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Abstract
Accurately mapping medical procedure names
from healthcare providers to standardized ter-
minology used by insurance companies is a
crucial yet complex task. Inconsistencies in
naming conventions lead to missclasified pro-
cedures, causing administrative inefficiencies
and insurance claim problems in private health-
care settings. Many companies still use human
resources for manual mapping, while there is
a clear opportunity for automation. This paper
proposes a retrieval-based architecture lever-
aging sentence embeddings for medical name
matching in the Romanian healthcare system.
This challenge is significantly more difficult in
underrepresented languages such as Romanian,
where existing pretrained language models lack
domain-specific adaptation to medical text. We
evaluate multiple embedding models, including
Romanian, multilingual, and medical-domain-
specific representations, to identify the most
effective solution for this task. Our findings
contribute to the broader field of medical NLP
for low-resource languages such as Romanian.

1 Introduction

Ensuring accurate mapping between medical proce-
dure names used by different healthcare providers
and a standardized terminology set maintained by
health insurance companies is a challenging task,
with real-world applications. Discrepancies in nam-
ing conventions can lead to administrative ineffi-
ciencies, misclassification of procedures, and po-
tential barriers for patients seeking insurance cover-
age. These mismatches can result in denied claims,
increased processing times, and overall inefficien-
cies in the healthcare reimbursement process. For
example, "The State of Claims: 2024" report 1 re-
veals that 46% of denied claims are due to missing
or innacurate data and coding errors.

Matching procedure names is similar to the
well-known problems of entity resolution and text

1The State of Claims: 2024, Accessed 19.03.2025

Figure 1: Diagram of the medical procedure matching
problem. Clinics often have their own local names for
medical procedures that are changed annually, for which
a central insurance agency must match to a standardized
list of procedures for reimbursement.

matching, yet it presents unique challenges in the
medical domain. The complexity stems from sev-
eral factors: (i) medical terminology is highly
domain-specific and varies across institutions, (ii)
data distributions are often imbalanced due to the
frequency of common procedures overshadowing
rare ones, (iii) nomenclatures evolve over time,
necessitating adaptive matching techniques, and
(iv) the presence of noise in text data, including
typographical errors and abbreviations further com-
plicates standardization efforts. Figure 1 illus-
trates this problem. While previous studies have
addressed similar challenges (Tavabi et al., 2024;
Levy et al., 2022; Zaidat et al., 2024), most focus
on healthcare systems in the United States or other
widely studied regions (Alexander et al., 2003). In-
ternational standards are typically adapted by each
country, and private insurance companies may de-
velop their own coding schemes, making a univer-
sal solution impractical.

This issue is particularly pressing for underrepre-
sented languages such as Romanian. Despite grow-
ing interest in NLP for low-resource languages (Ni-
gatu et al., 2024), Romanian remains significantly
underrepresented in medical NLP research. Ex-
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isting language models such as RoBERT (Masala
et al., 2020) and RoLLaMA (Masala et al., 2024)
provide general-purpose Romanian embeddings,
but they lack the necessary specialization for medi-
cal text processing. Often, for real-world scenarios,
multilingual models are ubiquitously used (Wang
et al., 2024, 2020), even if they might fail to capture
language-specific nuances.

In this paper, we propose a retrieval-based archi-
tecture for medical procedure matching. By lever-
aging metric learning and dense vector representa-
tions of procedure names (Ramesh Kashyap et al.,
2024), our method can handle a variable number of
input-output mappings, can be expanded without
retraining the entire model, and integrate efficiently
with scalable vector search frameworks such as
Milvus (Wang et al., 2021). This makes retrieval
an attractive paradigm for medical name matching,
as it enables continuous updates and adaptation to
changing medical taxonomies without extensive
human intervention. We empirically evaluate three
sentence embedding models (Wang et al., 2024;
Masala et al., 2020; Alsentzer et al., 2019), compar-
ing their effectiveness in Romanian medical name
matching.

By focusing on the Romanian healthcare sys-
tem, our study highlights the broader challenges of
medical terminology standardization and provides
insights that can inform similar efforts in other low-
resource languages. We aim to contribute to the de-
velopment of robust, scalable, and language-aware
retrieval methods for healthcare applications, ulti-
mately improving the efficiency and accessibility
of medical insurance systems.

Our contributions are as follows:

1. We propose a retrieval-based architecture for
matching medical procedure names across dif-
ferent healthcare providers and insurance com-
panies, addressing a pressing real-world prob-
lem in the Romanian healthcare system.

2. We conduct an extensive evaluation of vari-
ous sentence embedding models, both Roma-
nian (Masala et al., 2020), multilingual (Wang
et al., 2024) and specialized in the medical
domain (Alsentzer et al., 2019), highlighting
their performance in the context of Romanian
medical text matching.

2 Related Work

Sentence embedding models. Semantic text em-
bedding models (Ramesh Kashyap et al., 2024)

are a significant component of many NLP appli-
cations, most notably text retrieval and question
answering. Text embeddings are used to capture
semantic representations of text that go beyond
surface level word and character matching meth-
ods such as TF-IDF. Currently, practitioners are
using pretrained transformer models such as BERT
(Reimers and Gurevych, 2019), either by aggre-
gating word-level representations with a pooling
operation, or by using specialized training for text
similarity (Khattab and Zaharia, 2020). Currently,
the best performing models are aggregated in the
MTEB leaderboard (Muennighoff et al., 2023a), a
benchmark of several text embedding tasks, includ-
ing several non-English datasets. For the medical
and scientific domain (Lewis et al., 2020), several
models have been developed. Models such as SciB-
ERT (Beltagy et al., 2019), BioBERT (Alsentzer
et al., 2019), ClinicalBERT (Alsentzer et al., 2019)
and MedBERT (Rasmy et al., 2021) offer domain-
specific embeddings by training on either special-
ized biomedical corpora or task-specific datasets.

However, most contextualized text representa-
tion models for the medical domain are focused
on the English language, with under-represented
languages severely lacking in resources such as spe-
cialized models or training datasets. In our setup,
medical procedure names are written in Romanian,
a low resource language, with only a few pretrained
language models (Masala et al., 2024, 2020). Cur-
rently, for Romanian, only a pretrained RoBERT
model (Masala et al., 2020) is available for direct
contextualized text representations, but no such
variant exists for the medical domain. Currently,
multilingual models such as E5 (Wang et al., 2024)
and MiniLM (Wang et al., 2020) are ubiquitously
used for non-English tasks.
Medical Procedure Matching. The task of medi-
cal procedure matching has been performed in the
context of assigning medical notes or pathology
reports to a predefined set of medical procedures
(Tavabi et al., 2024; Levy et al., 2022; Zaidat et al.,
2024), with a focus on the US medical system.

Tavabi et al. (2024) investigated the problem of
mapping unstructured operative notes to Current
Procedural Terminology (CPT) codes. The CPT
code set is a system used to describe medical, surgi-
cal and diagnostic services, that are used for billing
and insurance reimbursement processes in health-
care. The authors apply common NLP techniques
to assign 44,002 notes to 100 most prevalent CPT
codes, treating this problem as a classification task.
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Masterlist Entry Associated Clinic Procedures Names

Polipectomie polip mic
(Small polyp polypectomy)

Polipectomie,polip mic (Polypectomy, small polyp)

Gastroenterologie - Polipectomie,polip mic 2022 (Gastroen-
terology - Polypectomy, small polyp 2022)

Rezectie polip mic (Small polyp resection)

Radiografie omoplat 1
incidenta
(Scapula X-ray 1 view)

Radiografie omoplat (fata sau profil) (Scapula X-ray (frontal or
lateral))

Omoplat profil (Lateral scapula view)

RX omoplat profil (Lateral scapula X-ray)

Vitamina B12
(Vitamin B12)

Vitamina B12 serica (5 zile) (Serum Vitamin B12 (5 days))

Vitamina B12 (Cianocobalamina) (Vitamin B12 (Cyanocobal-
amin))

ANALIZA SANGE - Vitamina B12 (BLOOD ANALYSIS - Vita-
min B12)

Table 1: Selected examples of entries in the masterlist and associated procedure names from clinics. There is
significant variation in procedure names, which makes simple text matching inappropriate. We provide English
translations for convenience.

Using TF-IDF, Doc2Vec (Le and Mikolov, 2014)
and Clinical Bio-BERT (Alsentzer et al., 2019) em-
beddings as input they train a support vector ma-
chine classifier, for each embedding type. In their
experiments, TF-IDF outperformed both BERT and
Doc2Vec.

Levy et al. (2022) used machine-learning mod-
els for predicting CPT codes from pathology re-
ports. Their study analyzed 93,039 pathology re-
ports from the Dartmouth-Hitchcock Department
of Pathology and Laboratory Medicine, classifying
42 CPT codes. They evaluated the performance of
XGBoost and BERT—using both diagnostic text
alone and all report subfields. Their findings in-
dicated that while BERT outperformed XGBoost
when trained only on diagnostic text, but using all
report subfields resulted in XGBoost achieving the
best performance.

Zaidat et al. (2024) have also explored assigning
CPT codes to spine surgery operative notes, using
XLNet (Yang et al., 2019), a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) model. They
fine-tune the model to their operative note dataset,
containing 922 entries.

Previous studies have evaluated the performance
of statistical, machine learning and deep learning
models on classification of a large number of sam-
ples to a relatively small subset of CPT codes. In
contrast, we formulate our problem as a retrieval
problem, since our dataset is severely imbalanced,
and contains two orders of magnitude more CPT
codes (38,814 entries). Furthermore, another ad-
vantage of this formulation is that by avoiding a

fixed set of classes, the addition of more procedures
does not require modifying the architecture or re-
training the model. Unique to our work, we are the
first to tackle this problem in Romanian, a severely
low-resource language in terms of specialized mod-
els for the medical domain.

3 Method

In this section, we provide an overview of the prob-
lem description, our dataset of medical procedure
names and we describe the architecture for perform-
ing mapping between clinic descriptions and a set
of standardized procedure names.

3.1 Problem Description

The problem of matching medical procedure names
to a standardized masterlist is non-trivial. Simple
text matching is insufficient, as we will demon-
strate in Section 4. Our dataset is comprised of
medical procedures and tests from 528 Romanian
private clinics, containing 145,298 unique proce-
dure names mapped to their corresponding mas-
terlist entries. Through manual filtering of incor-
rect mappings, we reduced the dataset to 139,210
entries. Healthcare providers frequently use vary-
ing terms, abbreviations, and phrasing for the same
procedure, which creates inconsistencies. To illus-
trate the difficulty, Table 1 shows some relevant
examples of mappings. Healthcare providers may
omit obvious terms, such as "polyp resection" be-
ing synonymous with "polypectomy". Similarly,
entries such as "frontal or lateral X-ray" must be
mapped to "1 view X-ray", as they represent a sin-
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Figure 2: Overall diagram of our method. We formulate medical procedure matching as a retrieval problem: entries
in the masterlist are embedded and stored in a vector store and the most similar entry is retrieved based on the
similarity with a procedure name from a clinic.

gle test being performed. Terminology variations,
like vitamin B12 also being called Cyanocobal-
amin, can add complexity, especially when descrip-
tions include irrelevant details that mislead text-
based matching. Several other relevant examples
are presented in Table 2: matching a single medical
procedure, when the description actually describes
two procedures, not recognizing the semantic mean-
ing of descriptions, ignoring important numerical
thresholds, retrieving specific procedures instead
of general ones (or vice versa), and prioritizing less
important terms.

We chose to model our problem as a retrieval
problem, and not as a classification problem, since
50% of elements from the masterlist have only 1
unique procedure assigned. Figure 3 shows the
distribution of clinic descriptions assigned to mas-
terlist entries. If we frame our task as a classifica-
tion problem, we have 39,097 distinct classes, with
19,493 containing only a single sample. Given the
severe class imbalance per procedure, a classifica-
tion model would be inappropriate and would gen-
eralize poorly. However, a retrieval-based method
can be effectively used by leveraging semantic text
embeddings and metric-learning approaches to cap-
ture the similarity between clinic descriptions and
masterlist entries.

3.2 Procedure Matching as Retrieval
In our retrieval setup, we used the provided mas-
terlist procedure names to build a retrieval index
(Wang et al., 2021) and clinic descriptions as the
references for the queries. We embed the descrip-
tions using dense (Masala et al., 2020; Wang et al.,
2024; Alsentzer et al., 2019) and sparse models
(Robertson and Zaragoza, 2009). At inference time,
we embed the query clinic descriptions that require
a masterlist description and perform a similarity
search. The vector DB returns the top-k most simi-

Figure 3: Distribution of number of unique clinic de-
scriptions per masterlist procedure. There is a severe
data imbalance: 19,493 ( 50%) out of 39,097 entries
contain only a single example.

lar results for each of our clinic description. Figure
2 showcases this approach.

The vector index includes two types of entries:
masterlist entries and clinic description ↔ mas-
terlist pairs. In the first scenario, the similarity
score is calculated between the query and the mas-
terlist entries, with the index returning the most
similar masterlist entries. In the second scenario,
the similarity score is computed between the query
and the clinic descriptions stored in the index, and
the masterlist entry associated with the most similar
clinic description is returned. We build our search
and evaluation architecture over Milvus (Wang
et al., 2021), a high-performance vector database.

For our setup, we used three types of text em-
beddings: (i) sparse text embeddings using BM25
(Robertson and Zaragoza, 2009), (ii) dense seman-
tic embeddings with several pretrained transformer
models (Masala et al., 2020; Wang et al., 2024;
Alsentzer et al., 2019), both zero-shot and fine-
tuned with metric learning, and (iii) a hybrid rank-
ing approach using RRF (Cormack et al., 2009).
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3.3 Sparse Embeddings with BM25

For computing the sparse embeddings, we use
BM25 (Robertson and Zaragoza, 2009) to identify
the most relevant word-level features from the train-
ing set descriptions and masterlist entries. Text is
preprocessed by removing diacritics, punctuation,
and Romanian stopwords, followed by stemming
the remaining words. At inference time, we com-
pute the inner product between the query descrip-
tions and the masterlist descriptions, as well as the
clinic description pairs.

3.4 Dense Embeddings with Pretrained
Transformer Models

Recent studies have highlighted the challenges
of selecting optimal sentence embedding mod-
els for domain-specific retrieval tasks (Wornow
et al., 2023). Generic benchmarks do not always
align with real-world performance, necessitating
task-specific evaluations. The MTEB Leaderboard
(Muennighoff et al., 2023b) ranks top-performing
embedding models based on retrieval performance
across various datasets.

We experiment with three models for dense em-
beddings: mE5-large (Wang et al., 2024), RoBERT-
large (Masala et al., 2020), and BioClinicalBERT
(Alsentzer et al., 2019). We select mE5 due to its
strong performance on multilingual retrieval tasks,
RoBERT as a strong language-specific baseline
model pre-trained using only Romanian text, and
BioBERT as a domain-specific model, pretrained
on biomedical text, which may capture medical
terminology better than general-purpose models.
Fine-tuning with Metric Learning. We fine-tune
the pretrained text embedding models using the
MultipleNegativesRankingLoss objective (Hender-
son et al., 2017), as shown in Figure 4. We consider
the clinic descriptions as anchors (ai) and the cor-
responding masterlist descriptions (pi) as positive
pairs - (ai, pi). The negative pair consists of every
combination (ai, pj), where pj , j ̸= i are all other
masterlist descriptions. In this way, our embed-
ding model learns to increase the cosine similarity
between the clinic descriptions and their mapped
masterlist description, while decreasing the simi-
larity between the clinic description and all other
masterlist items. The model is fine-tuned on 80,911
pairs for 20 epochs, using a batch size of 4096. We
use a learning rate of 2e-5, with a cosine scheduler
and a warmup ratio of 0.1. All experiments are run
on an NVIDIA A100 80GB GPU.

3.5 Hybrid search

Cormack et al. (2009) proposed Reciprocal Rank
Fusion (RRF) as a method of aggregating the rank-
ing results of multiple information retrieval sys-
tems. It is calculated using the formula:

RRFscore(d ∈ D) =
∑

r∈R

1

k + r(d)
(1)

where D is the set of results to be ranked, R
represents the multiple returned rankings of these
results, k is a constant, and r(d) is the rank of a re-
sult d. We combine the results of dense and sparse
embeddings using RRF and analyze its effect on
retrieval accuracy.

4 Experiments and Results

To evaluate our approach, we split the dataset into
a training and evaluation split, containing 80,911
and 58,299 clinic description ↔ masterlist pairs,
respectively. For fine-tuning, we used only the
training split. For evaluation, we split the evalua-
tion set into gallery and probe sets in a 4:1 ratio,
in a setup similar to 5-fold cross-validation, where
gallery entries form the vector store data. Each fold
is stratified based on the masterlist entries, such that
each fold contains approximately the same distri-
bution of masterlist entries. Specifically, for each
masterlist entry, we distribute its associated clinic
descriptions evenly across all folds – for example
if 5 clinic descriptions map to the same masterlist
entry, each fold will contain exactly 1 such map-
ping.
Evaluation Metrics. Our primary evaluation met-
ric is Accuracy@k, which measures whether a
ground-truth masterlist description is in the first
k returned results for a query clinic description.
Our target is to optimize for Acc@1, but we also in-
clude the results for Acc@3, Acc@5 and Acc@100.
In a real-life use of such an system will involve
suggesting top-3 or top-5 most similar masterlist
entries, and Acc@3 and Acc@5 provides insight
into the usefulness of our system. We also include
Acc@100, as a low value indicates a problem with
the chosen search technique, but usually it indicates
the presence of incorrect annotations. In all our re-
sults, we show the mean and standard deviation
across 5 folds.
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Figure 4: Fine-tuning approach for dense sentence embeddings. A pretrained text embedding model is trained to
minimize the distance between representations of masterlist entries and associated clinic procedure names while
maximising the distance between every other entry.

Clinic De-
scription

BM25 Miss mE5 Hit Observations

Aplicare sterilet +
EEV control

Aplicare sterilet Montare sterilet
(DIU) + ecografie
control

Did not account for
the additional ultra-
sound control term

(IUD application +
EEV control)

(IUD application) (IUD insertion
(DIU) + ultrasound
control)

EXOSTOZA Sonoterapie in exos-
toze calcaneene

Excizia exostozei Focused on "exos-
toses" but did not
recognize "exci-
sion" as a relevant
treatment

(Exostosis) (Sonotherapy in cal-
caneal exostoses)

(Excision of exosto-
sis)

Chiuretare mollus-
cum contagiosm >
10 leziuni

Chiuretare < 10 lez-
iuni

Chiuretare molus-
cum contagiosum
peste 10 leziuni

Matched on "curet-
tage" but ignored
the numerical
threshold

(Curettage of
molluscum con-
tagiosum > 10
lesions)

(Curettage of < 10
lesions)

(Curettage of
molluscum conta-
giosum over 10
lesions)

Radiofrecventa ab-
latie tumori

Ablatie laser /
radiofrecventa
tumora ureche
dificultate redusa

Excizie leziune cu
radiofrecventa

Retrieved a more
specific procedure
(ear tumor) instead
of a general one

(Radiofrequency
ablation of tumors)

(Laser/radiofrequency
ablation of ear tu-
mor - low difficulty)

(Excision of lesion
with radiofre-
quency)

RM articulatii sacro
iliace cu subst. de
contrast

Artrodeza articu-
latiei sacro iliace
percutanata cu
implant I Fuse

RMN articulatii
sacroiliace cu SC,
1.5T

Retrieved a surgi-
cal procedure in-
stead of an imaging
scan

(MRI of sacroiliac
joints with contrast)

(Percutaneous
sacroiliac joint
arthrodesis with I
Fuse implant)

(MRI of sacroiliac
joints with SC,
1.5T)

Table 2: Selected examples of clinic Descriptions with
BM25 Misses, mE5 Dense Embedding Hits. Sparse
indexes are not appropriate for this task, which require
high level semantic understanding of descriptions.

4.1 Comparison between different types of
search indexes

In Table 3, we show a comparison between dense,
sparse, and hybrid approaches. For dense embed-
dings, we used a fine-tuned mE5 (Wang et al., 2024)
model. The results show that the fine-tuned dense
model consistently outperforms both sparse and
hybrid search methods. When searching only mas-
terlist entries, the dense approach achieves 26.2%

higher Acc@1 than the sparse approach. When
using both masterlist and associated mappings, the
dense approach obtains a 17.2% Acc@1 margin.
The sparse approach also shows poor performance
for Acc@100, indicating that a bag-of-word ap-
proach is not appropriate for this task, and seman-
tic understanding is needed. Hybrid search fails
to outperform dense search as it is limited by the
poor performance of sparse search. In Table 2
we show selected examples of clinic descriptions
where sparse embeddings fail to capture variations
in text descriptions.

4.2 Fine-tuning with metric learning

In Table 4 we compare the performance of three
dense embedding models: mE5-large (Wang et al.,
2024), RoBERT-large (Masala et al., 2020), and
BioClinicalBERT (Alsentzer et al., 2019). We ob-
tained that mE5 has higher off-the-shelf retrieval
accuracy compared to RoBERT and BioClinical-
BERT. This advantage stems from mE5’s design as
a sentence-transformer model specifically trained
to evaluate similarity between sentences or descrip-
tions, whereas RoBERT and BioClinicalBERT is
adapted for sentence embedding through a pooling
operation over token embeddings.

Sparse search initially outperforms both
RoBERT and BioClinicalBERT. However, after
fine-tuning, all dense embeddings surpass sparse
embeddings in performance metrics, with mE5
maintaining its position as the highest-performing
model.

Table 5 illustrates the impact of incorporating
both masterlist and associated mappings in search
processes. The inclusion of reduces the perfor-
mance difference between E5 and the other two
models. While the relative ranking of models re-
mains consistent, E5 achieves the highest perfor-
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Vector Store Data Index Type Acc@1 Acc@3 Acc@5 Acc@100

Masterlist Entries Only
sparse (BM25) 52.6 ± 0.002 64.5 ± 0.002 68.5 ± 0.002 86.3 ± 0.001
dense (mE5) 78.8 ± 0.002 92.2 ± 0.002 95.0 ± 0.002 99.5 ± 0.001
hybrid (RRF) 63.9 ± 0.003 77.7 ± 0.003 82.1 ± 0.003 99.5 ± 0.001

Masterlist Entries + Mappings
sparse (BM25) 68.0 ± 0.003 82.3 ± 0.001 86.1 ± 0.001 94.7 ± 0.001
dense (mE5) 85.2 ± 0.003 95.8 ± 0.001 97.5 ± 0.001 99.5 ± 0.001
hybrid (RRF) 81.0 ± 0.002 92.3 ± 0.001 94.9 ± 0.001 99.5 ± 0.000

Table 3: Comparison between sparse embeddings from BM25, dense embeddings from mE5 (Wang et al., 2024),
and hybrid search, having only masterlist entries in the vector store and having both masterlist and associated
clinical mappings. Using dense embeddings from mE5 provides the best results in both cases. Results are averaged
across 5 folds.

Model Name Type Acc@1 Acc@3 Acc@5 Acc@100
RoBERT (Masala et al., 2020)

off-the-shelf
44.7 ± 0.003 53.4 ± 0.003 56.9 ± 0.004 75.3 ± 0.003

BioClinicalBERT (Alsentzer et al., 2019) 47.7 ± 0.003 56.7 ± 0.003 60.2 ± 0.002 74.9 ± 0.003
mE5 (Wang et al., 2024) 56.8 ± 0.003 69.4 ± 0.002 74.3 ± 0.002 91.3 ± 0.002

RoBERT (Masala et al., 2020)
fine-tuned

75.9 ± 0.001 89.9 ± 0.002 93.2 ± 0.000 98.9 ± 0.001
BioClinicalBERT (Alsentzer et al., 2019) 75.7 ± 0.002 89.2 ± 0.002 92.7 ± 0.002 98.9 ± 0.000
mE5 (Wang et al., 2024) 78.8 ± 0.002 92.2 ± 0.002 95.0 ± 0.002 99.5 ± 0.001

Table 4: Comparison between different types of text embedding models, having entries in the vector store only
from the masterlist entries. We obtained the best results using a fine-tuned version of mE5, a general-purpose
multi-lingual model. Results are averaged across 5 folds.

Model Name Type Acc@1 Acc@3 Acc@5 Acc@100
RoBERT (Masala et al., 2020)

off-the-shelf
62.5 ± 0.005 76.8 ± 0.004 81.1 ± 0.005 92.0 ± 0.004

BioClinicalBERT (Alsentzer et al., 2019) 66.7 ± 0.005 80.8 ± 0.003 84.6 ± 0.002 93.4 ± 0.002
mE5 (Wang et al., 2024) 67.9 ± 0.004 85.2 ± 0.002 89.6 ± 0.002 98.1 ± 0.001

RoBERT (Masala et al., 2020)
finetuned

84.4 ± 0.002 94.8 ± 0.002 96.6 ± 0.001 99.0 ± 0.001
BioClinicalBERT (Alsentzer et al., 2019) 83.8 ± 0.003 94.3 ± 0.001 96.4 ± 0.001 99.0 ± 0.001
mE5 (Wang et al., 2024) 85.2 ± 0.003 95.8 ± 0.001 97.5 ± 0.001 99.5 ± 0.001

Table 5: Comparison between different types of text embedding models, having entries in the vector store from both
the masterlist entries and associated clinical mappings. We obtained the best results using a fine-tuned version of
mE5, a general-purpose multi-lingual model. Results are averaged across 5 folds.

mance with an Acc@1 of 85.2% and an Acc@5 of
95%. Notably, Acc@1 metric may under-represent
actual performance. Manual inspection of mis-
classified results reveals many plausible matches.
This discrepancy occurs due to the presence of du-
plicate entries within the masterlist itself—entries
with slightly different formulations that reference
identical medical procedures. The markedly higher
Acc@3 metric, which captures whether the ground-
truth result appears within the first three recommen-
dations, supports this observation. Although dupli-
cated masterlist results present a methodological
challenge for evaluation, they do not compromise
practical application. The real-world accuracy ex-
ceeds the reported metrics, as demonstrated in the
next section.

4.3 Doctor evaluation
Our medical procedure mapping system was used
to map new unmapped procedures. We evaluated

Model Name Acc@1 Acc@2 Acc@3
mE5 - All Data 94.7 98.5 99.0

Table 6: Real-world evaluation of our system. Doctors
manually evaluated 12,836 new entries after mapping
them with a fine-tuned version of mE5 on all data.

on new procedure descriptions from 10 clinics,
comprising 12,836 unique descriptions. After map-
ping the procedures using a fine-tuned mE5 models
trained on all available data, doctors validated each
pair to determine if the masterlist assignment was
correct. As shown in Table 6, the model achieves a
real-world Acc@1 of 94.7%. The 98.5% Acc@2
indicates that doctors considered either the first or
second recommendation correct, while for only 1%
of entries, doctors assigned a different description
than the ones recommended.

Another notable aspect is the speed of the map-

173



pings process. While manually mapping the 12,836
descriptions would take more than 60 hours, using
our retrieval system reduces this to only 3 minutes,
resulting in an 1200× speedup.

5 Conclusion

This paper presents a retrieval-based approach
for medical procedure matching in the Romanian
healthcare system, addressing the challenges posed
by inconsistent naming conventions across clin-
ics and insurance providers. We demonstrate that
dense sentence embeddings, particularly fine-tuned
multilingual models, significantly outperform tra-
ditional sparse methods such as BM25. Our experi-
ments show that a fine-tuned mE5 model achieves
the highest retrieval accuracy, with an Acc@1 of
85.2% when using both masterlist entries and clin-
ical mappings. The real-world evaluation further
confirms the efficacy of our approach, achieving a
validated accuracy of 94.7% in a doctor-reviewed
dataset. Furthermore, our systems enables signifi-
cant labor efficiency: using our automated match-
ing systems results in 1200× speedup compared to
manual matching. Our findings contribute to the
broader domain of medical NLP for low-resource
languages and offer a viable solution for improving
the Romanian healthcare system.

Limitations

Our approach has several limitations. Firstly, er-
rors in historical mappings may propagate into fu-
ture predictions, potentially reinforcing inaccura-
cies over time. This challenge necessitates periodic
human review and correction to prevent system-
atic errors. Secondly, cosine similarity between
embeddings may not always provide a reliable con-
fidence estimate, due to the considerable overlap
between the score distributions of hits and misses.
This makes it difficult to differentiate between cor-
rect and incorrect matches. Incorporating addi-
tional uncertainty modeling or ranking refinements
could improve result interpretability. Thirdly, while
our retrieval model significantly improves over
rule-based methods, its performance is still con-
strained by the lack of a specialized Romanian
medical language model. A dedicated medical
NLP model trained on domain-specific Romanian
corpora could further enhance accuracy.
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