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Abstract

Biomedical entity linking models disambiguate
mentions in text by matching them with unique
biomedical concepts. This problem is com-
monly addressed using a two-stage pipeline
comprising an inexpensive candidate generator,
which filters a subset of suitable entities for a
mention, and a costly but precise reranker that
provides the final matching between the men-
tion and the concept. With the goal of applying
two-stage entity linking at scale, we explore
the construction of effective cross-encoder
reranker models, capable of scoring multiple
mention-entity pairs simultaneously. Through
experiments on four entity linking datasets,
we show that our cross-encoder models
provide between 2.7 to 36.97 times faster
training speeds and 3.42 to 26.47 times faster
inference speeds than a base cross-encoder
model capable of scoring only one entity,
while achieving similar accuracy (differences
between -3.42% to 2.76% Acc@1).

1 Introduction

Biomedical entity linking matches mentions of
biomedical concepts (diseases, chemicals) in
texts with unique entities within a knowledge
base (Kartchner et al., 2023; Garda et al., 2023).
Disambiguating mentions within text is fundamen-
tal for information extraction tasks, as a single
entity might be referred to by different names or
aliases (e.g. chickenpox and varicella refer to the
same disease), or a mention might refer to mul-
tiple entities (e.g. APC might refer to advanced
pancreatic or prostate cancer).

This problem is commonly devised as a two-
phase procedure (Xu et al., 2023): given a men-
tion in a text, an initial model selects a reduced
set of candidate entities it might refer to. This
model is commonly fast, as it needs to filter among
thousands of entities (Neumann et al., 2019; Liu
et al., 2021). Then, a second, more precise model
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Figure 1: Example of our multi cross-encoder model.

reranks these candidate entities to provide the fi-
nal matching between a mention and an entity in
the knowledge-base. Cross-encoders (Logeswaran
et al., 2019) are a popular option for this stage (Wu
et al., 2020; Zhang et al., 2022). While accelerated
by the reduced candidate selection, these rerankers
are usually costly, requiring extensive training and
inference times. The efficiency of these rerankers
can be an important factor of our entity linking
pipeline if we want to run these models at scale
across millions of documents. However, works
on biomedical entity linking have traditionally fo-
cused on the accuracy of the models and not on
their efficiency.

Therefore, in this paper, we aim to improve the
efficiency of second stage cross-encoder models.
Taking as a starting point a base cross-encoder (Lo-
geswaran et al., 2019), we propose novel entity
linking methods that improve both training and in-
ference speeds, while maintaining similar accuracy
levels. For this, inspired by the longer context win-
dows of recent encoder-only transformer models
like ModernBERT (Warner et al., 2024), we design
cross-encoders capable of scoring multiple candi-
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dates at the same time, and even reranking multiple
mentions simultaneously. We show an example of
this in Figure 1. Our contributions are threefold:

• We propose a novel multi cross-encoder ar-
chitecture that accelerates the training and
inference times of a classical reranker cross-
encoder for entity linking.

• We compare our approach on three different
transformer models and four different biomed-
ical entity linking datasets.

• We find that our cross-encoders can acceler-
ate up to 36.97 times the training speed of a
simple cross-encoder and up to 26.47 times
the inference speed, while providing similar
effectiveness.

2 Task definition and notation

We start by formally defining the entity linking
(EL) task. EL aims to uniquely match entities
mentioned in the text with unique concepts
within a knowledge base. Let’s suppose we have
a knowledge base containing a set of unique
entities E and a corpus of documents D. Each
document d ∈ D has a series of mentions Md,
where a mention m ∈ Md is a sequence of
tokens m = d

(1)
m · · · d(l)m ⊆ d that corresponds to

a unique entity. Given a document d and a mention
m ∈ Md, the EL task consists on identifying the
entity em ∈ E that m refers to in d. We address this
task as a ranking problem, where we find the entity
maximizing a ranking function fm,d : E → R.

3 Related work

While early works on biomedical entity linking date
back to the late 1980s (French and McInnes, 2023),
a majority of recent works in this area are based
on recent transformer-based language models like
BERT (Devlin et al., 2019) or BiomedBERT (Gu
et al., 2021). These works can be divided into
single-phase and two-phase models.

Single-phase models directly rank all entities
within a knowledge-base for a single mention.
These methods usually estimate the similarity be-
tween mentions and entities based on a combina-
tion of sparse or dense vector representations (Sung
et al., 2020; Loureiro and Jorge, 2020). These
models commonly use computationally efficient
algorithms like bi-encoders to obtain separate rep-
resentations of entities and mentions. Examples of
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Figure 2: Two-stage pipeline

algorithms within this category are SapBERT (Liu
et al., 2021), BioSyn (Sung et al., 2020) and
MedLinker (Loureiro and Jorge, 2020).

This work focuses on the second type of models,
the two-phase models. These algorithms apply two
different entity linking approaches: a fast and ef-
ficient model for retrieving a subset of candidates
(for instance, a character n-grams model (Angell
et al., 2021) or a bi-encoder like SapBERT (Xu
et al., 2023; Zhu et al., 2024)), followed by a more
computationally expensive, but precise reranker
that reranks the set of candidate items. Follow-
ing Logeswaran et al. (2019), a majority of these
models use a cross-encoder model as a reranker.
While different biomedical EL models like Clus-
terEL (Angell et al., 2021), ArboEL (Agarwal et al.,
2022), KrissBERT (Zhang et al., 2022) apply a sim-
ilar pipeline, all of these models have focused their
attention only on the effectiveness of the entity link-
ing model, commonly using a simple cross-encoder
model for reranking. However, there is still room
to improve not only the effectiveness, but also the
efficiency of these approaches.

To improve the efficiency of these models, we
get inspiration from the Prompt-BioEL method pro-
posed by (Xu et al., 2023). In their approach, they
apply a cross-encoder capable of processing all
the candidates for a mention simultaneously. In
this work, we go further, by building cross-encoder
models which can rerank multiple mentions, sen-
tences or passages at the same time.

4 Method

In this section, we describe our approach for bal-
ancing the accuracy and efficiency of entity linking
models. Figure 2 illustrates the general architecture
of our entity linking models. Following previous
works (Zhang et al., 2022; Logeswaran et al., 2019),
we adopt a two-stage pipeline for the task. First, we
apply a candidate retrieval model, which selects
a small subset of candidate entities Cm ⊂ E from
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the ontology. Then, we apply a reranker model
that chooses the best entity among the ones in Cm.
We next describe each of these components.

4.1 Candidate retriever
As an efficient and effective first-stage candidate
retriever, we use a n-grams model (Neumann et al.,
2019) for representing both the mention text m
and the aliases of entity e (which we denote as
A(e)). Then, we rank candidate entities by the
maximum TF-IDF similarity between m and every
alias ae ∈ A(e) of the entity.

fm,d(e) = max
ae∈A(e)

tf-idf(n-gr(m), n-gr(ae)) (1)

where n-gr(t) is the n-grams representation of t.

4.2 Reranker
As a second-stage candidate reranker, we use cross-
encoder models. Cross-encoders have been pre-
viously used for the entity linking task, but they
are costly to train and apply. Therefore, we pro-
pose improvements over the basic cross-encoder
architecture, illustrated in Figure 3.

4.2.1 Preprocessing
As an initial step, prior to the application of the
reranker, we pre-process the documents in our cor-
pus. We divide the documents into passages, and
each passage into sentences. Each annotated sen-
tence is later provided as input to the cross-encoder
models, providing context for each mention.

4.2.2 Base cross-encoder
We first describe the architecture of the base cross-
encoder model (Humeau et al., 2020), depicted in
Figure 3(a). Given an annotated sentence t ⊆ d,
a mention m and a candidate entity c ∈ Cm for
that mention, the cross-encoder computes a score
fm,d(c) estimating the likelihood that the candidate
entity c corresponds to the target entity em that
mention m is referring to. Each candidate c ∈ Cm

is processed separately, and then, candidates are
ranked in descending score order.

A common strategy to build the cross-encoder
(and the one we follow in this work) is to fine-
tune a pre-trained language model (LM). The LM
receives as input a sentence following the following
template τ(t,m, c)1:

τ(t,m, c) = “t [SEP] m [MASK] c” (2)

1For our cross-encoder models, we represent c as the main
textual representation of the entity in the knowledge base

An example of an input sentence is shown in
Figure 4. Then, the cross-encoder classifies the
[MASK] token into two classes: a positive class,
indicating that c matches the referred entity em,
and a negative class otherwise. Therefore, the score
fm,d(c) is defined as:

fm,d(c) = p ([MASK] = 1|τ (t,m, c)) (3)

In order to fine-tune the model, we apply a cross-
entropy loss minimizing the classification error on
the [MASK] token. For a candidate c and a mention
m, the loss is defined as

L = −1 (c = em) · log fm,d(c)

− (1− 1 (c = em)) · log (1− fm,d(c))
(4)

where 1(x) is the indicator function.

4.2.3 Parallel cross-encoder
One of the limitations of the architecture of the
base cross-encoder is its capacity to process only
one mention-candidate pair at a time. Therefore,
in both training and inference, the cross-encoder
needs to process the sentence t as many times as
candidates we retrieve during the first phase of the
entity linking process – making this process costly.

Inspired by Xu et al. (2023) and Jiang et al.
(2023), we propose to improve our cross-encoder
by allowing it to process multiple candidates for a
mention at the same time. We denote the new archi-
tecture as parallel cross-encoder. As illustrated in
Figure 3(b), the parallel cross-encoder takes as in-
put the text t and all the candidates for mention m,
and provides, as output, the scores for all of those
candidates. The parallel cross-encoder receives
input with the following template:

τ(t,m) = “t [SEP] m [MASK] c1
· · ·
[SEP] m [MASK] c|Cm|”

(5)

and, for each candidate c ∈ Cm, its score is

fm,d(c) = p ([MASK]c = 1|τ (t,m)) (6)

where [MASK]c is the mask token corresponding
to entity c. An example of this input text is shown
in Figure 4.

While the parallel cross-encoder increases the
complexity of the task (the cross-encoder receives
longer text sequences and needs to classify multiple
tokens), it should accelerate training and inference
times. As long as the cross-encoder effectively
processes long sequences of tokens, we should gain
advantage from processing sentence t only once
for a given mention.
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Figure 3: Architecture of the different cross-encoder models
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Figure 4: Input of the cross-encoder models.

4.2.4 Multi cross-encoder
The parallel cross-encoder can be further refined to
improve the efficiency of the cross-encoder by re-
ducing the amount of times that the cross-encoder
is exposed to the same text. As shown in Figure 1,
each sentence might contain not only one, but mul-
tiple mentions to entities in the knowledge base.
Therefore, we propose a new cross-encoder model,
denoted as multi cross-encoder that receives as in-
put not only the candidates of an individual men-
tion, but the candidates of all mentions within the
sentence and provides the corresponding estimates.
We illustrate this architecture in Figure 3(c).

The multi cross-encoder works similarly to the
parallel cross-encoder. If we denote as Mt ⊆ Md

the set of mentions in a sentence t, and |Mt| = M ,
we define the input text of the multi-cross encoder
as a sequence of tokens with the following format:

τ (t,Mt) = “t [SEP] m1 [MASK] c1,1
· · ·
[SEP] m1 [MASK] c1,|Cm1 |

[SEP] m2 [MASK] c2,1
· · ·
[SEP] mM [MASK] cM,|CmM

|”

(7)

We provide an example on Figure 4. Then, the
score for a candidate c ∈ Cm is defined as:

fm,d(c) = p
(
[MASK]m,c = 1|τ (t,Mt)

)
(8)

where [MASK]m,c is the mask token correspond-
ing to mention m and candidate c ∈ Cm in
τ(t,Mt).

4.2.5 Adaptation to context window
As we concatenate multiple mention-entity pairs
in the input text, we might obtain texts longer than
the context window of the language model (max-
imum number of tokens that the LM can receive
at once). In that case, we partition the mention-
candidate pairs into several rankings by choosing,
each time, as many pairs as we can fit along the sen-
tence into the context window. We apply this strat-
egy as our method provides pointwise scores (each
mention-candidate pair has an individual score) –
and therefore, separating the pairs on different calls
to the cross-encoder should not have a big impact
on performance. In the worst case, where only one
mention-entity pair fits in the context, our model
would be equivalent to the base cross-encoder. We
show an example of this procedure in Figure 5. Fol-
lowing this procedure, LMs with longer context
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Figure 5: Partition procedure when an input sentence is
longer than the context window.

windows (like ModernBERT (Warner et al., 2024))
shall have longer input texts than models accepting
less tokens (like BiomedBERT (Gu et al., 2021)).

4.2.6 Further architectures
We can further design additional cross-encoder
architectures that include even more data – with
the objective of maximizing the use of the cross-
encoder context window – by concatenating the
template τ(t,Mt) of multiple sentences within the
document (for instance, all sentences within a pas-
sage or all sentences within a document).

5 Experimental setup

5.1 Datasets
In our experiments, we consider four common
datasets for biomedical entity linking:

• MedMentions (Mohan and Li, 2019):
PubMed biomedical abstract collection anno-
tated with mentions of entities in the UMLS
2017AA release. We use the full version of
the dataset. For each entity, we only keep the
English aliases.

• NCBI Disease (Doğan et al., 2014): PubMed
abstract corpus linking disease mentions to
entities in the MEDIC ontology2. Only men-
tions with an unambiguous entity link with an
entity in that MEDIC release were kept.

• NLM Chem (Islamaj et al., 2021): Set of
full-text articles from the PubMed Central
Open Access dataset covering the use of chem-
ical names in the biomedical literature. We

210 May 2012 version, obtained using Internet Archive

Table 1: Dataset properties.

Property MedMentions NCBI Disease NLM Chem BC5CDR

Ontology UMLS Medic Mesh 2021 Mesh 2015

Documents (train) 2,635 593 80 500
Documents (val) 878 100 20 500
Documents (test) 879 100 50 500

Passages (train) 2,635 593 5,555 1,000
Passages (val) 878 100 1,285 1,000
Passages (test) 879 100 3,470 1,000

Sentences (train) 25,836 5,173 20,126 4,242
Sentences (val) 8,508 888 4,855 4,299
Sentences (test) 8,597 901 12,031 4,524

Entities (train) 211,029 4,836 19,361 9,323
Entities (val) 71,062 711 4,927 9,570
Entities (test) 70,405 896 11,164 9,725

keep only mentions of type ‘Chemical’ linked
with entities in the MeSH 2021 release.

• BioCreative V CDR (BC5CDR) (Li et al.,
2016): Collection of PubMed abstracts with
chemical and disease annotations from the
Comparative Toxicogenomics Database. Only
contiguous mentions were kept and all linked
entities are found in the MeSH 2015 release.

Data splitting: For each of the four datasets, we
use the default training/validation/test split. We use
the training and validation datasets to fine-tune the
models, and we report entity linking results over
the test set.

Passages and sentences: For the MedMentions
and NCBI Disease datasets, each document con-
sists of a single passage combining both the title
and abstract. In the BC5CDR dataset, we have
two passages for each dataset: one for the title,
and another one for the abstract text. Finally, for
NLM Chem, we use the passage division of each
document provided by the dataset. For splitting
each passage into sentences, we use the spaCy3

en_core_web_sm sentence parser. If the parser
splits a mention in two different sentences, we com-
bine the two sentences. We show the statistics of
each dataset in Table 1.

5.2 Models

First-phase candidate retriever: As mentioned
in Section 4.1, we use a TF-IDF n-grams model
(Neumann et al., 2019). We apply an efficient im-
plementation of this model by building an n-grams
index with Pyterrier-PISA (Mallia et al., 2019;
MacAvaney and Macdonald, 2022). For efficiency,
this index is built only using the first 16 characters
of entity aliases. Then, for each dataset, we use the
n-grams model maximizing the amount of correct

3spaCy: https://spacy.io/
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Table 2: Language model statistics

Model Domain Context-window length

BiomedBERT Biomedical 512
Longformer General 4,096

ModernBERT General 8,192

entities in the top-5 (3-grams for MedMentions,
2-grams for the rest).
Second-phase reranker models: Then, we build
cross-encoders for reranking the top-5 candidate
entities. We consider three different backbone pre-
trained language models in our experiments, with
varying context window size: BiomedBERT (Gu
et al., 2021), Longformer (Beltagy et al., 2020)
and ModernBERT (Warner et al., 2024). Table 2
summarizes their statistics.

As a baseline for our experiments, we consider
the base cross-encoder defined in Section 4.2.2
(which we denote as LM-base). We compare this
baseline against four models: the parallel cross-
encoder (LM-parallel) and the multi cross-encoder
(LM-multi) in Sections 4.2.3 and 4.2.4 , and two
additional cross-encoders: one including the whole
passage text (LM-passage), and another one includ-
ing the complete document text (LM-document).

To reduce the training time of each model, all
cross-encoders follow an early stopping strategy,
where we stop the training if the cross-encoder fails
to improve the F1 performance on the validation
set by 1% for three consecutive epochs. All models
use the same learning rate (10−6).

5.3 Metrics
We compare our models across three main metrics:

• Accuracy@1 (Acc@1): This metric mea-
sures the ultimate goal of the reranker to as-
sign the highest score to the correct entity for
each mention from the list of candidates. It is
the proportion of annotations for which this is
the case.

• Training speed: This metric measures the
efficiency of the fine-tuning process. As it
is unfair to compare models directly on the
training time (as different models might use a
different number of training epochs), we esti-
mate the number of annotations processed per
second during the cross-encoder fine-tuning.

• Inference speed: This metric estimates the
number of test examples per second that the
cross-encoder can process.

For reference, we also report the total training and
inference times of our cross-encoder models.

5.4 Hardware
We train and execute all our models on a single
NVIDIA RTX 4090 GPU card (24 GB VRAM),
2 CPUs and 16 GB of RAM. The batch size of
each model has been adjusted to be trained on the
mentioned GPU card – with all variations of the
same model using the same batch size.

5.5 Implementation
For reproducibility, we provide the code for our
experiments in the following GitHub repository:
https://github.com/Glasgow-AI4BioMed/
entitytools.

6 Results

We aim to answer the following research questions:

• RQ1: How does the parallelism of the cross-
encoder affect the effectiveness of the model?

• RQ2: How does the parallelism of the cross-
encoder affect the model training and infer-
ence speeds?

6.1 RQ1: Accuracy comparison
We first analyse how effective the different cross-
encoders are for the entity linking task. As we keep
adding more information to our cross-encoder, we
shall expect the task to become more complex and
therefore affect the effectiveness of our models. We
show the results in Tables 3 (for the Medmentions
and NCBI disease datasets) and 4 (for the NLM
Chem and BC5CDR corpora). In these tables, we
underline the best result for each metric and back-
bone LM for our cross-encoders, and we highlight
in bold the best overall result. Accuracy@1 results
are shown in the first column for each dataset.
Base cross-encoder performance: We evaluate
the effectiveness of the two-stage entity linking
model by comparing the base cross-encoders with
the single-stage n-grams model. In line with other
works (Zhang et al., 2022; Agarwal et al., 2022),
the three base cross-encoders achieve statistically
significant improvements (McNemar test with
p < 0.05 and Bonferroni correction) on a majority
of datasets. The only exception is the NLM
Chem dataset, where only the domain-specific
BiomedBERT cross-encoder can improve the
n-grams similarity model. Among the three
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Table 3: Evaluation of entity linking (Medmentions and NCBI Disease). For each model, a represents statistical
significance (McNemar test with Bonferroni correction and p < 0.05) with respect to the first stage linker. b,c,d,e

represent, respectively, a significant improvement over the simple, parallel, multi or passage cross-encoder with
the same base transformers model. For each metric, ↑ indicates that higher values are better, while ↓ indicates that
lower values are better. Best values are highlighted in bold, and the best cross-encoder for each backbone LM is
underlined.

Medmentions-full NCBI Disease

Model Acc@1 (↑)
Training
speed (↑)

Training
time (s) (↓)

Inference
speed (↑)

Inference
time (s) (↓)

Acc@1 (↑)
Training
speed (↑)

Training
time (s) (↓)

Inference
speed (↑)

Inference
time (s) (↓)

First stage 0.4222 202.52 1,042 1,466.77 44 0.5960 322.40 15 896.00 1

BiomedBERT-base 0.6422acde 62.05 23,806 145.46 484 0.6886a 70.09 690 179.20 5
BiomedBERT-parallel 0.6334ade 255.74 4,951 690.25 102 0.6931a 266.55 127 896.00 1
BiomedBERT-multi 0.6244a 639.16 1,981 2,200.16 32 0.6864a 318.16 152 896.00 1
BiomedBERT-passage 0.6235a 985.46 1,499 2,607.59 27 0.6786a 531.43 91 896.00 1

Longformer-base 0.6353acde 4.44 190,014 31.64 2,225 0.6920a 5.00 7,744 37.33 24
Longformer-parallel 0.6284ade 21.55 39,162 158.93 443 0.6920a 22.44 862 179.20 5
Longformer-multi 0.6203ae 137.40 9,215 733.39 96 0.6953a 54.54 798 298.67 3
Longformer-passage 0.6136a 168.69 8,757 869.20 81 0.6842a 81.97 531 448.00 2

ModernBERT-base 0.6300ade 11.84 71,305 44.99 1,440 0.6875a 12.94 1,869 48.89 20
ModernBERT-parallel 0.6287ad 58.03 14,546 237.05 297 0.6953a 59.41 407 179.20 5
ModernBERT-multi 0.6255a 205.88 4,100 1117.54 63 0.7042a 57.92 501 298.67 3
ModernBERT-passage 0.6266a 196.90 8,574 529.36 133 0.7009a 159.68 212 448.00 2

Table 4: Evaluation of entity linking (NLM Chem and BC5CDR). For each model, a represents statistical significance
(McNemar test with Bonferroni correction and p < 0.05) with respect to the first stage linker. b,c,d,e,f represent,
respectively, a significant improvement over the simple, parallel, multi, passage or document cross-encoder with
the same base transformers model. For each metric, ↑ indicates that higher values are better, while ↓ indicates that
lower values are better. Best values are highlighted in bold, and the best cross-encoder for each backbone LM is
underlined.

NLM Chem BC5CDR

Model Acc@1 (↑)
Training
speed (↑)

Training
time (s) (↓)

Inference
speed (↑)

Inference
time (s) (↓)

Acc@1 (↑)
Training
speed (↑)

Training
time (s) (↓)

Inference
speed (↑)

Inference
time (s) (↓)

First stage 0.6990 108.77 178 1594.86 7 0.8193 61.34 152 1389.29 7

BiomedBERT-base 0.7004 54.34 2,494 150.86 74 0.8403adef 58.64 1,113 149.62 65
BiomedBERT-parallel 0.7083abf 211.60 366 697.75 16 0.8444adef 216.81 301 694.64 14
BiomedBERT-multi 0.7066a 268.90 288 1014.91 11 0.8249a 310.77 120 1389.29 7
BiomedBERT-passage 0.7075ab 378.39 307 1240.44 9 0.8274a 443.95 168 1620.83 6
BiomedBERT-document 0.7043a 556.35 174 1594.86 7 0.8254a 570.80 98 1620.83 6

Longformer-base 0.6940 4.59 16,864 33.83 330 0.8335aef 4.02 16,242 33.89 287
Longformer-parallel 0.7068abef 22.18 3,492 164.18 68 0.8427abef 18.71 2,492 159.43 61
Longformer-multi 0.7044abef 57.97 1,336 310.11 36 0.8414abef 62.15 900 374.04 61
Longformer-passage 0.7014b 68.60 1,129 413.48 27 0.8209f 73.85 505 422.83 23
Longformer-document 0.7018b 115.24 1,176 656.71 17 0.8188 94.41 395 607.81 16

ModernBERT-base 0.6882 12.07 6,416 45.75 244 0.8311a 13.02 3,581 51.18 190
ModernBERT-parallel 0.7072abf 57.32 1,351 232.58 48 0.8431abdef 47.87 779 226.16 43
ModernBERT-multi 0.7050abf 60.46 2,562 446.56 25 0.8393abf 58.45 638 237.20 41
ModernBERT-passage 0.7066abf 129.07 1,050 558.20 20 0.8357a 140.90 397 221.02 44
ModernBERT-document 0.6972 74.61 2,076 218.90 51 0.8344a 174.49 374 607.81 16

language models, BiomedBERT achieves the best
results as a base encoder across the four datasets
– thus highlighting the advantage of a language
model pre-trained on domain-specific text.
Multi cross-encoder performances: We then anal-
yse the effect of adding more information to the
cross-encoders. In general, increasing the number
of mentions fed to the model in one input does
degrade predictive performance, but only minorly.
The extreme cases of passing in a whole passage
(MedMentions/NCBI Disease) or whole document
(NLMChem/BC5CDR) generally achieve the worst
accuracy results. However, consistent with the
work by Xu et al. (2023), in some of the datasets,

adding some mention-entity pairs to classify can
provide an improved context and help the accu-
racy. This is the case of the parallel cross-encoders
in NCBI Disease, NLM Chem and BC5CDR and
the Longformer and ModernBERT multi-cross en-
coders in NCBI Disease.

Notably, accuracy results between variants of
the same model are commonly small – ranging
between -3.42% accuracy decrease to 2.76% per-
formance increase with respect to the base cross-
encoder. This, along with the fact that even the
worst cross-encoder variants are commonly signifi-
cantly better than the first-stage linker, makes the
different cross-encoder variants reasonable algo-
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rithms for the biomedical entity linking task.
To answer RQ1: In general, providing more
mention-entity pairs as input to cross-encoder mod-
els has limited impact on the Acc@1 performance
(ranging between -3.42% to 2.76%). Different
datasets can react differently to the amount of in-
formation provided to the cross-encoder, so it is
important to choose the right model to enhance the
accuracy. However, the small accuracy differences
make all the variants reasonable entity linkers.

6.2 RQ2: Efficiency comparison

We now analyse the training and inference speeds
for each of our tested datasets. Results are shown
in the 2nd and 4th columns for each dataset in
Tables 3 and 4. As different models use different
batch sizes to fit the model into a single GPU card,
we shall only compare speeds across encoders with
the same base LM.

For completion, Tables 3 and 4 include the infer-
ence times and speeds of the first stage n-gram
models. However, it must be noted that the n-
grams model has differences with respect to the
cross-encoders. Specifically, first-stage process-
ing is not accelerated by GPU, is not trained for
multiple epochs and does not depend on batching.
Therefore, the training and inference speeds are
not directly comparable to those of cross-encoder
models. However, we include them as a reference
of how fast it is to train and apply each of these
models.
Training speed: Our results show a clear trend
where the base cross-encoders are the slowest
second stage models in our comparison, and the
training speed generally increases as we enhance
the parallelism of the cross-encoders. The parallel
cross-encoders increase the training speed of the
baseline models between 2.68 (13.02 examples/s
to 47.87 examples/s for the ModernBERT model
on BC5CDR) and 3.9 times (11.84 examples/s to
58.53 examples/s for ModernBERT on MedMen-
tions). Models with more examples reach even
higher speeds, with multi cross-encoders achieving
3.49-29.93 speed improvements, and passage and
document models achieving even further gains.

While increasing the number of mention-entity
pairs commonly increases the training speed, that
does not always occur. We observe two excep-
tions in our experiments: ModernBERT-passage
in MedMentions and ModernBERT-document in
NLM Chem. We hypothesize that the advantage of

adding more pairs to the input text depends on the
capacity of the cross-encoder of processing those
examples. As we add more tokens to the input
text, the cross-encoder might reach a point where
it slows down its processing. We show this in Fig-
ure 6. In this figure, we illustrate the average input
token length of the training examples of each model
(x-axis) against the training speed (y-axis). Each
line represents a backbone LM, with the arrow in-
dicating the model receiving more information per
example. As we can observe here, the only case
where the speed decreases (with respect to the pre-
vious model) is the ModernBERT-document model,
where inputs reach 6,000 tokens on average (2000
more than the second with the longer text sequence,
Longformer-document). A similar observation oc-
curs on Medmentions.
Inference speed: When it comes to inference
time, we observe similar patterns with respect to
the training time, with the base cross-encoders
being the slowest models, and the models scoring
multiple mention-entity pairs at the same time
achieving speed improvements between 3.42 times
(ModernBERT-parallel on BC5CDR from 51.18
examples/s to 226.16 examples/s) to 26.47 times
(Longformer-passage from 31.64 examples/s to
869.2 examples/s on MedMentions) with respect
to the base model4. Again, some slowdown is
observed when the input token length notably
surpasses the size of the Longformer window (as
in ModernBERT-passage for MedMentions and
ModernBERT-document for NLM Chem).
To answer RQ2: Allowing cross-encoders to si-
multaneously score multiple entities notably boosts
the training and inference speeds of entity linking
models. However, models with larger context win-
dows might face difficulties when the length of
the input text is too long – effectively reducing the
efficiency improvements provided by these models.

7 Conclusions

In this work, we have studied the use of advanced
cross-encoder models as rerankers for an entity
linking pipeline. These advanced cross-encoders
enable simultaneously processing of several
mention-candidate pairs, accelerating the training
speed of a base cross-encoder by a factor between
2.68 and 36.97, and the inference speed by a

4We observe a few ties between rerankers on NCBI Disease
and BC5CDR. These are due to the small inference times of
these models on each dataset (<10 s).
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Figure 6: Input token length vs. training speed (NLM
Chem)

factor between 3.42 and 26.47. While the parallel
processing of multiple candidates might hurt the
performance of the model, we find this effect
to be small (up to 3.42% accuracy loss). Speed
advantages, along with the low accuracy losses
make these architectures suitable for environments
where training and inference speed is crucial (like
real time services).

This work has only focused on cross-encoder
with point-wise losses, where we directly esti-
mate the probability of a candidate for a men-
tion. As future work, we shall explore the effect
of this cross-encoder architecture on pair-wise or
list-wise cross-encoder rerankers, considering the
order between pairs. Furthermore, we propose
the application of similar architectures on other
second stage rerankers, like bi-encoders or poly-
encoders (Humeau et al., 2020), that encode men-
tions and candidates separately.

Limitations

The effectiveness and efficiency of our approach
are influenced by two factors: (a) the base model
selection and (b) the dataset on which the cross-
encoders are trained and applied.
Model selection: In this paper, we only focus on a
simple entity linking pipeline, based on an n-grams
TF-IDF model for candidate retrieval (Neumann
et al., 2019) and variations of the simple cross-
encoder reranker described in Logeswaran et al.
(2019) and Wu et al. (2020). Although several
improvements for the first and second stages of the
entity linking pipeline have been developed (Zhu
et al., 2024; Angell et al., 2021; Agarwal et al.,
2022), we have not tested them in our experiments.
However, as most of these proposals use a cross-
encoder as their reranker, we believe that similar

results should be consistent with our findings if we
modified the cross-encoders of these methods in a
similar manner.
Dataset selection: In our experiments, we have
tested our cross-encoder models on four datasets.
The biggest dataset in our experiments is the Med-
Mentions dataset, with only 4,392 documents and
352,496 mentions. While there are bigger biomedi-
cal entity linking datasets available, like WikiMed
or PubmedDS (Vashishth et al., 2021), training
some of the base cross-encoders on MedMentions
already represents a challenge (the Longformer-
base model takes more than 2 days to train on a
single GPU card). By testing our approach across
these 4 (smaller) datasets, we show the generaliz-
ability of our approach and how it would perform
on those bigger datasets.
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A Statistical Significance

In our experiments in Section 6, we conduct statisti-
cal significance tests between every pair of models
in our comparison. We only perform these statis-
tical tests for the Accuracy@1 metric. As accu-
racy@1 values are binary (either 0 or 1), we apply
a McNemar test with p < 0.05, where we pair the
Acc@1 results for each mention in the test set. To
account for the comparison of multiple models, we
apply the Bonferroni correction. While Tables 3
and 4 summarize the statistical tests, we include in
this appendix the complete statistical significance
matrices.

These matrices are included in Figure 7 (Med-
Mentions dataset), Figure 8 (NCBI Disease
dataset), Figure 9 (NLM Chem) and Figure 10
(BC5CDR). On each matrix, a cell compares two
algorithms: one indicated by the first row, and
another indicated by the first column. A green
cell represents a statistically significant difference
between the two models (p < 0.05), whereas a
white cell represents a non-significant difference
(p ≥ 0.05).
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Figure 7: Acc@1 statistical significance (MedMentions)
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Longformer-passage 0 9.3 2.3 11 6.1 5.4 2.6 0.8 0 11 0.8 0 0.1

ModernBERT-base 0 14 8.1 14 5.1 8.1 9.7 5.5 11 0 5.4 0.5 1.5

ModernBERT-parallel 0 5.9 9 0.9 0.1 10 5.9 16 0.8 5.4 0 0.9 4.8

ModernBERT-multi 0 0.6 0.4 0 0 1.6 0.4 1.4 0 0.5 0.9 0 8.2

ModernBERT-passage 0 1.5 1.7 0.1 0 3.3 1.9 4.4 0.1 1.5 4.8 8.2 0

Figure 8: Acc@1 statistical significance (NCBI Dis-
ease)

B Input token length vs. training speed

We compare the average input token length and
the training speed for the four datasets. Figure 11
(MedMentions), Figure 12 (NCBI Disease), Fig-
ure 13 (NLM Chem) and Figure 14 (BC5CDR)
show the results. In all figures, x-axis shows the
average input token length, and y-axis the training
speed (in examples per second).

As we can observe, in general, in the smaller
datasets, where the input token length is notably
smaller than 4,096 (context window of the Long-
former model), all models improve their training
speed as we add more mention-entity pairs in their
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First stage 0 9.2 0 0 0 0 0.5 0 0 0.2 0.1 0 0 0 0 2.1

BiomedBERT-base 9.2 0 0 0.1 0 1.2 0 0.1 1.2 11 8.6 0 0 0.7 0.1 2.8

BiomedBERT-parallel 0 0 0 0.5 5.9 0 0 1.3 0 0 0 0 3.8 0 1 0

BiomedBERT-multi 0 0.1 0.5 0 4.8 0.1 0 14 0.6 0 0 0 9.7 2.2 15 0

BiomedBERT-passage 0 0 5.9 4.8 0 0 0 8.9 0.1 0 0 0 13 0.6 6.7 0

BiomedBERT-document 0 1.2 0 0.1 0 0 0 0.4 15 0.2 0.5 0 0.3 8.7 0.8 0

Longformer-base 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.8

Longformer-parallel 0 0.1 1.3 14 8.9 0.4 0 0 0.2 0 0 0 11 0.8 12 0

Longformer-multi 0 1.2 0 0.6 0.1 15 0 0.2 0 0 0 0 0.1 9.1 0.7 0

Longformer-passage 0.2 11 0 0 0 0.2 0 0 0 0 9.3 0 0 0 0 0

Longformer-document 0.1 8.6 0 0 0 0.5 0 0 0 9.3 0 0 0 0.1 0 0

ModernBERT-base 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ModernBERT-parallel 0 0 3.8 9.7 13 0.3 0 11 0.1 0 0 0 0 0.5 8.2 0

ModernBERT-multi 0 0.7 0 2.2 0.6 8.7 0 0.8 9.1 0 0.1 0 0.5 0 1.9 0

ModernBERT-passage 0 0.1 1 15 6.7 0.8 0 12 0.7 0 0 0 8.2 1.9 0 0

ModernBERT-document 2.1 2.8 0 0 0 0 2.8 0 0 0 0 0 0 0 0 0

Figure 9: Acc@1 statistical significance (NLM Chem)
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BiomedBERT-base 0 0 0.9 0 0 0 0 4.5 9.8 0 0 0 3.2 10 0.7 0.2

BiomedBERT-parallel 0 0.9 0 0 0 0 0 1.1 0.1 0 0 0 3.1 0 0 0

BiomedBERT-multi 0 0 0 0 0.3 9.3 0 0 0 0 0 0.3 0 0 0 0

BiomedBERT-passage 0 0 0 0.3 0 1.1 0.3 0 0 0 0 2.5 0 0 0 0
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Longformer-parallel 0 4.5 1.1 0 0 0 0 0 3.6 0 0 0 10 0 0 0
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Longformer-passage 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Longformer-document 5.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ModernBERT-base 0 0 0 0.3 2.5 0.5 2.5 0 0 0 0 0 0 0 0.9 2.5

ModernBERT-parallel 0 3.2 3.1 0 0 0 0 10 2.5 0 0 0 0 0 0 0

ModernBERT-multi 0 10 0 0 0 0 0.2 0 1 0 0 0 0 0 0.1 0

ModernBERT-passage 0 0.7 0 0 0 0 5.8 0 0 0 0 0.9 0 0.1 0 4.5

ModernBERT-document 0 0.2 0 0 0 0 11 0 0 0 0 2.5 0 0 4.5 0

Figure 10: Acc@1 statistical significance (BC5CDR)

BiomedBERT-multi

BiomedBERT-
passage

Longformer-
multi

Longformer-
passage

ModernBERT-multi
ModernBERT-

passage

0

200

400

600

800

1,000

1,200

0 1000 2000 3000 4000

Tr
ai

ni
ng

 s
pe

ed
 (e

xa
m

pl
es

/s
)

Average input token length

BiomedBERT

Longformer

ModernBERT

Figure 11: Input token length vs. training speed (Med-
mentions)
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Figure 12: Input token length vs. training speed (NCBI
Disease)
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Figure 13: Input token length vs. training speed (NLM
Chem)
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Figure 14: Input token length vs. training speed
(BC5CDR)

input. However, in the bigger datasets (MedMen-
tions and NLMChem), the ModernBERT model
struggles with longer sequences (as observed in the
training speeds of the ModernBERT-passage model
in MedMentions and the ModernBERT-document
model in NLM Chem).
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