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Abstract

Gastroenterology (GI) cancer surveillance
scheduling relies on extracting structured data
from unstructured clinical texts, such as en-
doscopy and pathology reports. Traditional
Natural Language Processing (NLP) models
have been employed for this task, but recent
advances in Large Language Models (LLMs)
present a new opportunity for automation with-
out requiring extensive labelled datasets. In
this study, we propose an LLM-based entity ex-
traction and rule-based decision support frame-
work for the prediction of Barrett’s oesopha-
gus (BO) surveillance timing. Our approach
processes endoscopy and pathology reports to
extract clinically relevant information and struc-
tures it into a standardised format, which is then
used to determine appropriate surveillance in-
tervals. We evaluate multiple state-of-the-art
LLMs on real-world clinical datasets from two
hospitals, assessing their performance in ac-
curacy and runtime. The results demonstrate
that LLMs, particularly Phi-4 and (DeepSeek
distilled) Qwen-2.5, can effectively automate
the extraction of BO surveillance-related in-
formation with high accuracy, while Phi-4 is
also efficient during inference. We also com-
pared the trade-offs between LLMs and fine-
tuned BERT models. Our findings indicate that
LLM-based extraction methods can support
clinical decision-making by providing justifica-
tions from report extractions, reducing manual
workload, and improving guideline adherence
in BO surveillance scheduling.

1 Introduction

Gastroenterology (GI) cancer surveillance schedul-
ing relies heavily on extracting structured infor-
mation from unstructured clinical texts, such as
pathology and endoscopy findings. Traditional Nat-
ural Language Processing (NLP) tools trained on
annotated datasets have been used to support clini-
cal decision-making. However, recent advances in
Large Language Models (LLMs) have the potential

to update this process. LLMs, with their extensive
training on diverse text sources, can now process
medical texts without requiring large amounts of
task-specific annotated data. This offers a more
flexible and scalable approach to cancer surveil-
lance scheduling automation.

Barrett’s Oesophagus (BO) is a pre-cancerous
condition in which the normal squamous epithe-
lium of the oesophagus is replaced by columnar
lined mucosa. Patients with BO can progress to oe-
sophageal adenocarcinoma (OAC). Thus, patients
with BO undergo routine endoscopic surveillance
to monitor the condition and detect dysplasia or
early OAC. Appropriate surveillance intervals and
early intervention can improve patient outcomes.

Adherence to surveillance guidelines remains
suboptimal. A meta-analysis (Roumans et al.,
2020) found only 55% of non-dysplastic BO pa-
tients and 50% of low-grade dysplasia patients re-
ceived surveillance at recommended intervals. This
highlights the need for improved clinical decision
support to ensure timely surveillance and treatment.
Recent advances in artificial intelligence (AI), espe-
cially large language models (LLMs), have opened
new opportunities to aid BO management. LLMs, a
group of transformer-based generative models with
billions of parameters such as OpenAI’s GPT-4,
Meta’s Llama and Microsoft’s Phi, excel at process-
ing unstructured text and extracting complex infor-
mation from it. In gastroenterology, these models
can process clinical notes such as pathology and
endoscopy reports, and then support medical deci-
sion making based on the information from these
reports (Omar et al., 2025).

BO surveillance scheduling depends on BO
length from endoscopy reports and pathological
findings from pathology reports. We will discuss
this further in Section 2.1. Previous work (Zece-
vic et al., 2024) introduced a system capable of
categorising endoscopy reports into four groups
(Short, Long, No Barrett’s, and Insufficient) and
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pathology reports into another set of four categories
(Cancer/Dysplasia, Intestinal Metaplasia (IM), no
IM, and Insufficient). The classification occurs at
the report level, where each report receives a sin-
gle label. However, the report level model does
not provide information from reports to justify its
classifications, making it hard for clinicians to val-
idate the output without manually reviewing the
text. Moreover, the report level model is specific to
the task and cannot be repurposed for other clinical
uses.

Our work proposes an information extraction
based method that uses LLMs to automate Bar-
rett’s surveillance timing prediction. The workflow
is shown in Figure 1. Both endoscopy and pathol-
ogy reports, after preprocessing, are passed through
an LLM, which extracts clinically relevant informa-
tion into a JSON template. A rule-based algorithm
converts these extractions into report labels and
provides relevant extractions as justification. Our
hypothesis is that an LLM-based method can accu-
rately extract entities without the need for a large
amount of annotated data, and these extractions can
be used to justify the surveillance interval decisions.
These extractions can also be repurposed for other
downstream clinical tasks. To our knowledge, this
is the first study to use LLMs to determine when a
BO patient’s next endoscopy is due based on prior
reports.

The contributions of this work include:

• An LLM-based extraction with a rule-based
post-processing method for Barrett’s surveil-
lance timing prediction with justifications.

• We designed and evaluated prompt strategies
for LLM medical extraction on endoscopy and
pathology reports

• We evaluated performance of different LLMs
with a variety of types, sizes and reasoning
ability.

• We created a gold-standard for BO surveil-
lance timing based on previously annotated re-
ports classification data (Zecevic et al., 2024)

2 Related Work

2.1 Surveillance Timing Guidelines in
Barrett’s Oesophagus

Given the importance of Barrett’s oesophagus (BO)
surveillance, organisations including the British So-

ciety of Gastroenterology1 (BSG), the American
Gastroenterological Association2 (AGA) and the
European Society of Gastrointestinal Endoscopy3

(ESGE) have published guidelines on the rec-
ommended intervals for endoscopic surveillance.
These guidelines (Fitzgerald et al., 2014; Spechler
et al., 2011; Weusten et al., 2023) seek to balance
the advantages of early detection against the costs
of repeated endoscopic procedures. Our research
specifically follows the BSG guidelines (Fitzgerald
et al., 2014). The current BSG guidelines, first pub-
lished in the early 2000s and updated periodically,
emphasize the need for risk-based surveillance in-
tervals and provide actionable recommendations
for endoscopic management. The guidelines show
that for non-dysplastic Barrett’s, the endoscopic
surveillance interval is determined by the length
of Barrett’s and the presence of Intestinal Meta-
plasia (IM). Based on this guideline, we set out a
rule-based algorithm for surveillance interval deci-
sion making which is shown in the bottom part of
Figure 1.

2.2 NLP Methods in BO Surveillance

Previous work on NLP in BO surveillance is lim-
ited. Zecevic et al. (2024) curated report classi-
fication annotations for endoscopy and pathology
reports. These annotations are used to train two
report classification models. These models, En-
doBERT and PathoBERT, are based on pre-trained
Bidirectional encoder representations from trans-
formers (BERT) model (Devlin et al., 2019), which
assigns a label to an unseen endoscopy or pathol-
ogy report. The model achieved high accuracy on
test sets from three UK hospitals.

Other work related to BO includes dysplasia
identification in Wenker et al. (2023). They use
an NLP tool (Clinical Language Annotation, Mod-
elling, and Processing Toolkit) to identify dyspla-
sia using findings. However, they did not pro-
vide detailed information on the underlying mod-
els used by the tool. Li et al. (2022) introduce
ENDOANGEL-AS, an automated surveillance sys-
tem designed to identify high-risk patients and de-
termine appropriate surveillance intervals for up GI
conditions.

1https://www.bsg.org.uk/
2https://gastro.org/
3https://www.esge.com/publications/guidelines
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Figure 1: Dataflow pipeline of LLM-based endoscopy and pathology extraction for Barrett’s endoscopic surveillance
timing prediction

2.3 LLMs

Recent advances in large language models (LLMs)
have led to a diverse range of architectures opti-
mised for efficiency, domain adaptation, and rea-
soning capabilities. These models vary in size,
training methodology, and specialisation. The in-
creasing numbers of smaller yet high-performing
LLMs has made their application to the medical
domain more feasible. Among them, Microsoft’s
Phi-4 (14B) (Abdin et al., 2024), whose train-
ing recipe centres around data quality, prioritises
efficiency while maintaining strong performance
across general NLP tasks. It is optimized for low-
cost inference, making it an attractive option for
real-world deployment where resource constraints
are a factor. Similarly, Gemma-3 (12B) (Deep-
Mind, 2024), developed by Google DeepMind, is
another small and highly efficient model. Although
it has a slightly lower parameter count (12B), it has
multimodal and enhanced reasoning ability. This
makes it competitive with larger models in cer-
tain tasks. Alibaba’s Qwen-2.5 (14B) (Yang et al.,
2024) has enhanced reasoning and instruction fol-
lowing ability. On the other end of the spectrum,
Meta’s Llama-3 (7B) (Grattafiori et al., 2024) is
an even smaller LLM which may be of benefit in
more compute restricted settings. However, as evi-

dent from recent performance benchmarks, Llama-
3 struggles compared to other LLMs. DeepSeek
distilled variants (Guo et al., 2025) of Llama and
Qwen are derived from the larger DeepSeek-R1
base model. These versions are fine-tuned to en-
hance performance on maths, coding, and other
reasoning-intensive tasks. Distillation reduces the
model size and inference time while retaining key
capabilities, making them suitable for real-time
medical NLP pipelines.

3 Experiments

3.1 Data and evaluation

The datasets used in this project are the same
datasets used in (Zecevic et al., 2024), including
data selection, patient opt-out, preprocessing, la-
belling and data split. The data is from two UK
National Health Service Foundation Trust (NHS-
FTs - secondary healthcare providers), Guy’s and
St Thomas’ NHSFT (GSTT), and King’s College
Hospital NHSFT (KCH). Training is carried out on
GSTT data. The evaluations are carried out on both
GSTT data, and on KCH data to test generalisabil-
ity. We give a brief introduction here; for detailed
information, please refer to Zecevic et al. (2024).
Training set The patients are selected based on the
appearance of the keyword "Barrett" in their en-
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doscopy reports. Patients under 18 and those who
have opted out were excluded. Pathology reports
were then matched with the relevant endoscopy re-
ports. As we do not fine-tune LLMs, this training
set is used to 1) develop prompts; 2) develop a rule-
based algorithm, based on incorrect predictions.
Once the rule-based algorithm has been developed
in this stage, it is fixed during testing. Prompts are
fixed during testing apart from when we test the
impact of certain components of the prompt.
GSTT evaluation A retrospective evaluation was
conducted by reviewing patient records of individ-
uals who had undergone endoscopic surveillance
for BO between May and July 2023, which is a
representative time frame for assessing records typ-
ically used to schedule follow-up surveillance en-
doscopies. A total of 115 patient records were
included, where pathology results from the en-
doscopy were available. We take the human re-
viewed labels for the documents as ground-truth
to evaluate our model prediction. Unlike (Zece-
vic et al., 2024), where the performance is only
measured on two sets of report labels, we also com-
bined the endoscopy and pathology report labels
into surveillance timing labels based on guideline
rules (Section 2). This can give us a single number
indicator of the model performance for surveillance
timing prediction, which represents the ultimate
goal of the task.
KCH evaluation A dataset of 140 reports was col-
lected from KCH, covering cases from 2015 to
2022 for the second external evaluation. The same
selection criteria used for the GSTT dataset were
applied to the KCH dataset to ensure consistency
in evaluation. Similarly, we treated the human re-
viewed reports labels as ground-truth and combined
them into surveillance timing labels to measure the
model performance on predicting surveillance tim-
ing intervals.

3.2 Task
Information extraction Our approach focuses on
information extraction from endoscopy and pathol-
ogy reports. The key entities to be extracted are
listed in Appendix A Table 6.

For extraction, we use large language models
(LLMs), which take as input either an endoscopy
prompt along with an endoscopy report, or a pathol-
ogy prompt along with a pathology report. This
process ensures structured extraction of relevant
clinical information from unstructured text data.
From extraction to report classification and

surveillance timing prediction The classifica-
tion of endoscopy and pathology reports in this
study aligns with the definitions outlined by (Ze-
cevic et al., 2024) in Table 2 and Table 3. En-
doscopy reports are categorised based on segment
length of BO (Long, Short, NoBarretts, Insuffi-
cient) and pathology reports based on histological
findings (CancerOrDysplasia, IM, No_IM, Insuf-
ficient). Surveillance timing is classified based on
a pair of endoscopy and pathology reports, and is
classified into Alert, 2 year, 3 year, 5 year or Refer,
as outlined in Section 2
Evaluation We evaluate model performance using
a held-out test set from GSTT and KCH. Perfor-
mance is assessed across three key tasks: Clas-
sification of endoscopy reports; Classification of
pathology reports, and Surveillance timing predic-
tion. For each task, we measure precision, recall,
and F1 score, ensuring a comprehensive evalua-
tion of the model’s ability to classify reports and
predict appropriate surveillance intervals. To esti-
mate the variability in performance, we report each
metric along with its 95% confidence interval (CI),
computed via bootstrap resampling of the test set.
Bootstrap resampling is a statistical technique that
creates multiple new datasets from a single dataset
by randomly sampling with replacement (Tibshi-
rani and Efron, 1993). The bootstrapping is done in
1000 iterations with replacement and each sample
has the same sample size as the test set size. This
resampling approach is chosen because the model
weights and prompts remain fixed at test time, and
the model decoding strategy is set to greedy search
(Section 3.3: Hyperparameter Setting), hence the
outputs are deterministic. Resampling allows for
statistical uncertainty estimation based on test set
variability and sample size. This is not interpreted
as model uncertainty.

3.3 LLMs for extraction
Model selection For our study, we use state-of-the-
art large language models (LLMs) including: Phi-
4 (4-bit Instruct, 14B), Gemma-3 (4-bit, Instruct
12B), Qwen-2.5 (4-bit Instruct, 14B), DeepSeek
Distilled Qwen-2.5 (4-bit Instruct, 14B), Llama-3
(4-bit Instruct, 7B), DeepSeek Distilled Llama-3
(4-bit Instruct, 7B)

These models were chosen for their balance of
performance, efficiency, and scalability. The 8-
billion parameter scale gives strong language under-
standing ability while maintaining computational
feasibility. The 4-bit quantisation significantly re-
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duces memory requirements, enabling faster infer-
ence and lower hardware constraints without sub-
stantial loss in accuracy. The "Instruct" versions
(as opposed to "Base" versions) of these models
provide general language inference ability, ensur-
ing better generalisation to structured information
extraction and classification. The combination of
these models allows us to benchmark performance
across architectures, ensuring our pipeline remains
adaptable to future advances in LLM-driven clini-
cal NLP.
Hyperparameter setting for decoding We set the
sampling method as greedy search (equivalently
temperature set to zero or near-zero) to ensure de-
terministic and consistent outputs, as used in other
entity extraction research (Wang et al., 2023; Dunn
et al., 2022; Zhang et al., 2023). Greedy search and
low temperature sampling have been shown to be
effective for factual extraction tasks, particularly
in medical Named Entity Recognition (NER) and
Relation Extraction (RE), where minimising ran-
domness improves reliability and precision (Wang
et al., 2023; Dunn et al., 2022; Zhang et al., 2023).
Greedy search is also the fastest decoding strategy,
which is essential in some hospital settings where
the computing resources are limited. We set the
maximum input length to 4096 tokens and maxi-
mum output length to 2048 tokens to accommodate
complex prompts and generated responses while
optimising computational efficiency.
Prompt The prompt design follows best practices
established in previous research (Liu et al., 2023;
Wang et al., 2024; Zamfirescu-Pereira et al., 2023;
He et al., 2024; Sachdev et al., 2024), particu-
larly in the context of optimising large language
models (LLMs) for structured medical information
extraction. Specifically, for both the endoscopy
and pathology information extraction prompts, the
structure consists of five key components and one
training strategy:
Persona Assignment The LLM is explicitly in-
structed to assume the role of a specialised AI gas-
troenterology assistant with expertise in medical
report analysis.
Clear Instruction breakdown The second compo-
nent has a clear listing of all the requirements.
Structured Output Specification To ensure con-
sistency and machine-readability, the third compo-
nent mandates a standardized JSON output format,
explicitly defining entity types and relationships to
align with downstream processing requirements.
Step-by-Step Reasoning (CoT) The fourth section

provides a sequential, logical step-by-step break-
down of the extraction process and self-verification,
guiding the LLM through a structured CoT ap-
proach to enhance interpretability and accuracy.
We will explore model performance with and with-
out this component.
Few-Shot In-Context Examples The fifth section
provides two examples of correctly extracted out-
puts, demonstrating the expected format and ex-
tractions.
Input Report Attachment Finally, the actual clin-
ical report (endoscopy or pathology report) requir-
ing extraction is appended.
Iterative Prompt Refinement The prompt is ap-
plied on samples from the training set and the
prompt is modified based on incorrectly generated
samples.
The final endoscopy and pathology prompts can
be found in Appendix B, with the real reports in
few-shot examples and in input texts section being
removed for privacy reasons.
Hardware and cost The model is run on Nvidia
A100 GPUs in Ubuntu operating system on a vir-
tual machine provided by King’s College London
Computational Research Engineering and Technol-
ogy Environment - Trusted Research Environment
(CREATE-TRE). The runtime is analysed in Sec-
tion 4 Table 3.

3.4 Rule-based algorithms for Report
classification and surveillance timing
prediction

Pathology report labelling is based on extracted
pathology findings, either its affirmation or nega-
tion. For endoscopy reports, the classification
is based on Barrett’s length. There can be three
sources of Barrett’s length in endoscopy reports:
Prague score; direct mention of Barrett’s segments;
mentions of GOJ (Gastro-oesophageal junction)
and Barrett’s tongue. The algorithm gathers these
sources of length from extractions. In rare cases,
when lengths from different sources disagree, if
two of them agree and one disagrees, we pick the
majority case; in other cases, we choose Prague
scores over position difference from GOJ and Bar-
rett’s tongue over direct mentions. This is due to
the rigid form of Prague score, which makes the
extraction and post-processing more reliable. We
then apply the rules to assign labels to endoscopy
reports. Once we have both labels, we combine
the two following the rules in Figure 1 to give a
surveillance timing prediction.
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4 Results

We evaluated six LLMs, both with and without
chain-of-thought (CoT) prompting, on three clini-
cal information extraction tasks (Decisions, Pathol-
ogy, and Endoscopy) across two hospital sites
(GSTT, KCH). The following subsections discusses
overall performance, output validity, runtime anal-
ysis, and fine-grained subclass results.

4.1 Overall Performance

Table 1 shows the weighted average F1-scores
across all three clinical categories. In general,
Qwen-2.5, DeepSeek distilled Qwen-2.5 and Phi-4
(14B) achieve the highest F1-scores.

Phi-4 shows good performance on Pathology
reports while DeepSeek distilled Qwen-2.5 per-
forms better on Endoscopy reports. Qwen-2.5 with
CoT often performs on par with Phi-4 for Pathol-
ogy while on par with DeepSeek Qwen-2.5 on En-
doscopy, which means it achieves the highest Deci-
sion F1 scores on both datasets.

Meanwhile, Gemma-3 (12B) tends to occupy the
midrange, ranging around 0.75–0.90 depending on
the category. Llama-3 (7B) has the lowest overall
scores; however, CoT prompting and DeepSeek
distillation consistently raise its performance.

Interestingly, there are some cases where not
using CoT yields a slightly higher score. For exam-
ple, on "Decisions (GSTT)" Phi-4 w/o CoT outper-
forms its CoT-based variant (0.96 vs. 0.93). Such
exceptions may arise when CoT text introduces
minor digressions from the desired prompt struc-
ture or consumes additional tokens that do not im-
prove the final label prediction. In addition, the
instruction component may already contain certain
implicit CoT steps e.g. in the instruction "Barretts
and if it is negated" implies a two step process that
can be seen as an implicit CoT, i.e. step 1, iden-
tify mention of "Barrett’s"; step 2, if the mention
is negated. Moreover, these extraction tasks are
not reasoning-intensive. The help from explicit
CoT may be outweighed by the distraction from
generating unnecessary reasoning.

4.2 Invalid Outputs

Table 2 illustrates how frequently each model pro-
duces "invalid" responses, i.e., outputs that deviate
from the required specification or formatting set
out in the prompt. This includes incorrect JSON
format, missing fields, wrong keywords and wrong
value type. Qwen-2.5 stands out as the most consis-

tent over the two different prompt variances, largely
maintaining a 0% invalid rate across categories,
whether or not CoT is used. Whereas Phi-4 has a
perfect 0% rate across all tasks when CoT is not
used. Phi-4 and Gemma-3, which both performed
well on F1 metrics, actually produce more invalid
outputs when CoT is activated (e.g., Phi-4 on "De-
cisions (GSTT)" jumps from 0% without CoT to
6.96% with CoT). Again, as discussed before, this
may be because the benefit of explicit CoT does
not outweigh the distraction from extra reasoning.
DeepSeek Qwen-2.5 also shows very low invalid
percentages (typically under 3–5%) but is more
prone to errors than standard Qwen-2.5. In contrast,
Llama-3 exhibits the highest invalid output rates of
all. However, applying CoT or DeepSeek tuning
brings these rates down significantly, sometimes
by 30–60 percentage points. Therefore, while CoT
may introduce extra texts that can diverge some
models, it can also help a struggling model (like
Llama-3) adhere more closely to task requirements.

4.3 Runtime Analysis
Table 3 reports average runtime (in seconds) for
processing a set of Endoscopy and Pathology re-
ports. Most models show a predictable increase
in runtime under CoT prompting, due to generat-
ing additional tokens for explanatory text. Phi-4
and Qwen-2.5 each experience a jump of about
5–12 seconds with CoT. Gemma-3, interestingly,
gives similar or even slightly lower times when
using CoT, which may be explained by the fact that
Gemma-3 has already undergone reinforcement
learning from multiple feedback sources and dis-
tillation from larger models, and thus adding CoT
explicitly in the prompt does not add to reasoning
generation.

Out of all 14B-parameter models, Qwen-2.5 is
the fastest (around 24–31 s/iter), while DeepSeek
Qwen-2.5 nearly doubles that time (66–75 s/iter).
Llama-3 is particularly quick without CoT, dipping
to 15–17 s/iter; yet with CoT, its times roughly dou-
ble. These differences underscore a tradeoff: CoT
can improve accuracy in some instances, but at the
cost of speed. It is also interesting that for Gemma-
3 and Qwen-2.5 which have reinforcement train-
ing in their training process and DeepSeek Qwen-
2.5, DeepSeek Llama-3 and Gemma-3 which are
distilled from larger model, adding CoT does not
add much more runtime. This may be because
these models have already generated some reason-
ing texts even without explicit CoT in the prompts.
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Category Phi-4 (14B) Gemma-3 (12B) Qwen-2.5 (14B) DeepSeek Qwen-2.5 (14B) Llama-3 (7B) DeepSeek Llama-3 (7B)
With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT

Decisions (GSTT) 0.93 (0.89, 0.97) 0.96 (0.92, 0.99) 0.86 (0.80, 0.91) 0.85 (0.79, 0.91) 0.98 (0.94, 1.00) 0.98 (0.95, 1.00) 0.92 (0.88, 0.96) 0.94 (0.91, 0.98) 0.53 (0.42, 0.62) 0.46 (0.37, 0.54) 0.75 (0.68, 0.82) 0.70 (0.64, 0.77)
Decisions (KCH) 0.79 (0.74, 0.85) 0.84 (0.79, 0.90) 0.80 (0.74, 0.86) 0.81 (0.76, 0.87) 0.85 (0.79, 0.90) 0.83 (0.77, 0.89) 0.83 (0.77, 0.89) 0.85 (0.79, 0.90) 0.62 (0.55, 0.70) 0.23 (0.15, 0.32) 0.54 (0.47, 0.60) 0.61 (0.54, 0.68)

Pathology (GSTT) 0.91 (0.86, 0.96) 0.97 (0.93, 0.99) 0.87 (0.80, 0.92) 0.87 (0.81, 0.92) 0.96 (0.93, 0.99) 0.96 (0.91, 0.99) 0.94 (0.89, 0.98) 0.92 (0.87, 0.95) 0.64 (0.55, 0.72) 0.91 (0.85, 0.95) 0.85 (0.79, 0.92) 0.88 (0.82, 0.93)
Pathology (KCH) 0.86 (0.81, 0.91) 0.92 (0.87, 0.95) 0.86 (0.81, 0.91) 0.87 (0.82, 0.92) 0.89 (0.83, 0.93) 0.88 (0.83, 0.93) 0.88 (0.83, 0.93) 0.91 (0.85, 0.95) 0.75 (0.69, 0.83) 0.86 (0.80, 0.91) 0.75 (0.69, 0.82) 0.73 (0.67, 0.79)

Endoscopy (GSTT) 0.93 (0.88, 0.97) 0.92 (0.87, 0.97) 0.69 (0.60, 0.76) 0.75 (0.67, 0.82) 0.94 (0.89, 0.97) 0.94 (0.90, 0.97) 0.94 (0.89, 0.97) 0.95 (0.91, 0.99) 0.73 (0.65, 0.80) 0.27 (0.19, 0.34) 0.66 (0.59, 0.74) 0.65 (0.57, 0.72)
Endoscopy (KCH) 0.82 (0.76, 0.87) 0.82 (0.76, 0.87) 0.74 (0.67, 0.81) 0.75 (0.68, 0.81) 0.84 (0.78, 0.89) 0.84 (0.78, 0.89) 0.86 (0.80, 0.91) 0.87 (0.82, 0.92) 0.65 (0.57, 0.72) 0.21 (0.13, 0.29) 0.58 (0.50, 0.66) 0.63 (0.55, 0.71)

Table 1: Weighted average F1-Scores for different categories across multiple models with and without CoT. Values
in bold indicate the higher value between ’With CoT’ and ’Without CoT’. Values in red indicate the highest value in
that row.

Category Phi-4 (14B) Gemma-3 (12B) Qwen-2.5 (14B) DeepSeek Qwen-2.5 (14B) Llama-3 (7B) DeepSeek Llama-3 (7B)
With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT

Decisions (GSTT) 6.96% 0% 4.35% 0.87% 0% 0% 5.22% 2.61% 27.83% 55.65% 13.91% 9.57%
Decisions (KCH) 0.86% 0% 0.71% 0% 0.71% 0.71% 2.14% 0.71% 24.29% 78.57% 27.14% 15.00%

Pathology (GSTT) 6.96% 0% 0% 0% 0% 0% 3.48% 1.74% 17.39% 2.61% 1.74% 2.61%
Pathology (KCH) 2.86% 0% 0% 0% 0% 0% 1.43% 0.71% 8.57% 0.71% 5.00% 4.29%

Endoscopy (GSTT) 0% 0% 5.22% 1.74% 0.87% 0.87% 1.74% 0.87% 20.87% 71.30% 16.52% 6.96%
Endoscopy (KCH) 0% 0% 0.71% 0% 0.71% 0.71% 0.71% 0% 21.43% 85.00% 24.29% 14.29%

Table 2: Percentage of "invalid" outputs generated (outputs that do not fully conform to the output specification)

4.4 Subclass-Specific Results

Table 4 breaks down F1-scores for finer-grained
clinical subcategories. Once again, Qwen-2.5
and Phi-4 lead most subtasks. Both models fre-
quently achieve near-perfect F1 on simpler labels
(e.g., "alert," "DysplasiaOrCancer") and retain rela-
tively strong performance on more difficult or less
frequent subcategories (e.g., "Insufficient" in En-
doscopy). DeepSeek Qwen-2.5 is the best across
nearly all subcategories for Endoscopy. Given En-
doscopy contains more numerical information, this
reflects the advantage of specialised pre-training of
reasoning ability.

Gemma-3’s midrange performance remains con-
sistent at subclass level, while Llama-3 is especially
vulnerable on smaller or more challenging labels
(e.g., "5 year," "Insufficient"), with F1 sometimes
dropping below 0.50. However, DeepSeek Llama-
3 recovers some ground. This implies that distilled
reasoning ability from DeepSeekR helps with these
challenging classes.

4.4.1 Decision Support with Evidence from
Text

For real-life model application, we choose Phi-4
14B without CoT for Pathology reports process-
ing and DeepSeek distilled Qwen-2.5 14B for En-
doscopy processing given the performance during
testing. We show a set of made-up endoscopy and
pathology reports:

endo_sample oesophagus: 8cm Barrett’s segment. c3m8 Barrett’s oesophagus. Hiatus
hernia 2cm, top of GOJ 38cm, top of circumferential 35cm, top of tongues 30cm.

patho_sample a) duodenum - normal - negative for cancer and dysplasia b) GOJ -
intestinal metaplasia - negative for cancer and dysplasia c) oesophagus - intestinal
metaplasia - inflammation - negative for cancer and dysplasia.

The decision support module outputs a decision

and a justification for the decision with information
from the texts.

The pathology extraction is in a nested JSON
format for each biopsy finding. The model can
identify the location of the biopsy and the mentions
of cancer, dysplasia, IM and gastric metaplasia at
that location.

The endoscopy extraction is structured in a
JSON format with length information.
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Category Phi-4 (14B) Gemma-3 (12B) Qwen-2.5 (14B) DeepSeek Qwen-2.5 (14B) Llama-3 (7B) DeepSeek Llama-3 (7B)
With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT

Time/iter (GSTT) 41.33 28.82 48.84 50.22 30.81 23.91 75.47 70.47 33.39 17.16 25.63 22.59
Time/iter (KCH) 40.64 27.64 48.00 49.54 28.26 24.03 70.47 66.23 24.50 15.32 32.90 28.65

Table 3: Average runtime per set of endoscopy and pathology report processing. Measured in seconds (averaged
over the whole test set)

Class Support Phi-4 Gemma-3 Qwen-2.5* DeepSeek Qwen-2.5 Llama-3* DeepSeek Llama-3

Decisions (GSTT)

alert 20 1.00 (1.00, 1.00) 0.93 (0.85, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.55 (0.44, 0.65) 0.93 (0.85, 1.00)
2 year 18 0.97 (0.91, 1.00) 0.85 (0.74, 0.95) 0.97 (0.92, 1.00) 0.91 (0.80, 1.00) 0.55 (0.29, 0.76) 0.68 (0.48, 0.85)
3 year 9 0.94 (0.80, 1.00) 0.64 (0.42, 0.84) 0.90 (0.78, 1.00) 0.83 (0.69, 0.95) 0.45 (0.00, 0.75) 0.29 (0.00, 0.62)
5 year 6 0.79 (0.50, 1.00) 0.54 (0.18, 0.86) 1.00 (1.00, 1.00) 0.90 (0.67, 1.00) 0.54 (0.18, 0.91) 0.00 (0.00, 0.00)
refer 62 0.97 (0.94, 0.99) 0.88 (0.82, 0.94) 0.98 (0.94, 1.00) 0.96 (0.92, 0.99) 0.52 (0.39, 0.65) 0.76 (0.69, 0.83)
Weighted avg 115 0.96 (0.92, 0.99) 0.85 (0.79, 0.91) 0.98 (0.94, 1.00) 0.94 (0.91, 0.98) 0.53 (0.42, 0.62) 0.70 (0.64, 0.77)

Pathology (GSTT)

DysplasiaOrCancer 20 1.00 (1.00, 1.00) 0.93 (0.85, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.55 (0.45, 0.66) 0.93 (0.85, 1.00)
IM 36 0.99 (0.96, 1.00) 0.91 (0.86, 0.96) 0.99 (0.96, 1.00) 0.92 (0.86, 0.97) 0.71 (0.56, 0.84) 0.90 (0.81, 0.97)
No_IM 18 0.91 (0.80, 1.00) 0.64 (0.41, 0.84) 0.91 (0.80, 1.00) 0.86 (0.71, 0.97) 0.71 (0.52, 0.87) 0.80 (0.62, 0.94)
Insufficient 41 0.95 (0.91, 0.99) 0.91 (0.84, 0.96) 0.95 (0.90, 0.99) 0.91 (0.84, 0.98) 0.59 (0.42, 0.72) 0.87 (0.80, 0.94)
Weighted avg 115 0.97 (0.93, 0.99) 0.87 (0.81, 0.92) 0.96 (0.93, 0.99) 0.92 (0.87, 0.96) 0.64 (0.55, 0.72) 0.88 (0.82, 0.93)

Endoscopy (GSTT)

Long 29 0.98 (0.95, 1.00) 0.83 (0.76, 0.91) 0.97 (0.92, 1.00) 0.95 (0.88, 1.00) 0.83 (0.71, 0.93) 0.63 (0.47, 0.76)
Short 23 0.93 (0.82, 1.00) 0.83 (0.74, 0.92) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.74 (0.59, 0.87) 0.55 (0.34, 0.72)
NoBarretts 49 0.93 (0.87, 0.98) 0.75 (0.64, 0.84) 0.95 (0.91, 0.98) 0.95 (0.91, 0.99) 0.73 (0.63, 0.84) 0.78 (0.69, 0.86)
Insufficient 14 0.77 (0.62, 0.92) 0.47 (0.21, 0.69) 0.71 (0.44, 0.88) 0.88 (0.75, 1.00) 0.52 (0.27, 0.75) 0.42 (0.27, 0.56)
Weighted avg 115 0.92 (0.87, 0.97) 0.75 (0.67, 0.82) 0.94 (0.89, 0.97) 0.95 (0.91, 0.99) 0.73 (0.65, 0.8) 0.65 (0.57, 0.72)

Decisions (KCH)

alert 7 1.00 (1.00, 1.00) 0.94 (0.82, 1.00) 1.00 (1.00, 1.00) 0.91 (0.73, 1.00) 0.49 (0.32, 0.67) 0.57 (0.44, 0.74)
2 year 26 0.94 (0.87, 1.00) 0.87 (0.78, 0.95) 0.93 (0.85, 0.98) 0.92 (0.84, 0.98) 0.68 (0.49, 0.82) 0.69 (0.54, 0.83)
3 year 9 0.67 (0.33, 0.89) 0.70 (0.47, 0.90) 0.74 (0.50, 0.94) 0.57 (0.32, 0.78) 0.36 (0.11, 0.63) 0.27 (0.00, 0.59)
5 year 18 0.49 (0.20, 0.71) 0.42 (0.11, 0.67) 0.58 (0.35, 0.77) 0.61 (0.36, 0.80) 0.27 (0.00, 0.50) 0.10 (0.00, 0.29)
refer 80 0.90 (0.87, 0.93) 0.89 (0.85, 0.92) 0.88 (0.84, 0.93) 0.91 (0.87, 0.95) 0.72 (0.64, 0.80) 0.74 (0.67, 0.81)
Weighted avg 140 0.84 (0.79, 0.90) 0.81 (0.76, 0.87) 0.85 (0.79, 0.90) 0.85 (0.79, 0.90) 0.62 (0.55, 0.70) 0.61 (0.54, 0.68)

Pathology (KCH)

DysplasiaOrCancer 7 1.00 (1.00, 1.00) 0.94 (0.82, 1.00) 1.00 (1.00, 1.00) 0.92 (0.73, 1.00) 0.48 (0.31, 0.67) 0.57 (0.44, 0.70)
IM 50 0.99 (0.97, 1.00) 0.96 (0.93, 0.99) 0.96 (0.93, 0.99) 0.97 (0.93, 1.00) 0.89 (0.82, 0.95) 0.81 (0.72, 0.89)
No_IM 23 0.72 (0.52, 0.85) 0.55 (0.29, 0.75) 0.66 (0.48, 0.82) 0.68 (0.50, 0.83) 0.38 (0.15, 0.59) 0.29 (0.08, 0.52)
Insufficient 60 0.93 (0.90, 0.96) 0.92 (0.88, 0.95) 0.89 (0.84, 0.94) 0.93 (0.89, 0.97) 0.81 (0.74, 0.88) 0.86 (0.81, 0.91)
Weighted avg 140 0.92 (0.87, 0.95) 0.87 (0.82, 0.92) 0.89 (0.83, 0.93) 0.90 (0.85, 0.95) 0.75 (0.69, 0.81) 0.73 (0.67, 0.79)

Endoscopy (KCH)

Long 48 0.94 (0.88, 0.98) 0.84 (0.78, 0.90) 0.92 (0.87, 0.97) 0.96 (0.91, 0.99) 0.73 (0.62, 0.83) 0.81 (0.71, 0.89)
Short 48 0.80 (0.71, 0.89) 0.79 (0.70, 0.87) 0.86 (0.78, 0.92) 0.89 (0.83, 0.95) 0.74 (0.62, 0.84) 0.53 (0.37, 0.67)
NoBarretts 17 0.73 (0.56, 0.88) 0.55 (0.29, 0.75) 0.66 (0.46, 0.84) 0.64 (0.47, 0.81) 0.34 (0.14, 0.53) 0.52 (0.32, 0.71)
Insufficient 27 0.71 (0.62, 0.79) 0.63 (0.49, 0.75) 0.76 (0.64, 0.86) 0.82 (0.71, 0.91) 0.52 (0.37, 0.68) 0.59 (0.47, 0.71)
Weighted avg 140 0.82 (0.76, 0.87) 0.75 (0.68, 0.81) 0.84 (0.78, 0.89) 0.87 (0.82, 0.92) 0.65 (0.57, 0.72) 0.63 (0.55, 0.71)

Table 4: Comparison of sub-classes performance (F1-Score) across multiple models for the GSTT and KCH datasets
(Phi-4, Gemma-3, Qwen-2.5*, DeepSeek Qwen-2.5, Llama-3*, and DeepSeek Llama-3). * with CoT Prompting.
Support is the number of each class in the original test sets.

4.5 Comparison to EndoBERT/PathBERT
The comparison between LLMs such as
Phi-4, Qwen-2.5, and DeepSeek Qwen-2.5,

and the domain-specific BERT-based model
Endo/PathBERT (Table 5) highlights the strengths
and limitations of general-purpose LLMs ver-
sus specialised BERT models. While LLMs
demonstrate competitive performance, with Phi-4
achieving the highest weighted F1-score among
LLMs in Pathology (GSTT, 0.97; KCH, 0.92) and
DeepSeek Qwen-2.5 leading in Endoscopy (GSTT,
0.95; KCH, 0.87), Endo/PathBERT consistently
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Class Support Phi-4 (14B) Qwen-2.5* (14B) DeepSeek Qwen-2.5 (14B) Endo/PathBERT (0.1B) Support Phi-4 Qwen-2.5* DeepSeek Qwen-2.5 Endo/PathBERT

Pathology (GSTT) Pathology (KCH)

DysplasiaOrCancer 20 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 7 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.92 (0.73, 1.00) 1.00
IM 36 0.99 (0.96, 1.00) 0.99 (0.96, 1.00) 0.92 (0.86, 0.97) 0.97 50 0.99 (0.97, 1.00) 0.96 (0.93, 0.99) 0.97 (0.93, 1.00) 0.95
No_IM 18 0.91 (0.80, 1.00) 0.91 (0.80, 1.00) 0.86 (0.71, 0.97) 0.92 23 0.72 (0.52, 0.85) 0.66 (0.48, 0.82) 0.68 (0.50, 0.83) 0.86
Insufficient 41 0.95 (0.91, 0.99) 0.95 (0.90, 0.99) 0.91 (0.84, 0.98) 0.83 60 0.93 (0.90, 0.96) 0.89 (0.84, 0.94) 0.93 (0.89, 0.97) 0.81
Weighted avg 115 0.97 (0.93, 0.99) 0.96 (0.93, 0.99) 0.92 (0.87, 0.96) 0.92 140 0.92 (0.87, 0.95) 0.89 (0.83, 0.93) 0.90 (0.85, 0.95) 0.88

Endoscopy (GSTT) Endoscopy (KCH)

Long 29 0.98 (0.95, 1.00) 0.97 (0.92, 1.00) 0.95 (0.88, 1.00) 1.00 48 0.94 (0.88, 0.98) 0.92 (0.87, 0.97) 0.96 (0.91, 0.99) 0.92
Short 23 0.93 (0.82, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.98 48 0.80 (0.71, 0.89) 0.86 (0.78, 0.92) 0.89 (0.83, 0.95) 0.90
NoBarretts 49 0.93 (0.87, 0.98) 0.95 (0.91, 0.98) 0.95 (0.91, 0.99) 0.95 17 0.73 (0.56, 0.88) 0.66 (0.46, 0.84) 0.64 (0.47, 0.81) 0.81
Insufficient 14 0.77 (0.62, 0.92) 0.71 (0.44, 0.88) 0.88 (0.75, 1.00) 0.79 27 0.71 (0.62, 0.79) 0.76 (0.64, 0.86) 0.82 (0.71, 0.91) 0.75
Weighted avg 115 0.92 (0.87, 0.97) 0.94 (0.89, 0.97) 0.95 (0.91, 0.99) 0.95 140 0.82 (0.76, 0.87) 0.84 (0.78, 0.89) 0.87 (0.82, 0.92) 0.87

Inference Time 28.82 30.81 70.47 0.03 27.64 28.26 66.23 0.03

Table 5: Comparison of Pathology and Endoscopy classification performance (F1-Score) between LLMs (Phi-4,
Qwen-2.5*, DeepSeek Qwen-2.5) and BERT based report classification models on GSTT and KCH datasets. * with
CoT Prompting. Support is the number of each class in the original test sets

achieve comparable performance across tasks. On
the other hand, the inference time and space cost of
LLMs are much higher than BERT-based models.
The fine-tuned BERT models, however, have
larger annotation and training overheads. New
annotations and re-training are often needed for
adaptations and repurposing, while LLMs can be
adapted with only prompt changes. Besides, as an
extraction-based model, the extracted information
can be stored and reused for future queries or for
other tasks that require these extractions.

5 Conclusion

This study explores the use of LLMs for extracting
surveillance-relevant information from endoscopy
and pathology reports to automate BO surveillance
timing prediction. Our results show that LLMs can
effectively process unstructured clinical text with
few-shot learning and achieve performance com-
parable to or surpassing traditional NLP methods
trained on human annotated data. Specifically, Phi-
4 and DeepSeek Qwen-2.5 emerged as the most ef-
fective models for pathology and endoscopy report
processing respectively. This approach reduces the
need for extensive manual annotations, making it a
scalable and adaptable solution for real-world clin-
ical deployment. Moreover, this extraction-based
method provides interpretable outputs. The struc-
tured extractions provided by LLMs, guided by
rule-based algorithms for classification, increase
transparency of the results and help with clinical
validation compared to previous report level classi-
fication models. This study also shows that model
selection and prompt design are essential for model
performance and runtime during deployment.
Future research can explore fine-tuning these mod-
els for domain-specific tasks and integrating them
into clinical decision support systems to optimise

patient care.

6 Limitations and Future Work

Despite the promising results, our study has several
limitations. Firstly, the models were evaluated on
data from two hospitals, which may limit general-
isability to other healthcare settings with different
documentation styles. Secondly, while formatting
results in a JSON style improved consistency, there
might be easier ways for models to structure the
outputs with lower invalid output rate. Thirdly, we
used LLM extraction followed by a rule-based al-
gorithm classification method. Future work could
explore guiding LLMs to perform both classifica-
tion and justification directly. Additionally, we
evaluated the final performance on classification
tasks. Human evaluations on entity and relation
extractions could provide a more direct measure of
the LLM extraction models. Furthermore, the ex-
periments can be extended to larger LLMs. Lastly,
more work on deploying LLMs in other GI condi-
tions is needed to further explore their usability.

7 Ethics Statement

Use of the GSTT and KCH dataset received eth-
ical approval from GSTT Electronic Records Re-
search Interface (GERRI) institutional board re-
view (IRAS ID = 257283) and King’s Electronic
Records Research Interface (KERRI) institutional
board review (IRAS ID = 232823) respectively.

8 Acknowledgements

The research described in this paper was funded by
King’s College London DRIVE-Health Centre for
Doctoral Training. We would like to express our
gratitude to King’s CREATE-TRE for providing
compute resources and infrastructure.

184



References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J Hewett, Mojan Javaheripi, Piero
Kauffmann, et al. 2024. Phi-4 technical report. arXiv
preprint arXiv:2412.08905.

DeepMind. 2024. Gemma: Lightweight Open Mod-
els for Responsible AI. Technical report, Google
DeepMind. Accessed: March 17, 2025.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 conference of the
North American chapter of the association for com-
putational linguistics: human language technologies,
volume 1 (long and short papers), pages 4171–4186.

Alexander Dunn, John Dagdelen, Nicholas Walker,
Sanghoon Lee, Andrew S Rosen, Gerbrand Ceder,
Kristin Persson, and Anubhav Jain. 2022. Struc-
tured information extraction from complex scientific
text with fine-tuned large language models. arXiv
preprint arXiv:2212.05238.

Rebecca C Fitzgerald, Massimiliano Di Pietro, Krish
Ragunath, Yeng Ang, Jin-Yong Kang, Peter Watson,
Nigel Trudgill, Praful Patel, Philip V Kaye, Scott
Sanders, et al. 2014. British society of gastroenterol-
ogy guidelines on the diagnosis and management of
barrett’s oesophagus. Gut, 63(1):7–42.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Jia He, Mukund Rungta, David Koleczek, Arshdeep
Sekhon, Franklin X Wang, and Sadid Hasan. 2024.
Does prompt formatting have any impact on llm per-
formance? arXiv preprint arXiv:2411.10541.

Jia Li, Shan Hu, Conghui Shi, Zehua Dong, Jie Pan,
Yaowei Ai, Jun Liu, Wei Zhou, Yunchao Deng,
Yanxia Li, et al. 2022. A deep learning and natu-
ral language processing-based system for automatic
identification and surveillance of high-risk patients
undergoing upper endoscopy: A multicenter study.
EClinicalMedicine, 53.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM computing surveys, 55(9):1–35.

Mahmud Omar, Salih Nassar, Kassem SharIf, Ben-
jamin S Glicksberg, Girish N Nadkarni, and Eyal
Klang. 2025. Emerging applications of nlp and large
language models in gastroenterology and hepatol-
ogy: a systematic review. Frontiers in Medicine,
11:1512824.

Carlijn AM Roumans, Ruben D van der Bogt, Ewout W
Steyerberg, Dimitris Rizopoulos, Iris Lansdorp-
Vogelaar, Prateek Sharma, Manon CW Spaander, and
Marco J Bruno. 2020. Adherence to recommenda-
tions of barrett’s esophagus surveillance guidelines:
a systematic review and meta-analysis. Endoscopy,
52(01):17–28.

Rithik Sachdev, Zhong-Qiu Wang, and Chao-Han Huck
Yang. 2024. Evolutionary prompt design for llm-
based post-asr error correction. arXiv preprint
arXiv:2407.16370.

Stuart J. Spechler, Prateek Sharma, Rhonda F. Souza,
John M. Inadomi, and Nicholas J. Shaheen. 2011.
Gastroenterology, 140(3):e18–e52.

Robert J Tibshirani and Bradley Efron. 1993. An intro-
duction to the bootstrap. Monographs on statistics
and applied probability, 57(1):1–436.

Li Wang, Xi Chen, XiangWen Deng, Hao Wen, MingKe
You, WeiZhi Liu, Qi Li, and Jian Li. 2024. Prompt
engineering in consistency and reliability with the
evidence-based guideline for llms. NPJ digital
medicine, 7(1):41.

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang,
Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang.
2023. Gpt-ner: Named entity recognition via large
language models. arXiv preprint arXiv:2304.10428.

Theresa Nguyen Wenker, Yamini Natarajan, Kadon
Caskey, Francisco Novoa, Nabil Mansour, Huy Anh
Pham, Jason K Hou, Hashem B El-Serag, and
Aaron P Thrift. 2023. Using natural language
processing to automatically identify dysplasia in
pathology reports for patients with barrett’s esoph-
agus. Clinical Gastroenterology and Hepatology,
21(5):1198–1204.

Bas LAM Weusten, Raf Bisschops, Mario Dinis-
Ribeiro, Massimiliano Di Pietro, Oliver Pech,
Manon CW Spaander, Francisco Baldaque-Silva,
Maximilien Barret, Emmanuel Coron, Glòria
Fernández-Esparrach, et al. 2023. Diagnosis and
management of barrett esophagus: European soci-
ety of gastrointestinal endoscopy (esge) guideline.
Endoscopy, 55(12):1124–1146.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

J Diego Zamfirescu-Pereira, Richmond Y Wong, Bjoern
Hartmann, and Qian Yang. 2023. Why johnny can’t
prompt: how non-ai experts try (and fail) to design

185

https://storage.googleapis.com/deepmind-media/gemma/Gemma3Report.pdf
https://storage.googleapis.com/deepmind-media/gemma/Gemma3Report.pdf


llm prompts. In Proceedings of the 2023 CHI confer-
ence on human factors in computing systems, pages
1–21.

Agathe Zecevic, Laurence Jackson, Xinyue Zhang, Poly-
chronis Pavlidis, Jason Dunn, Nigel Trudgill, Shahd
Ahmed, Pierfrancesco Visaggi, Zanil YoonusNizar,
Angus Roberts, et al. 2024. Automated decision
making in barrett’s oesophagus: development and de-
ployment of a natural language processing tool. NPJ
Digital Medicine, 7(1):312.

Ruoyu Zhang, Yanzeng Li, Yongliang Ma, Ming Zhou,
and Lei Zou. 2023. Llmaaa: Making large lan-
guage models as active annotators. arXiv preprint
arXiv:2310.19596.

186



A Extraction schema

Entity Field Description
Pathology for each biopsy finding

Location text Location where the biopsy is taken
oesophagus_or_barretts (yes/no) whether the location is related to oe-

sophagus or barretts
cardia (yes/no) whether the location is related to cardia

Barretts text mention of Barrett’s
negation (yes/no/indefinite) Whether the mention is negated

Cancer text mention of cancer
negation (yes/no/indefinite) Whether the mention is negated

Dysplasia text mention of Dysplasia
negation (yes/no/indefinite) Whether the mention is negated

IM text mention of IM
negation (yes/no/indefinite) Whether the mention is negated

Gastric Metaplasia text mention of Gastric Metaplasia
negation (yes/no/indefinite) Whether the mention is negated

Endoscopy
Barretts text mention of Barrett’s

negation (yes/no/indefinite) Whether the mention is negated
Barretts_island text mention of Barrett’s island

negation (yes/no/indefinite) Whether the mention is negated
irregular_z_line (text) mention of irregular z line
normal_oesophagus (text) mention of normal oesophagus (squa-

mous epithelium)
Prague score (text) The value of Prague score (e.g. C2M5)
Gastric fold (text) The position of gastric fold
Barretts_tongue (text) The position of top of Barrett’s Tongue
Circumferential_barretts (text) The position of the top of circumferen-

tial Barrett’s
Barretts_length (text) Direct mention or description of Bar-

rett’s length

Table 6: Entities and descriptions for Pathology and Endoscopy extractions.

B Prompts
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Figure 2: Pathology Prompt
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Figure 3: Endoscopy Prompt
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