A. Training details can be found in
Appendix B. For evaluation purposes, a predicted
mention is considered a true positive if and only
if both its span boundaries and entity type exactly
match the gold annotation. Results are reported for
each dataset using mention-level micro F1 scores.

5.1 Single-task performance

The results of the two single-task models are pre-
sented in Table 2. The proposed model achieves
micro F1 scores of 94.48% on the CoNLL-2003
dataset, and 80.10% on the GENIA dataset. These
results are very close to state-of-the-art (SOTA),
demonstrating the competitiveness of SRU-NER in
both flat and nested NER scenarios. Nonetheless,
in contrast to our approach, the models presented as
SOTA were trained using both the training and de-
velopment splits of their respective datasets. This
difference in training data availability may con-
tribute to the observed performance gap, particu-
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larly on GENIA, where additional annotated data
could provide further benefits in capturing complex
biomedical terminology.

Dataset SRU-NER SOTA

CoNLL 94.48 94.6*, (Wang et al., 2021)
GENIA 80.10 81.53*, (Shen et al., 2023)

Table 2: Micro-F1 scores of single-task models on
benchmark datasets. The entity counts of the datasets
can be found in Table 7. The * symbol indicates that a
model was trained on both the training and development
splits of the corpus.

Dataset SRU-NER SOTA

BC2GM 85.43 85.48* (Sun et al., 2021)
BC4CHEMD 92.64 92.92* (Sun et al., 2021)
BC5CDR 90.61 91.90 (Zhang et al., 2023)
JNLPBA 77.12 78.93* (Sun et al., 2021)
Linnaeus 89.62 94.13 (Habibi et al., 2017)
NCBI Disease 89.25 90.04* (Sun et al., 2021)

Average 87.45

Table 3: Micro-F1 scores of single-task models trained
on the datasets used for the multi-task model described
in section 5.2. SOTA results are for single-task models.
The * symbol indicates the model was trained on a larger
training split.

5.2 Multi-task performance

In Table 1, we show the results of SRU-NER
trained on an ensemble {Di}6i=1 of six biomedi-
cal datasets, annotated for |∪i Ei| = 8 entity types.
Since there are entity types which are annotated
on more than one dataset (e.g. BC4CHEMD and
BC5CDR are both annotated with mentions of the
Chemical type), two evaluation scenarios are con-
sidered, that differ in how these type labels are
interpreted. Recalling that the model infers men-
tions with entity types in the disjoint union set
Ê = ⊔i Ei, given a sentence coming from the test
split of dataset Di of the ensemble, in the case of:

i) disjoint evaluation, the predicted spans of
types Ei ⊂ Ê are compared against the gold
ones, and any predicted span of type in Ê \Ei

is discarded;

ii) merged evaluation, the entity types of pre-
dicted spans are mapped to ∪i Ei, and the
spans whose mapped types do not also be-
long in Ei are discarded; the remaining spans
are compared against the gold ones.

An example of the predictions of the model on a
test sentence, together with which spans are used
to compute the metrics on the two evaluation sce-
narios is present in Figure 3.

Figure 3: Example of a sentence from the test split of
the BC5CDR corpus (Li et al., 2016), together with
gold spans and predicted spans as annotated by the
MTL model described in section 5.2. The model is
trained on six datasets, covering eight entity types
∪i Ei = {Chemical,Disease, . . .}. Notice that some
of these types are common to multiple datasets (namely,
’Chemical’, annotated on both the BC4CHEMD and
BC5CDR datasets; and ’Disease’, annotated on both
the BC5CDR and NCBI datasets). SRU-NER tags
spans with one of 11 possible types, built by adjoin-
ing the dataset name to the original type name, such
that Ê = {BC4_Chemical,BC5_Chemical, . . .}. In the
disjoint evaluation case, and since this sentence comes
from the BC5CDR corpus, metrics are computed by
considering only the spans whose types in Ê start with
the BC5 shorthand, resulting in one true positive, one
false positive and two false negatives. In the merged
evaluation case, spans whose types in Ê do not end with
’Chemical’ or ’Disease’ are discarded, and the remain-
ing spans have their types mapped to ∪i Ei by removing
the dataset identifier. With these spans, there are two
true positives, two false positives and one false negative
in the sentence.

Compared to previous MTL models, the pro-
posed model achieves the best or second-best F1
scores in the disjoint evaluation setting. These re-
sults are obtained without relying on task-specific
classification layers (Wang et al., 2018; Khan et al.,
2020) or training multiple single-task teacher mod-
els followed by knowledge distillation into a stu-
dent model (Moscato et al., 2023). Instead, a single
unified model learns each task directly from its
respective annotated dataset while preserving the
performance of other tasks. This approach enables
joint decoding, thereby eliminating the need for
post-processing steps to resolve span conflicts.

Table 3 presents F1 scores for single-task mod-
els trained on each dataset used in the multi-task
setting, alongside SOTA references. The results
demonstrate that the proposed model remains com-
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petitive in the single-task setting. The average
F1 score of the six single-task SRU-NER models
is 0.82 percentage points higher than the dataset-
average F1 of the multi-task SRU-NER model un-
der the disjoint evaluation setting. This aligns with
previous findings, which suggest that while multi-
task training improves model robustness across
datasets, it may lead to lower in-corpus perfor-
mance compared to single-task models (Yin et al.,
2024). To further investigate the generalization ca-
pabilities of the model, the next section presents an
evaluation in a cross-corpus setting.

Dataset Entity type SRU-NER Baseline

BioID Species 62.41 58.21
MedMentions Chemical 59.53 58.40

Disease 62.48 62.18
tmVar3 Gene 90.38 87.87

Average 68.70 66.67

Table 4: Mention-level F1 scores for the cross-corpus
experiment. SRU-NER was trained on an emsemble
of 8 biomedical datasets, and evaluated on 3 indepen-
dent corpora. Baseline refers to the scores obtained by
(Sänger et al., 2024). Best scores are in bold.

Training datasets Chemical Disease

Only BC5-Chemical 91.27 —
Only BC5-Disease — 85.41
Both 91.81 86.10

Table 5: Global prediction F1 scores on the test split of
BC5CDR of models trained on synthetic datasets. Best
scores are bold.

5.3 Cross-corpus evaluation
Table 4 presents the results of the proposed model
in a cross-corpus evaluation, replicating the exper-
imental setup of Sänger et al., 2024. The model
was trained on an ensemble of nine datasets cov-
ering five entity types and evaluated on three inde-
pendent corpora annotated for four of these types.
The results indicate that SRU-NER outperforms
the baseline by an average of 2.03%, with notable
improvements for the Species (4.2%) and Gene
(2.51%) entity types. These findings underscore
the robustness of the model and demonstrate its po-
tential for downstream applications. For reference,
in-corpus F1 scores are provided in Appendix C.

5.4 Evaluation of global predictions
The previous experiments evaluated the model’s lo-
cal prediction ability. Specifically, when the model

is trained on a collection {Di}Ki=1, where each
dataset Di was annotated for entity types Ei, its
performance was assessed on a test dataset Dtest
annotated with entity types Etest ⊆ Ej for some
j ∈ {1, . . . ,K}. However, the model generates
predictions for spans of all entity types in ∪i Ei

within Dtest. To evaluate its global prediction abil-
ity, it is necessary to test the model on a dataset
annotated with a superset of entity types spanning
multiple training datasets.

First, following the approach of Huang et al.,
2019, a synthetic dataset is constructed from the
BC5CDR corpus. The original training set is
randomly partitioned into two disjoint subsets:
one containing only Chemical annotations (BC5-
Chemical) and another containing only Disease
annotations (BC5-Disease). Additional details on
these synthetic datasets are provided in Appendix
A. Two single-task models are trained separately on
each subset, while a multi-task model is trained on
both. All models are evaluated on the original test
split of the BC5CDR corpus. The results, presented
in Table 5, demonstrate that the training strategy
outlined in section 4 effectively enables the model
to make accurate global predictions across entity
types from different training datasets.

Secondly, a multi-task model is trained on both
the CoNLL-2003 dataset and the BC5CDR dataset.
This approach results in a model capable of recog-
nizing six entity types: four from the general do-
main (LOC, MISC, ORG, PER) and two from the
biomedical domain (Chemical, Disease). To assess
the model’s ability to generalize across domains,
its predictions of general-domain entity types in the
test split of the BC5CDR dataset and, conversely,
its predictions of biomedical entity types in the
test split of the CoNLL dataset are evaluated. The
results of the multi-task model can be found in
Table 6 under the column SRU-NER-MTL. Since
gold annotations for these cross-domain predic-
tions are not available, the evaluation was con-
ducted manually by two human annotators. Pro-
vided with definitions of the entity types, they inde-
pendently assessed whether the model’s predictions
were correct. This human evaluation was also con-
ducted for the predictions of two single-task mod-
els: one trained on CoNLL-2003 and evaluated
on the BC5CDR test set (SRU-NER-CoNLL), and
another trained on BC5CDR and evaluated on the
CoNLL-2003 test set (SRU-NER-BC5). A compar-
ison between the single-task and multi-task models
reveals that multi-task SRU-NER is, on average,
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Entity SRU-NER-CoNLL SRU-NER-BC5 SRU-NER-MTL
P R F1 P R F1 P R F1

Chemical 24.71 87.76 38.57 — — — 75.00 9.18 16.36
Disease 25.25 83.33 38.76 — — — 88.46 38.33 53.49
LOC — — — 98.25 88.89 93.33 100.00 96.83 98.39
ORG — — — 80.00 80.00 80.00 86.36 71.25 78.08
PER — — — 94.44 94.44 94.44 100.00 22.22 36.36

Table 6: Human evaluation of the out-of-domain predictions made by three models. P stands for precision, R for
the simulated recall, and F1 for the F1 computed with the former two metrics. Details on how these metrics were
computed can be found in Appendix D.

25.4% more precise in identifying out-of-domain
spans. For instance, the single-task model trained
on biomedical entity types incorrectly classified
lead as a chemical in the CoNLL-2003 sentence:
"Indonesian keeper Hendro Kartiko produced a
string of fine saves to prevent the Koreans increas-
ing their lead." In contrast, the multi-task model
did not make this error. Further details on this
experiment are provided in Appendix D.

6 Conclusion

This work presents SRU-NER, a novel architecture
for Named Entity Recognition capable of handling
nested entities through a transition-based parsing
approach. The model integrates a Slot-based Re-
current Unit (SRU) to maintain an evolving repre-
sentation of past actions, enabling effective entity
extraction. Unlike traditional multi-task learning
approaches that rely on separate models for dif-
ferent entity types, SRU-NER employs a unified
learning strategy, allowing a single model to learn
from multiple datasets. This approach improves
adaptability to annotation inconsistencies and en-
hances generalization across domains.

Experimental results demonstrate that SRU-
NER achieves strong performance in both single-
and multi-task settings, with cross-corpus evalua-
tions and human assessments confirming the robust-
ness of its predictions. These findings highlight the
advantages of training a single multi-task model
for BioNER and suggest promising directions for
future research, including advancements in nested
entity recognition and domain adaptability.

Limitations

While the proposed SRU-NER architecture has
demonstrated effectiveness for named entity recog-
nition in general and biomedical domains, its per-
formance in other domains, such as legal or finan-
cial, was not evaluated. Furthermore, the general-

izability of the findings may be limited, as evalua-
tions on community-available biomedical datasets
may not fully capture the diversity of real-world
biomedical text. Finally, the assessment of global
prediction ability in a cross-domain scenario re-
lied on human annotators, introducing a degree of
subjectivity to the evaluation.

While the model achieves competitive results,
we note that no extensive hyperparameter search
was conducted. A more systematic tuning of hyper-
parameters could potentially yield further improve-
ments. Additionally, the training strategy presents
opportunities for refinement, notably in the sam-
pling strategy utilized within the multi-task learn-
ing framework.
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A Datasets and Experimental Setup

For the English subset of CoNLL-2003 (Tjong
Kim Sang and De Meulder, 2003), the original
dataset splits are used, which are provided in a
pre-tokenized format. For the GENIA dataset, the
splits from Yan et al., 2023 are adopted. The entity
counts per split of these datasets can be found in
Table 7.

Dataset Entity Type Train Dev Test

CONLL

LOC 7,140 1,837 1,668
MISC 3,438 922 702
ORG 6,321 1,341 1,661
PER 6,600 1,842 1,617

GENIA

Cell Line 3,069 372 403
Cell Type 5,854 576 578
DNA 7,707 1,161 1,132
Gene or protein 28,874 2,466 2,900
RNA 699 139 106

Table 7: Statistics for the datasets used in the single-
task experiments of section 5.1.

To train a multi-task model, six biomedical
datasets are utilized: BC2GM (Smith et al., 2008),
BC4CHEMD (Krallinger et al., 2015), BC5CDR
(Li et al., 2016), JNLPBA (Collier et al., 2004),
Linnaeus (Gerner et al., 2010), and NCBI Disease
(Doğan et al., 2014). The dataset splits (Table 8)
follow those established by Crichton et al., 2017,
which have been extensively used in prior studies,
including Wang et al., 2018; Huang et al., 2019;
Khan et al., 2020; Moscato et al., 2023.

Dataset Entity Type Train Dev Test

BC2GM Gene or protein 15,035 3,032 6,243

BC4CHEMD Chemical 29,263 29,305 25,210

BC5CDR Chemical 5,114 5,239 5,277
Disease 4,169 4,224 4,394

JNLPBA

Cell Line 3,369 389 490
Cell Type 6,162 522 1,906
DNA 8,416 1,040 1,045
Gene or protein 27,015 2,379 4,988
RNA 844 106 118

Linnaeus Species 2,079 700 1,412

NCBI Disease Disease 5,111 779 952

Table 8: Statistics for the datasets used in the multi-task
experiment of section 5.2.

In the aforementioned experiments, models are
trained on the respective training splits, checkpoint
selection is made on the development splits, and
evaluation is conducted on the test splits.

For the cross-corpus evaluation, the experimen-
tal setup of Sänger et al., 2024 is replicated. A

multi-task model is trained using an ensemble of
nine datasets9: BioRED (Luo et al., 2022), GNorm-
Plus (Wei et al., 2015), Linnaeus (Gerner et al.,
2010), NCBI Disease (Doğan et al., 2014), NLM-
Chem (Islamaj et al., 2021a), NLM-Gene (Islamaj
et al., 2021b), S800 (Pafilis et al., 2013), SCAI
Chemical (Kolarik et al., 2008), and SCAI Dis-
ease (Gurulingappa et al., 2010). The model is
trained on the training sets, with checkpoint selec-
tion being performed on the development splits.
The evaluation is conducted on an independent cor-
pus consisting of the full annotated data of three
datasets10: BioID (Arighi et al., 2017), MedMen-
tions (Mohan and Li, 2019), and tmVar3 (Wei et al.,
2022). Dataset statistics for the training corpora
and the independent test corpora can be found in
Table 9 and Table 10, respectively.

Dataset Entity Type Train Dev Test

BioRED

Cell Line 103 22 50
Chemical 2,830 818 751
Disease 3,643 982 917
Gene 4,404 1,087 1,170
Species 1,429 370 393

GNormPlus Gene 4,964 504 4,468

Linneaus Species 1,725 206 793

NCBI Disease Disease 4,083 666 2,109

NLM-Chem Chemical 21,102 5,223 11,571

NLM-Gene Gene 11,209 1,314 2,687

S800 Species 2,236 410 1,079

SCAI Chemical Chemical 852 83 375

SCAI Disease Disease 1,281 250 710

Table 9: Statistics of the training corpora used in the
cross-corpus evaluation scenario of section 5.3.

Dataset Entity Type Number of mentions

BioID Species 7,939

tmVar3 Gene 4,059

MedMentions Disease 19,298
Chemical 19,198

Table 10: Statistics of the corpora used for the cross-
corpus evaluation described in section 5.3.

Finally, in order to assess the model’s global pre-
diction ability, synthetic datasets were derived from
the BC5CDR corpus, in line with (Huang et al.,

9The datasets were obtained in February 2025 from https:
//github.com/flairnlp/flair. Their splits and prepro-
cessing choices were replicated.

10The preprocessed datasets were downloaded from https:
//github.com/hu-ner/hunflair2-experiments in Febru-
ary 2025.
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2019) experimental setup. The original training
set was randomly divided into two disjoint subsets:
BC5-Disease (containing only Disease annotations)
and BC5-Chemical (containing only Chemical an-
notations). The same procedure was followed for
the development splits. The statistics of these syn-
thetic datasets can be found in Table 11. By train-
ing models on the BC5-Disease and BC5-Chemical
subsets and evaluating them on the full test split of
the BC5CDR corpus, we can test the models global
prediction abilities, as described in section 5.4.

Dataset Entity Type Train Dev

BC5-Disease Disease 2,172 2,279

BC5-Chemical Chemical 2,459 2,665

Table 11: Statistics of the synthetic datasets created for
assessing global prediction ability.

B Training Details

Hyperparameter GENIA Others

# epochs 100 100
Early stop 30 30
Batch size 16 16
Max. # tokens 405 405
Gradient norm clipping 1.0 1.0
Dropout on logits 0.1 0.1

SRU module

# latent embeddings (multiplier) 10 2
Half-context for pos. embeddings 240 150
Dropout on pos. embeddings 0.2 0.2
Dropout on latent embeddings 0.2 0.2

Encoder optimizer

LR 3e-5 2e-5
Weight decay 1e-3 1e-3
Warm up (in epochs) 1 1

Actions generation cycle optimizer

LR 3e-4 3e-4
Weight decay 1e-3 1e-3
Warm up (in epochs) 0.5 0.5

Table 12: Hyperparameters used for the experiments.
The column ’Others’ refers to every experiment except
the single-task on the GENIA dataset.

All models are developed using the PyTorch ten-
sor library and trained on a single NVIDIA A100
80GB GPU. The encoder module and the action
generation module are tuned using two separate
AdamW optimizers with linear warm-up, set with
different initial learning rates and weight decays.
Both optimizers are set with β1 = 0.9, β2 = 0.98
and ϵ = 10−6. Models are trained with early stop-

ping based on performance on the development
set.11 The hyperparameters of all experiments can
be found in Table 12. Additionally, while the token
scaling parameter α in equation (5) of section 3.3
was trained for the single-task experiment on the
GENIA dataset, it was frozen and set to 1 for all
other experiments.

The encoder module was built on top of the
HuggingFace transformers library (Wolf et al.,
2020). Specifically, the LinkBERT-large encoder
from Yasunaga et al., 2022 was used for all mod-
els trained with biomedical corpora, while the
xlm-roberta-large encoder introduced by Con-
neau et al., 2020 was used for the single task model
trained on the CoNLL-2003 dataset.

C Single-task performance on the
datasets used for the cross-corpus
experiment

Dataset Merged Disjoint

BioRED 90.73 90.90
GNormPlus 85.00 86.00
Linnaeus 78.16 92.23
NCBI Disease 85.69 85.70
NLM-Chem 84.42 85.65
NLM-Gene 88.35 88.13
S800 74.24 75.79
SCAI Chemical 85.21 85.64
SCAI Disease 80.78 82.14

Table 13: In-corpus micro-F1 scores for the model used
in the cross-corpus evaluation experiment of section 5.3.

D Human evaluation of global predictions
in a cross-domain setting

To assess the model’s ability to generalize across
domains, three models were trained:

• SRU-NER-CoNLL: a single-task model
trained on the CoNLL corpus;

• SRU-NER-BC5: a single-task model trained
on the BC5CDR corpus;

• SRU-NER-MTL: a multi-task model trained
on both corpora.

All models were trained using the
LinkBERT-large encoder from Yasunaga

11In the case of multi-task models where multiple datasets
are tagged with the same entity type (the models of sections
5.2 and 5.3), despite the entity types being considered disjoint
for training purposes, validation F1 scores on the development
set for checkpoint selection are computed by merging the
types, as described in the begining of section 5.2.
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et al., 2022. To evaluate cross-domain gener-
alization, the models capable of recognizing
general-domain entity types (SRU-NER-CoNLL
and SRU-NER-MTL) were used to annotate the test
split of the biomedical corpus, while the models
trained on biomedical entity types (SRU-NER-BC5
and SRU-NER-MTL) were used to annotate the
test split of the general-domain corpus. Since gold
annotations for these out-of-domain predictions
were not available, two linguists manually assessed
their correctness. Inter-annotator agreement per
entity type is reported in Table 14.

Entity Agreement (%)

Chemical 92.98
Disease 91.09
LOC 100.00
ORG 87.76
PER 88.89

Table 14: Inter-annotator agreement for the evaluated
entity types.

Based on the assessment of correct predicted
spans by the two human annotators, a precision
score was computed by taking the ratio of correctly
identified spans to the total number of predicted
spans, for each model, entity type and linguist. A
simulated recall score per model, entity type and
linguist was also computed by considering the to-
tal number of spans of each entity type that were
considered correct by at least one of the annotators,
across all the predictions made by the three models.
Finally, precision and simulated recall scores per
model and entity type were obtained by averaging
across the two human annotators.

The results can be found in Table 6, in the main
text. One can see that the precision scores of the
multi-task model are higher than the single-task
ones across all entity types, while the recall values
of the multi-task model are worse for all entity
types except ORG.

For reference, the in-corpus performance of the
three models is present in Table 15.

Model CoNLL BC5CDR

SRU-NER-CoNLL 90.51 —
SRU-NER-BC5 — 90.61
SRU-NER-MT 91.01 90.51

Table 15: In-corpus performance of the three models
used for evaluation of global predictions in a cross-
domain setting. The single-task model SRU-NER-BC5
is the same as the one used for comparison in the multi-
task experiment of section 5.2.
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