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Abstract

Large Language Models (LLMs) have signif-
icantly impacted medical Natural Language
Processing (NLP), enabling automated infor-
mation extraction from unstructured clinical
texts. However, selecting the most suitable ap-
proach requires careful evaluation of different
model architectures, such as generative LLMs
and BERT-based models, along with appropri-
ate adaptation strategies, including prompting
techniques, or fine-tuning. Several studies ex-
plored different LLM implementations, high-
lighting their effectiveness in medical domain,
including complex diagnostics patterns as for
example in rheumatology. However, their ap-
plication to Italian remains limited, serving as a
key example of the broader gap in non-English
language research. In this study, we present
a task-specific benchmark analysis comparing
generative LLMs and BERT-based models, on
real-world Italian clinical reports. We evalu-
ated zero-shot prompting, in-context learning
(ICL), and fine-tuning across eight diagnostic
categories in the rheumatology area. Results
show that ICL improves performance over zero-
shot-prompting, particularly for Mixtral and
Gemma models. Overall, BERT fine-tuning
present the highest performance, while ICL out-
performs BERT in specific diagnoses, such as
renal and systemic, suggesting that prompting
can be a potential alternative when labeled data
is scarce.

1 Introduction

Recent advancements in Large Language Mod-
els (LLMs) have significantly impacted medical
Natural Language Processing (NLP), enabling
the extraction of structured information from un-
structured clinical texts with increasing accuracy.
Transformer-based architectures, such as BERT-
based models and generative LLMs, have demon-
strated strong potential in clinical text classifica-
tion, named entity recognition, and medical con-
cept extraction. However, selecting the most suit-

able model for a given task requires careful consid-
eration of both model architecture and adaptation
strategy, as different approaches offer varying lev-
els of performance, efficiency, and practical feasi-
bility.

LLMs, particularly generative architectures, can
be adapted through zero-shot prompting (Sivara-
jkumar et al., 2024), where the model relies solely
on its pre-trained knowledge, or in-context learn-
ing (ICL) (Liu et al., 2024), where domain-specific
context is provided within the prompt. More ad-
vanced strategies include instruction fine-tuning
(Tran et al., 2024; Li et al., 2024b), which refines
the model’s alignment with task-specific instruc-
tions. BERT-based models (Devlin et al., 2019), fol-
lowing a discriminative approach, typically require
fine-tuning through supervised learning, though
they can also be applied in Natural Language In-
ference (NLI) frameworks or used in few-shot and
zero-shot settings by leveraging pre-trained embed-
dings. In all cases, pretraining on large domain-
specific corpora can further enhance performance,
though it remains computationally expensive and
data-intensive.

In this work, we present a task-specific bench-
mark analysis tailored to a real-world clinical sce-
nario, focusing on the necessity of extracting struc-
tured information from Italian clinical notes, in a
real-world hospital setting. Our study evaluates
generative LLMs in two different prompting strate-
gies: zero-shot prompting, where the model re-
lies solely on its pre-trained knowledge, and ICL,
where additional domain-specific context is pro-
vided to guide the extraction process. To establish
a strong comparative baseline, we also assess fine-
tuned BERT-based models, which have tradition-
ally been used for medical information extraction
tasks (Lee et al., 2020; Muizelaar et al., 2024; Yang
et al., 2024).

Our evaluation is based on a very general use
case, which is the detection of complex diagnoses
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Figure 1: Study Framework: task-specific benchmark analysis comparing LLMs using zero-shot and in-context
learning (ICL) strategies against fine-tuned BERT-based models, in an information extraction task.

in medical notes. The example we used covers the
rheumatology domain, where very often a disease
can impact several domains, each corresponding to
a particular organ or system involvement (Figure
1). The use case of diagnosis extraction allows us
to systematically compare generative LLMs and
fine-tuned models, analyzing their strengths, lim-
itations, and potential applications in real-world
clinical workflows. By conducting this study in
a practical hospital setting, we aim to provide in-
sights into the feasibility of integrating LLM-based
NLP solutions for automated information extrac-
tion in clinical practice. This process can support
the development of decision-support tools and en-
able the creation of research datasets for predic-
tive analytics, ultimately enhancing both clinical
decision-making and medical research.

2 Background

Natural Language Processing (NLP) has gained in-
creasing attention in medical application, with stud-
ies exploring its potential for extracting meaningful
clinical insights from unstructured medical texts. A
systematic review by Omar et al. (2024) provides a
comprehensive analysis of NLP applications specif-
ically for the reumathology domain, covering var-
ious techniques used to process electronic health
records (EHRs), PubMed abstracts, FAQ and ex-
ams’ questions for diseases such as rheumatoid
arthritis (RA), gout, and systemic lupus erythemato-
sus (SLE). Among the identified works, Li et al.
(2022) explores named entity recognition (NER)
in RA clinical notes, leveraging a BERT model en-
hanced with BiLSTM and CRF layers, achieving
promising results in medical entity extraction. In
the study of Osborne et al. (2021) NLP is used for
gout flare detection, developing a fine-tuned BERT
classifier based on annotated Emergency Depart-

ment (ED) chief complaint notes, demonstrating
that chief complaints alone are highly predictive of
gout flares. Expanding on this approach, Oliveira
et al. (2024) compares traditional NLP methods
(e.g., tf-idf) with domain-specific LLMs, distin-
guishing between generative and discriminative
models. Their study shows that generative models
used as feature extractors can enhance performance
when integrated with an SVM classifier, suggesting
a hybrid approach for clinical text classification.
Focusing specifically on SLE and the Italian lan-
guage, Lilli et al. (2024a) investigates the adap-
tation of BERT-based models for the extraction
of Lupus-related diagnoses, symptoms, and treat-
ments, demonstrating the feasibility of transformer-
based NLP approaches in non-English medical cor-
pora. Lilli et al. (2024b) also presents an NLP
pipeline that integrates regular expression-based ex-
traction with BERT-based topic detection, improv-
ing the structured identification of Lupus-related
clinical features from Italian medical texts.
Beyond disease-specific applications, broader re-
search has investigated the effectiveness of LLMs
and BERT-based models in medical NLP tasks.
Zhang et al. (2024) evaluates prompt engineering
versus fine-tuning for clinical note classification,
using metastatic cancer identification as a bench-
mark task. Their findings indicate that GPT-4 with
structured prompts outperforms fine-tuned BERT-
based models, suggesting that prompting can be an
effective alternative to model retraining in clinical
NLP. Meanwhile, Savage et al. (2024) examines
whether LLMs can emulate clinical reasoning by
structuring prompts to reflect differential diagnosis
formation, intuitive reasoning, analytical reasoning,
and Bayesian inference. Their results suggest that
LLMs can provide interpretable rationales without
compromising diagnostic accuracy, addressing the
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“black box” issue that limits trust in Al-driven med-
ical applications.

More recent studies have also advanced the
understanding of prompting strategies in clinical
NLP. Naguib et al. (2024) conducted a multilin-
gual evaluation of few-shot prompting for clin-
ical NER, showing that masked language mod-
els often outperform generative models, particu-
larly in low-resource settings. Similarly, Nagar
et al. (2024) benchmarked various prompting and
retrieval strategies across structured biomedical
tasks, highlighting the limitations of reasoning-
augmented methods like Chain-of-Thought and
RAG, especially for classification and NER. Hu
et al. (2024) proposed a prompt engineering frame-
work for GPT models in clinical NER, demonstrat-
ing that structured, task-specific prompting can sub-
stantially improve performance.

All the above studies highlight the evolution of
NLP techniques in medical applications, and the
increasing role of LLMs in replacing or comple-
menting traditional fine-tuned models for clinical
text analysis, classification, and decision support.

3 Method
3.1 Dataset

The dataset used in this study consists of a col-
lection of outpatient visit reports written in Italian
language, related to patients with a SLE diagnosis
and treated in the Reumatology department of a
real-world hospital. The outcome of the informa-
tion task was to identify eight different types of
diagnoses based on the specific organ or system
involvement. The categories considered are: Artic-
ular, Cutaneous, Hematologic, Neurologic, Renal,
Systemic, Serositis, and Vascular.

3.2 Generative Modeling

For the generative LLM experiments, we employed
a set of open-source language models, either mul-
tilingual or specifically trained for the Italian lan-
guage, leveraging the Ollama framework to opti-
mize computational efficiency. The models were
then accessed through the Ollama Python library',
utilizing its generate function to process and ana-
lyze clinical texts. This approach allowed us to effi-
ciently execute inference without the need for fine-
tuning, making it a scalable and adaptable solution
for medical NLP tasks. Input reports were prepro-
cessed and analyzed at the paragraph level rather

"https://github.com/ollama/ollama-python

than as full documents. This approach was adopted
to reduce text length, enabling a more focused and
efficient processing of clinical information. At the
end of the processing pipeline, a logical OR op-
eration was applied to aggregate paragraph-level
classifications into a final diagnosis at the Elec-
tronic Health Record (EHR) level. This means that
if any paragraph within a patient’s report indicated
the presence of a specific Lupus subtype, that clas-
sification was assigned to the entire EHR. For both
the zero-shot and in-context learning setups, we
leveraged ChatGPT-40 (Hurst et al., 2024; Achiam
et al., 2023) to generate appropriate prompts, en-
suring well-structured and consistent instructions
tailored for clinical information extraction. In both
cases, the prompt was in English and designed to
return a structured binary output (1 for presence,
0 for absence) for each Lupus category indepen-
dently. However, the models did not always com-
ply with this format, often including additional
explanations or justifications alongside the binary
response. To provide a standardized output, we
applied a regular expression (regex) filter to isolate
and extract the binary classification for each cate-
gory separately, ensuring consistency in the final
results. To improve the robustness of this approach,
we manually reviewed a sample of LLM outputs to
identify common patterns for the development of
regex rules. This step helped us reduce misclassi-
fications caused by unexpected output formats or
embedded rationales.

3.2.1 Zero-Shot Prompting

In the zero-shot prompting setup, the models were
prompted without any additional contextual guid-
ance or predefined medical terms. The prompt
structure followed a direct query format, instruct-
ing the model to determine the presence of a Lupus
diagnosis based on the involvement of a specific
organ or system. The exact prompt used was:

Given the following Italian medical report,
return "1" if there is evidence of lupus with
{category} involvement, otherwise, return "Q"

Report:
{text?}

By relying solely on the model’s pre-trained
knowledge, this approach aimed to evaluate the
intrinsic capability of generative LLMs to extract
structured medical information without external
lexical or contextual augmentation.

192




Class

Count
IISDO
400

200

Figure 2: Dataset Composition.

3.2.2 In-Context Learning

In the in-context learning setup, we provided addi-
tional domain-specific context by including an Ital-
ian dictionary of medically relevant terms related to
each category. These terms consisted of synonyms
and alternative expressions commonly used in clin-
ical texts to describe the specific type of organ or
system involvement. By integrating this lexical
knowledge directly into the prompt, we aimed to
guide the model toward more accurate informa-
tion extraction while still leveraging its generative
capabilities. Unlike the zero-shot prompting, the
following prompt structure was used to incorporate
the dictionary of terms:

Given the following Italian medical report,

return "1" if there is evidence of lupus with
{category} involvement, otherwise, return "@"

To determine this, check if the report contains
relevant terms associated with {category}
involvement. Below there is a list of medically
relevant terms that indicate {category} involvement:

Relevant terms:
{list_of_terms}

Report:
{text}

This setup allowed the model to leverage both its
pre-trained knowledge and the medical terminology
provided, creating a context-augmented approach
that aimed to improve classification accuracy. The
list of medically relevant terms used in the ICL
prompts is derived from a domain-specific dictio-
nary originally developed for a rule-based informa-
tion extraction system, as described in our previous
work (Lilli et al., 2024b). In that study, the dictio-
nary served as the foundation for a classifier based
on pattern-matching within clinical texts. Further
details about the dictionary of terms used in the
prompt is provided in Appendix A.

3.3 BERT-based Fine-Tuning

To compare the performance of generative lan-
guage models with fine-tuned approaches, we also
included results from a set of fine-tuned BERT-
based models, where each Lupus category was
treated as an independent binary classification task,
with separate classifiers trained for each type of
organ involvement. The experimental setup and
classification approach are consistent with a prior
benchmark study on fine-tuned BERT models (Lilli
et al., 2024a), ensuring a direct comparison with
the LLM experiments, where a training set of 1000
labelled texts was used.

As in the generative LLM setup, the BERT
fine-tuning process followed a paragraph-level ap-
proach, respecting the token limit constraints of
BERT-based architectures. At inference, each para-
graph was classified independently, with the final
Electronic Health Record (EHR) classification de-
termined using a logical OR operation.

Additionally, the evaluation set remained the
same across all techniques, ensuring a fair and
consistent comparison between fine-tuned BERT
models and generative LLMs. This methodolog-
ical alignment allowed us to analyze their rela-
tive strengths and limitations under identical condi-
tions.

4 Experiments

4.1 Data

The dataset used for the study evaluation consists
of 790 outpatient visit reports, collected from the
SLE Data Mart of an Italian hospital. To facilitate
processing and improve classification efficiency, in
all the experiments each report was segmented at
the paragraph level, resulting in a total of 6,024
paragraphs. On average, each paragraph contains
111.5 BERT tokens and 303.7 characters. This seg-
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Experiment Model Articular Cutaneous Hematologic Neurologic Renal Serositis Systemic Vascular Overall
Gemma3-1B 0.00 0.22 0.27 0.08 0.18 0.08 0.48 0.04 0.17
Gemma3-4B 0.80 0.80 0.78 0.30 0.53 0.29 0.14 0.30 0.49
Zero-Shot Llama3.2-1B 0.62 0.60 0.65 0.28 0.42 0.22 0.14 0.25 0.40
Prompting Llama3.2-3B 0.76 0.76 0.76 0.38 0.55 0.30 0.16 0.36 0.50
Mistral-7B 0.77 0.70 0.80 0.40 0.64 0.34 0.15 0.33 0.52
Mixtral-8x7B 0.78 0.74 0.79 0.34 0.69 0.39 0.16 0.32 0.53
Gemma3-1B 0.41 0.44 0.34 0.26 0.18 0.60 0.52 0.16 0.36
Gemma3-4B 0.84 0.88 0.91 0.76 0.77 0.71 0.17 0.44 0.68
In-Context Llama3.2-1B 0.67 0.67 0.66 0.24 0.41 0.25 0.13 0.27 0.41
Learning Llama3.2-3B 0.74 0.73 0.71 0.25 0.43 0.24 0.13 0.28 0.44
Mistral-7B 0.86 0.61 0.87 0.73 0.88 0.77 0.31 0.37 0.68
Mixtral-8x7B 0.91 0.73 0.95 0.83 0.96 0.80 0.23 0.52 0.74
Alberto 0.90 0.87 0.98 0.86 0.94 0.81 0.29 0.69 0.79
Albert2 0.85 0.80 0.96 0.57 0.85 0.65 0.28 0.55 0.69
BERT-based Albert1 0.92 0.81 0.94 0.86 0.92 0.51 0.07 0.58 0.70
Fine-Tuning Biobit 0.92 0.88 0.93 0.81 0.85 0.87 0.12 0.63 0.75
Medbit 0.83 0.92 0.96 0.79 0.90 0.66 0.13 0.61 0.73
Medbit-plus 0.92 0.90 0.90 0.88 0.85 0.72 0.07 0.63 0.73

Table 1: Comparison of Generative LLMs and BERT-Based Models Across Different Experimental Setups (Zero-
Shot Prompting, In-Context Learning, and BERT-based Fine-Tuning), in terms of F1-Score.

mentation ensures that text segments remain within
the acceptable token limits of BERT-based models,
preserving sufficient clinical context for classifi-
cation. Additionally, this approach is beneficial
for generative LLMs, as it enables them to process
shorter and more concise text inputs, optimizing
computational efficiency and response accuracy.
The dataset includes eight distinct types of Lupus
diagnoses, each corresponding to a specific organ
or system involvement. Since multiple categories
can co-occur in the same report, a single document
may be associated with more than one diagnosis.
For privacy reasons, we can’t report practical ex-
amples of the dataset, but we provide an overview
of its composition in Figure 2.

4.2 Generative LLMs

For the generative experiments, we tested a range
of open-source language models using the Ollama
framework to ensure efficient inference. The mod-
els evaluated included Llama 3.2 (1B and 3B pa-
rameters), Gemma 3 (1B and 4B parameters), Mix-
tral (8x7B) and Mistral (7B). Each model was eval-
uated in both zero-shot prompting and ICL setups,
on the SLE information extraction task.

Llama 3.2, developed by Meta (Grattafiori et al.,
2024), is an optimized version of the Llama family,
known for its improved efficiency and multilingual
capabilities. The 1B and 3B parameter versions pro-
vide a balance between computational cost and per-
formance, making them suitable for real-world sce-
narios. Gemma 3, released by Google DeepMind
(Team et al., 2024), is a lightweight transformer-
based model optimized for low-resource settings

while maintaining strong reasoning abilities. The
1B model is designed for efficiency, whereas the
4B version offers enhanced performance with in-
creased computational requirements. Mixtral, a
mixture-of-experts model from Mistral Al (Jiang
et al., 2024), activates only two out of eight ex-
pert networks per inference, allowing for improved
efficiency while retaining strong language under-
standing. Finally, Mistral 7B (also from Mistral Al
(Jiang et al., 2023)) is a dense transformer model
known for its superior performance compared to
similarly sized models, making it a potential alter-
native to Llama and Gemma for various NLP tasks.
By selecting models with different architectures,
sizes, and capabilities, we ensured a comprehen-
sive evaluation of generative approaches for NLP
in medical domain. Table 1 shows performances in
terms of F1-Score metric for the zero-shot prompt-
ing and the in-context learning scenarios, respec-
tively.

4.3 BERT-based Models

The BERT-based fine-tuning was performed using
the PyTorch Trainer from the Hugging Face Trans-
formers library (Wolf et al., 2020), running for 10
epochs (for further implementation details, see Ap-
pendix B). The models considered in this study
include BioBIT3, MedBIT4, MedBIT-r3-plus5, Al-
BERTo, and two base versions of ALBERT.
BioBIT3, MedBIT4, and MedBIT-r3-plus5, de-
veloped by Buonocore et al. (2023), are BERT
models pretrained on Italian biomedical corpora,
making them particularly suitable for clinical NLP
tasks. AIBERTo, originally proposed by Polignano
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et al. (2019), is an Italian-adapted version of AL-
BERT, trained on Italian tweets. In addition, we
included two base versions of ALBERT Lan et al.
(2019), which serve as the foundation of AIBERTo.
Table 1 shows F1-Score metric values for the BERT-
based experiments.

4.4 Results and Discussion

The results of the zero-shot and in-context learning
(ICL) prompting experiments, compared to BERT
fine-tuning, are presented in Table 1. For each sce-
nario, the table reports the F1-scores of all tested
models across the eight categories, along with the
overall F1-score, calculated as the mean value. To
better interpret these results, we structure our anal-
ysis into two key perspectives. First, we provide an
overall comparison of performance across different
methods (zero-shot prompting, in-context learn-
ing, and fine-tuned BERT models) to assess their
general effectiveness. Second, we examine model-
specific performance patterns across different dis-
ease categories, identifying strengths and limita-
tions in extracting various diagnostic domains.

Regarding overall model performance across dif-
ferent disease categories, BERT-based classifica-
tion models achieve the highest scores, with Al-
berto obtaining the best average F1-score of 0.79.
However, it is noteworthy that even a limited de-
gree of adaptation through In-Context Learning
(ICL) significantly improves LLM performance.
Mixtral-8x7B, with an average F1-score of 0.74,
performs comparably to the best BERT-based mod-
els, demonstrating the effectiveness of ICL in en-
hancing generative models for structured informa-
tion extraction. In contrast, Zero-Shot Prompt-
ing shows the weakest performance, with Mixtral-
8x7B achieving the highest overall F1-score at just
0.53. This performance gap is likely due to the lack
of contextual guidance, which makes it more chal-
lenging for the model to differentiate between diag-
nostic categories. In the absence of domain-specific
cues, semantic differences across diagnoses reduce
the model’s discriminative power, leading to lower
classification accuracy.

Moving to an in-depth analysis of performance
across different diagnostic categories, the zero-shot
setting reveals notable variations among models.
Mixtral-8x7B, with the highest overall performance
(F1-Score=0.53), specifically outperforms the other
models in Renal (F1-Score=0.69) and Serositis (F1-
Score=0.39) diagnoses. While Mistral-7B, with a
slightly lower F1-Score of 0.52, presents the high-

est F1-Score in Hematologic (0.80) and Neurologic
(0.40) categories. Meanwhile, Gemma3-4B, with
the best F1-scores in the Articular and Cutaneous
categories (0.80), shows an overall F1 performance
near to Mixtral-8x7B and Mistral7B, equal to 0.49.
In general, zero-shot performance is particularly
weak for Neurologic, Renal, Serositis, Systemic,
and Vascular diagnoses, with Fl-scores ranging
from 0.36 for Vascular (with Llama3.2-3b), to 0.69
for Renal (with Mixtral-8x7b).

In the ICL setting, Mixtral-8x7B achieves the
highest scores on most of the categories, with the
highest in the Renal, with a F1 value equal to 0.96.
However, Gemma3-4B and Gemma3-1B outper-
form Mixtral-7B in two specific cases: Cutaneous
(F1-Score=0.88) and Systemic (F1-Score=0.52).
A particular improvement is observed in Neuro-
logic, Renal, and Serositis diagnoses, where zero-
shot prompting had shown extremely weak perfor-
mance: with ICL, these categories experience a
substantial boost, with Mixtral-8x7B achieving the
highest scores, ranging from 0.80 for Serositis to
0.96 for Renal. On the other hand, classification
for Systemic and Vascular categories remains weak,
with the best performances achieved by Gemma3-
1B for Systemic and Mixtral-8x7B for Vascular
(Fl-score = 0.52).

The results of both zero-shot and in-context
learning (ICL) experiments highlight the significant
role that contextual adaptation plays in enhancing
generative models’ performance. While the previ-
ous analysis examined each approach across dif-
ferent diagnostic categories, it is equally important
to assess how ICL compares directly to zero-shot
prompting across models and disease types. In gen-
eral, moving from zero-shot to in-context learning
(ICL) mostly leads to improved performance, as
evident in Figure 3. Each bar plot in the figure
represents the F1-score of different models across
the eight categories, with the maximum F1-score
from either the zero-shot or ICL scenario displayed.
The colored margins, green and red, indicate the
difference between the two approaches. A green
margin means a positive difference, meaning ICL
outperforms zero-shot prompting, enhancing infor-
mation extraction. Conversely, a red margin in-
dicates cases where zero-shot prompting achieved
better results. From the figure, the majority of cases
show an improvement with ICL, particularly for the
Gemma and Mistral models. For instance, in the
Serositis category, the F1-score of the Gemma3-4B
model increases from 0.29 in the zero-shot setting
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Figure 3: Comparison of Zero-Shot Prompting versus In-Context Learning (ICL) F1-Scores across different
diagnoses. The bars represent the maximum score between the two methods. The green and red margins indicate
the effect of ICL: green for improvements and red for declines compared to Zero-Shot Prompting.

to 0.71 with ICL, as shown by the green margin
of 0.42. Similarly, in the Neurologic diagnosis,
the Mixtral-8x7B model returns F1-Score values
of 0.34 and 0.83 in the zero-shot and ICL scenarios
respectively, with a final margin of improvement
equal to 0.49. However, there are instances where
ICL does not improve performance: the presence
of red margins in at least one model for all cate-
gories suggests that semantic complexity alone is
not the primary cause. Instead, it appears that cer-
tain models, particularly Llama3.2-3b, consistently
perform better in the zero-shot scenario, and also
Llama3.2-1B frequently shows negative margins.
This indicates that for the Llama models, the type
of contextual information introduced in ICL does
not provide additional knowledge but instead has
a confounding effect, hindering information detec-
tion.

To fully assess the effectiveness of prompting
strategies, we compared them with a fully super-
vised fine-tuned approach of BERT-based models,
which serve as a benchmark for structured infor-

mation extraction. As already reported, BERT
fine-tuning achieves the highest overall perfor-
mance, with the Alberto model obtaining the high-
est Fl-score of 0.79. In terms of individual cate-
gories, BERT models excel particularly in Hema-
tologic diagnosis, where Alberto reaches the high-
est Fl-score equal to 0.98. However, not all cat-
egories benefit the most from BERT fine-tuning.
Some achieve better performance in the ICL sce-
nario, such as Renal diagnosis, where Mixtral-
8x7B reaches a 0.96 F1-Score, and Systemic di-
agnosis, where Gemma3-1B achieves a 0.52 F1-
Score. These cases suggest that while BERT fine-
tuning is generally effective, ICL can provide better
results for specific types of medical information ex-
traction.

Overall, ICL improves performance over zero-
shot prompting, though some models, like Llama
models, struggle with added context. BERT fine-
tuning remains the most reliable approach for this
Italian use case, achieving the highest scores. How-
ever, prompting is a viable alternative, as it allows

196



adaptation with minimal data and no dedicated
training, making it useful when resources are lim-
ited.

5 Conclusions

This study provides a comparative analysis of gen-
erative LLMs and fine-tuned BERT models for
Italian clinical NLP, focusing on the extraction
of diagnostic patterns within an outpatient setting.
Our results demonstrate that while ICL signifi-
cantly enhances generative models’ performance
over zero-shot prompting, fine-tuned BERT-based
models still achieve the best overall results, provid-
ing structured and reliable classification solutions.
However, ICL performances show that in-context
adaptation techniques have great potential for it-
erative improvement. This is also confirmed by
the results of this paper, where certain diagnostic
categories, such as renal involvement, show better
performance with ICL, indicating that supervised
prompting can effectively overcome certain seman-
tics complexities.

Beyond performance, model selection in health-
care applications must also consider privacy, data
protection, and control on adaptation. For this rea-
son we believe that a study focused on the com-
parison of open-source types of models provides a
new perspective to complement GPT-based works,
which are largely explored in current literature (Li
et al., 2024a).

Future work should explore larger generative
models, which may offer insight into the upper-
bound performance achievable through prompting
strategies alone. Additionally, future studies should
conduct a more in-depth analysis of computational
costs and trade-offs, particularly when considering
prompting-based methods versus full fine-tuning,
to guide practical decisions in clinical deployment
scenarios.

By conducting this study in a real-world hospital
setting, we aim to provide insights into the fea-
sibility of integrating LLM-based NLP solutions
for automated clinical information extraction. This
could aid in the development of decision-support
tools, facilitate the creation of research datasets for
predictive analytics, and ultimately improve both
clinical decision-making and medical research. Fur-
thermore, by focusing on Italian clinical texts, this
study expands NLP applications beyond English-
language datasets, addressing the need for real-
world solutions in underrepresented languages.

Limitations

While generative models show potential for med-
ical information extraction, they do not always
produce structured responses, requiring post-
processing. We extracted binary classifications us-
ing regular expressions (regex), but this method
can be imprecise, making BERT-based architec-
tures more reliable for structured tasks. Addition-
ally, due to the constraints of a real-world clinical
setting in terms of computing resources, lighter ver-
sions of the models have been implemented. Future
work could explore larger versions of Gemma and
Llama running on more powerful computing envi-
ronments, to achieve potential performance gains.
Furthermore, in-context learning (ICL) proves ef-
fective for an initial adaptation, but its performance
could be enhanced by incorporating labeled ex-
amples alongside the current dictionary. Further
research should explore alternative adaptation tech-
niques, such as instruction-tuning or a massive fine-
tuning, to better compare different strategies for
optimizing medical NLP models.
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A In-Context Learning Dictionary

For the in-context learning experiments, we used a
dictionary of terms covering each category of diag-
nosis to be extracted. This aimed to give additional
context to the model, making the clinical concepts
more understandable. Table 2 details the terms
used for each category, reported in their original
Italian language.

B BERT-based Fine-Tuning Setup

The fine-tuning was implemented using the Py-
Torch Trainer® of the Hugging Face Transformers
library (Wolf et al., 2020), leveraging a desktop
GPU Nvidia RTX 5000 Graphics Processing with
16GB of RAM. The 20% of training set was used as
eval_dataset, while the remaining was employed
as train_dataset. The learning rate was set to
2e-5, the batch size to 16, and the weight decay to
0.01.

Zhttps://huggingface.co/docs/transformers/main/en/training
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Category

Terms

Articular articolare, artralgia, artrite, artrosica, gonartrite, jaccoud, miosite, monoartrite, oligoartrite,
osteartrosi, osteoarticolare, poliartrite, polimiosite, rhupus, spondiloartrite.

Cutaneous afta, aftosi, alopecia, cutaneo, discoide, eczematoso, effluvium capillorum, eritema,
eritemato-crostosa, eritemato-desquamativa, eritemato-papulare, eritemato-papulosa, pomfo,
fotosensibilita, gottron, led, muco-cutaneo, mucocutaneo, papula, percutaneo, perdita di
capelli, porpora.

Hematologic anemia, anemia emolitica, disturbo della coagulazione, ematico, ematologico, leucolinfope-
nia, leucopenia, linfopenia, neutropenia, pancitopenia, piastrinopenia.

Neurologic cerebellare, cerebrale, encefalite, epilettico, epilessia, ictus, mononeurite, multineuropatia,
neurite, neurologico, neuropatia, polineuropatia, snc, tia.

Renal glomerulonefrite, irc, nefrite, nefritemembranosa, nefrosi, renale.

Serositis ascite, miocardite, pericardite, peritonite, pleurite, pleuro-parenchimale, pleuro-polmonare,
pleuropericardite, polmonare, polisierosite, sierosite, sierositico.

Systemic febbre, astenia, linfoadenopatia, linfoadenite, mialgia, febbricola, linfoadenomegalia, polimi-
algia

Vascular acrocianosi, alveolite emorragica, embolia, embolia polmonare, ep, fdr, ischemia, livedo

reticularis, pitting, raynaud, trombo, tromboflebite, trombosi, trombosi venosa profonda, tvp,
ulcera acrale, ulcera agli arti, vascolare, vasculite.

Table 2: Dictionary of terms used for in-context learning experiments for each category of diagnosis.
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