Error Detection in Medical Note through Multi Agent Debate

Abdine Maiga Anoop Shah Emine Yilmaz
Centre for Artificial Intelligence UCLH NHS Trust Centre for Artificial Intelligence
University College London  University College London ~ University College London
abdine.maiga.23 @ucl.ac.uk a.shah@ucl.ac.uk emine.yilmaz@ucl.ac.uk

Abstract

Large Language Models (LLMs) have ap-
proached human-level performance in text gen-
eration and summarization, yet their applica-
tion in clinical settings remains constrained by
potential inaccuracies that could lead to serious
consequences. This work addresses the critical
safety weaknesses in medical documentation
systems by focusing on detecting subtle errors
that require specialized medical expertise.

We introduce a novel multi-agent debating
framework that achieves 78.8% accuracy on
medical error detection, significantly outper-
forming both single-agent approaches and
previous multi-agent systems. Our frame-
work leverages specialized LLM agents with
asymmetric access to complementary medical
knowledge sources (Mayo Clinic and WebMD),
engaging them in structured debate to identify
inaccuracies in clinical notes. A judge agent
evaluates these arguments based solely on their
medical reasoning quality, with agent-specific
performance metrics incorporated as feedback
for developing situation-specific trust models.

This research significantly enhances the safety
and reliability of automated medical documen-
tation, potentially facilitating wider Al adop-
tion in healthcare while maintaining high stan-
dards of accuracy. The performance gap be-
tween individual specialized agents (WebMD:
70.2%, Mayo: 72.6%) compared to their com-
bined implementation demonstrates the syner-
gistic value of integrating complementary clini-
cal perspectives through structured debate.
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Figure 1: Debating Healthcare Agent framework. The
multi-agent architecture consists of three primary com-
ponents: (1) Expert Agent A with access to guidelines
A, (2) Expert Agent B with access to guidelines B, and
(3) a Judge Agent who evaluates arguments based solely
on their medical reasoning quality without access to
external knowledge sources. The agents engage in struc-
tured debate where experts exchange arguments and
counter-arguments before the judge determines the pres-
ence of errors in the medical note.

1 Introduction

Healthcare professionals spend 52-102 minutes

daily on clinical documentation (Hripcsak et al.,

2011), contributing significantly to administrative

burden, work-life imbalance, and burnout rates ex-
ceeding 50% among practitioners (Arndt et al.,

2017).

Large Language Models (LLMs) show
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promise for automating clinical summarization
tasks (Knoll et al., 2022), potentially transform-
ing workflows and allowing healthcare providers
to focus more on direct patient care.

Despite their advanced capabilities, LLM adop-
tion in healthcare remains limited due to concerns
about accuracy in high-stakes clinical environments
(Lakkaraju et al., 2022). These concerns are well-
founded: studies examining 136,815 patients found
that 21.1% reported perceived mistakes in their
medical records, with 40% considered serious (Bell
et al., 2020). Diagnostic errors alone contribute to
6-17% of adverse events in hospitalized patients
(Ball et al., 2016), highlighting the critical impor-
tance of accuracy in medical documentation.

Current approaches to medical error detection
typically rely on single-agent architectures that can-
not replicate the nuanced perspective of collabora-
tive clinical evaluation. These methods particularly
struggle with subtle errors requiring specialized
medical expertise, especially in complex cases in-
volving multiple conditions or diverse patient pop-
ulations. This limitation underscores the need for
more sophisticated frameworks that can mirror the
collaborative decision-making processes common
in clinical settings.

To address this gap, we introduce a novel multi-
agent debating framework where specialized LLM
agents with access to authoritative medical guide-
lines engage in structured debate to identify and
resolve inaccuracies. Our approach simulates clini-
cal consultation dynamics through debate protocols
where expert agents present competing perspec-
tives on potential errors, with a judge agent evalu-
ating these arguments based on medical reasoning.
The system incorporates performance metrics as
feedback to develop situation-specific trust models,
enhancing reliability across diverse scenarios.

Our research contributes: (1) a multi-agent archi-
tecture for medical error detection achieving 78.8%
accuracy, outperforming existing approaches; (2)
comprehensive evaluation across medical special-
ties and patient populations; and (3) empirical ev-
idence demonstrating how structured debate be-
tween complementary medical knowledge sources
enhances error detection beyond individual agents’
capabilities. These contributions establish founda-
tions for safer LLM deployment in clinical environ-
ments, addressing a key barrier to Al adoption in
healthcare.

2 Related Works

2.1 Medical Error Detection and Correction

Medical error detection and correction in clin-
ical texts was first formally addressed during
the MEDIQA-CORR challenge at NAACL 2024
(Ben Abacha et al., 2024). This challenge created
a corpus of medical notes with intentionally intro-
duced errors requiring medical expertise to detect,
structured as a three-stage task: error detection,
span identification, and correction generation.

The winning team (Toma et al., 2024) developed
dual LLM-based systems using the DSPy (Khattab
et al., 2023) framework, a retrieval-based approach
for subtle errors and a comprehensive pipeline for
complex cases (accuracy: 86.49%, though flagged
for potential use of MS test data). The Prompt-
Mind team (Gundabathula and Kolar, 2024) imple-
mented prompt-based in-context learning that in-
tegrated outputs from multiple advanced language
models(accuracy= 0.6216). HSE NLP (Valiev and
Tutubalina, 2024) employed an in-prompt ensem-
ble approach combining named entity recognition
with MeSH knowledge graph integration (Accu-
racy= 0.5222). Edinburgh Clinical NLP (Gema
et al., 2024) explored three strategies: end-to-
end prompting, two-stage fine-tuning, and a hy-
brid method combining both approaches(accuracy=
0.6692). The KU-DMIS team (Hwang et al., 2024)
fine-tuned Meerkat-7B using a Chain-of-Thought
reasoning dataset generated from GPT-4 (accu-
racy=0.6346). Across 17 participating teams, the
mean accuracy score was 61.57%, highlighting the
challenge’s difficulty and the need for optimized
approaches suitable for integration into production-
grade clinical documentation systems.

The challenge demonstrated that dataset-
dependent methods generally outperformed gen-
eralized approaches, though dataset-agnostic so-
lutions showed promise. Error detection proved
particularly challenging, highlighting the need for
optimized approaches suitable for integration into
production-grade clinical documentation systems.

2.2 Medical Decision Making

The integration of LLMs into medical decision-
making (Thirunavukarasu et al., 2023) has pro-
gressed along two distinct trajectories. The ini-
tial approach focused on fine-tuning pretrained
models on domain-specific corpora, as exempli-
fied by Med-PalLM (Singhal et al., 2023) Med-
Gemini (Saab et al., 2024) or Bio Mistral (Labrak
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et al., 2024) and clinical BERT variants (Huang
et al., 2020), which demonstrated enhanced perfor-
mance on medical tasks through parameter opti-
mization. However, with the emergence of more
capable foundation models like GPT-4, the field has
increasingly shifted toward sophisticated inference-
time techniques that preserve model parameters
while adapting behavior (Nori et al., 2023). Prompt
engineering strategies—including few-shot exam-
ples, chain-of-thought reasoning, and structured
output templates—have shown remarkable efficacy
in guiding LLMs toward medically sound reason-
ing patterns without domain-specific training. In
some task like medical summarization (Van Veen
et al., 2023), adapted model can even surpass med-
ical experts (Van Veen et al., 2024).Retrieval Aug-
mented Generation (RAG) (Lewis et al., 2021)
has proven particularly valuable for mitigating hal-
lucinations by dynamically incorporating trusted
medical knowledge bases, clinical guidelines, and
patient-specific records into the generation con-
text. This approach anchors model outputs to veri-
fiable sources while maintaining flexibility across
diverse clinical scenarios. Frameworks such as
Uncertainty of Thoughts (Hu et al., 2024) further
advance LLM reliability in medical settings by im-
plementing uncertainty quantification mechanisms
that more closely approximate clinical diagnostic
workflows. Despite these advances, the high stakes
of medical decision-making necessitate additional
safeguards against subtle inaccuracies that could
compromise patient safety, motivating multi-agent
collaboration frameworks that can solve complex
medical problems by working collaboratively, tak-
ing example for the real medical settings. Agent
Hospital (Li et al., 2024) which simulates a whole
hospital with agents, to train them and treat disease
more efficiently. Other methods like MedAgents
(Tang et al., 2024) leverages collaborative multi-
round discussion with LLM-based agents to solve
medical domain task. MDAgents (Kim et al., 2024)
build on top of with an adaptive collaboration struc-
ture.

2.3 Multi Agent Framework

Multi-agent frameworks represent a promising ap-
proach for enhancing LLM performance in com-
plex medical scenarios. Recent studies have demon-
strated that effective collaboration between spe-
cialized agents, such as those in AutoGen (Wu
et al., 2023), can yield superior results compared
to individual agents operating in isolation (Wang

et al., 2024). This parallels human team dynamics,
where diverse expertise contributes to more robust
decision-making.

Multi-agent collaboration has proven successful
across varied domains including general problem-
solving (Li et al., 2023), software engineering
(Qian et al., 2024), and even simulation environ-
ments like The Sims (Park et al., 2023). Particularly
relevant to our approach is the work by Chen et al.
(Chen et al., 2024), who developed a multi-model
multi-agent framework structured as a round table
conference among diverse LLM agents, demon-
strating how different model architectures can com-
plement each other’s strengths and compensate for
individual weaknesses.

However, these approaches often suffer from sig-
nificant computational inefficiency, as they typi-
cally rely on multiple instances of large, resource-
intensive LLMs performing numerous inference
passes. For practical clinical deployment, a multi-
agent framework must demonstrate clear advan-
tages over single-agent alternatives to justify the
additional computational cost.

Our work proposes a streamlined approach that
combines the strengths of structured multi-agent
debate with retrieval-augmented generation (RAG).
By incorporating findings from Khan et al. (Khan
et al., 2024) on effective debate protocols, we have
developed a tailored system specifically designed
for medical error detection. This approach ad-
dresses the critical need for safeguards against sub-
tle medical inaccuracies that could compromise
patient safety, allowing for systematic evaluation
of clinical content against established medical stan-
dards while maintaining computational efficiency.

3 Methods

3.1 Datasets

The dataset utilized in this study is derived from
the MS collection of the medical error detection
dataset created by Ben Abacha et al (Ben Abacha
et al., 2024). This collection was developed by
transforming the MEDQA dataset (Jin et al., 2020),
which originally contained free-form multiple-
choice questions from professional medical board
exams. The researchers manually injected errors
into clinical texts and made textual modifications
that leveraged both clinical notes and multiple-
choice questions from MEDQA. Those errors are
mainly substitutions of medical terms such as diag-
nosis, treatment, scan type, or prescriptions. The
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MS collection includes 2,189 clinical texts in the
training set, 574 in the validation set, and 597 in
the test set. Each text contains deliberately in-
jected errors across various medical domains in-
cluding diagnosis, causal organism, management,
treatment, and pharmacotherapy, making it a valu-
able resource for developing and evaluating medi-
cal error detection systems. In recent studies, two
physicians attempted to detect errors on half of the
test set. On the MS teams dataset, they achieved
accuracy rates of 81.25% and 68.90% respectively.
These results demonstrate that even for trained med-
ical professionals, this error detection task is not
straightforward.

3.2 Medical Knowledge Foundation for
Agents

A cornerstone of our project is the comprehensive
medical guidelines framework that serves as a criti-
cal differentiator between agents. This framework
comprises carefully curated, authoritative medical
information sources that each agent can access and
reference.

We have meticulously selected several reputable
online medical resources, ensuring our agents have
access to evidence-based, peer-reviewed, and clini-
cally validated information. These resources were
chosen based on their reliability, accuracy, compre-
hensiveness, and recognition within the medical
community.

Primary Mainstream Medical Sources

Our foundation layer consists of widely recog-
nized medical information platforms:

1. Wikipedia: A vast collaborative encyclopedia
with extensively referenced medical articles
that undergo regular expert review

2. MedlinePlus: Produced by the National Li-
brary of Medicine, offering reliable, up-to-
date health information in accessible language

3. WebMD: A comprehensive consumer health
information site featuring physician-reviewed
content

4. Mayo Clinic: One of the world’s premier med-
ical institutions providing authoritative, trust-
worthy health guidance

5. PubMed Central: An extensive archive of
biomedical and life sciences journal literature
at the U.S. National Institutes of Health’s Na-
tional Library of Medicine

6. Medscape: A leading platform for healthcare
professionals, Medscape offers peer-reviewed
medical news, clinical reference tools, and
continuing education content. Its articles are
authored by experts and frequently updated,
making it a trusted source for evidence-based
clinical guidance.

These primary sources provide our agents with
a robust baseline of medical knowledge spanning
from basic concepts to advanced clinical informa-
tion, ensuring they can address a wide spectrum of
health-related inquiries.

3.3 Debating Framework: Error Detection

Our framework draws inspiration from Khan et
al. (Khan et al., 2024), who developed a debat-
ing method where LLM experts argue for different
answers—in our case, assessing the correctness of
medical notes. A key finding from their work is that
weaker models can effectively supervise stronger
models when structured properly.

3.3.1 Agent Architecture and Information
Flow

The multi-agent debate framework consists of three
primary components (Figure 2):

1. Expert Agent A (Mayo Clinic): Specialized
for healthcare professional perspective

2. Expert Agent B (WebMD): Specialized for
patient-oriented medical knowledge

3. Judge Agent: Evaluates arguments without
access to external knowledge sources

In our implementation, asymmetry is created by
providing LL.M experts with different information
sources, while the judge agent relies solely on its
internal knowledge. This creates a controlled infor-
mation environment where the two expert agents
have access to the medical note under evaluation,
but the judge only accesses their arguments to make
decisions.

3.3.2 Information Retrieval Integration

To mitigate the risk of hallucinations, we integrated
a retrieval component through a fetch_website
tool that allows expert agents to access authorita-
tive medical websites. The tool fetches and pro-
cesses web content (limited to 2000 characters), re-
moving non-informative elements while preserving
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Algorithm 1 Multi-Agent Medical Error Detection

Require: Medical note M
Ensure: Error detection decision (True/False)
1: Initialize agents: Expert A (Mayo Clinic), Ex-
pert B (WebMD), and Judge
2: Experts analyze M using fetch_website to re-
trieve medical information
3: Experts present initial arguments (max 300
words each)
4. Experts exchange counter-arguments after re-
viewing opposing views
5: Judge evaluates all arguments (without exter-
nal references)
6: return Judge’s decision on presence of errors

essential medical information. Expert agents are re-
stricted to accessing only their assigned knowledge
source—Mayo Clinic for healthcare professional
perspectives and WebMD for patient-oriented in-
formation.

Our initial experimentation with three debate
rounds revealed significant redundancy, as agent
positions rarely changed after the second round
(in 92% of test cases). We therefore limited de-
bates to two rounds for efficiency. Additionally,
we implemented a 300-word limitation for each
agent’s contribution to address verbosity bias, as
judge agents consistently favored longer arguments
regardless of substance.

4 Experiments & Results

4.1 Evaluation Metrics

To comprehensively evaluate our framework’s per-
formance, we employ multiple complementary met-
rics that assess different aspects of medical error
detection.
For error detection, we use accuracy as our pri-
mary metric, defined as:
TP + TN

Accuracy = (1)
TP + TN + FP + FN

where TP (true positives) represents correctly
identified errors, TN (true negatives) represents
correctly identified error-free notes, FP (false posi-
tives) represents error-free notes incorrectly flagged
as containing errors, and FN (false negatives) rep-
resents errors that went undetected.

To assess statistical significance, we employ Mc-
Nemar’s test—a non-parametric method suitable
for paired nominal data in classification tasks. This

test evaluates whether disagreements between our
method and baselines are statistically significant,
with p < 0.05 indicating significant performance
differences. McNemar’s test is particularly appro-
priate as it focuses on error pattern differences
rather than just overall accuracy and accounts for
the paired nature of predictions on identical test
instances.

4.2 Setup

The primary goal is to assess model discriminative
capabilities rather than deployment performance,
which is why we used a balanced dataset as med-
ical errors are scarcer in real-life clinical settings.
Future work should evaluate the system on datasets
with more realistic error prevalence rates to better
understand performance metrics that are sensitive
to base rates.

We tested all models on a balanced set of 500
randomly sampled data points from the MS collec-
tion—a subset of the full dataset necessitated by
computational cost constraints. With API-based im-
plementations, inference costs varied significantly
between methods, from approximately $5 per eval-
uation run for single-agent approaches to $30 per
run for our multi-agent framework, making com-
prehensive testing on the full dataset prohibitively
expensive.

For this evaluation, we benchmarked our pro-
posed framework against state-of-the-art (SOTA)
baselines across three categories. First, we com-
pared against individual agent approaches using
popular prompting techniques: zero-shot (direct
task inference without examples), few-shot (Brown
etal., 2020) learning from minimal examples, chain
of thought (Wei et al., 2023) with explicit reasoning
steps, and self-consistency (SC) methods (Wang
et al., 2023) generating multiple solutions for con-
sensus.

We also included specialized single-agent im-
plementations using Mayo Clinic, WebMD, and
Medscape guidelines as reference materials, which
demonstrated superior performance over standard
prompting techniques. The final category consisted
of multi-agent approaches, comparing against the
high-performing MDAgents framework (Kim et al.,
2024) (specialized medical diagnostic agents) ap-
plied to our dataset, as well as a modified version
of AutoGen (Wu et al., 2023) comprising four spe-
cialized agents (User, Clinician, Medical Expert,
and Moderator) with single-turn responses.

GPT-40 served as the foundational LLM in all
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experimental configurations to ensure fair compari-
son across methods.

4.3 Implementation

Our implementation uses AutoGen Core/Ext for
orchestrating the multi-agent debate protocol, with
all agents powered by GPT-40. Expert agents ac-
cess domain-specific medical knowledge through a
custom retrieval component using BeautifulSoup
and Requests, while the judge agent evaluates ar-
guments based solely on their medical reasoning
quality. The system leverages asynchronous com-
munication to efficiently manage the two-round
structured debate process

5 Results Analysis

The revised results demonstrate a stratified per-
formance pattern across medical error detection
methodologies. Single-agent approaches (Zero-
Shot: 66%, Few-Shot: 64.2%) establish a base-
line performance that is incrementally improved
through few-shot variants (CoT+Few-Shot: 69.7%).
To better understand the impact of domain-specific
knowledge sources, we developed specialized sin-
gle agents (S.Agent) by isolating components of
our complete framework. Each S.Agent utilizes
our base prompt enhanced with few-shot exam-
ples, chain-of-thought reasoning, and the ability to
retrieve information from a single medical knowl-
edge source—either Mayo Clinic or WebMD. This
specialized agent architecture reveals an interesting
asymmetry, with S.Agent (WebMD) performing
at 70.2% compared to S.Agent (Mayo) at 72.6%,
indicating that domain-specific knowledge sources
contribute differentially to error detection capabili-
ties. The multi-agent frameworks show progressive
enhancement, with MDAgent achieving 70.6% ac-
curacy and AutoGen reaching 74.6%, though with a
notably higher p-value (0.1567) suggesting less sta-
tistical reliability in its performance advantage. Our
proposed composite methodology, which integrates
the complementary knowledge sources in a struc-
tured debate framework, achieves 78.8% accuracy,
representing a 4.2 percentage point improvement
over AutoGen. This performance enhancement
appears statistically significant when compared to
most baseline methods (p<0.05), with the exception
of AutoGen. These findings suggest that deliberate
integration of complementary clinical perspectives
through a structured multi-agent debate framework
effectively captures diagnostic subtleties missed by

Source Accuracy
Mayo Clinic 84%
Web MD 82%
Medscape 80%
PubMed Central 78%
Medline 74%
Wikipedia 2%

Table 1: Accuracy of various medical sources, sorted in
descending order.

single-perspective systems, mirroring the benefits
of multi-specialist consultation in clinical practice.

5.1 Medical sources

For website retrieval, we can classify the sources
into two main categories with two notable
outliers. Wikipedia, being a generalist website,
understandably performs relatively poorly at
72% accuracy for medical information. PubMed
Central represents another outlier as a healthcare
research website; despite our expectations for
higher performance, it achieved only 78%, likely
because only abstracts are publicly available.

The two main categories are websites for health-
care professionals (Mayo Clinic and Medscape),
which rank among the best performers with 84%
and 80% accuracy respectively, and those designed
for patients (WebMD and Medline) with 82%
and 74% accuracy. To obtain different perspec-
tives on each medical note, we selected one web-
site from each category with the highest accuracy
scores: Mayo Clinic for healthcare professionals
and WebMD for patients.

5.2 Error analysis
521

A detailed error analysis across medical specialties
reveals significant performance variations in our
model. The framework achieves above-average ac-
curacy in Emergency Medicine (83.0%), Infectious
Disease (81.2%), and Oncology (79.4%), suggest-
ing particular strength in these domains.

Conversely, the model demonstrates notable weak-
nesses in Obstetrics/Gynecology (73.6%) and Psy-
chiatry (75.0%). For OB/GYN cases, careful ex-
amination of the model’s reasoning reveals a fun-
damental challenge: pregnancy significantly al-
ters normal vital sign parameters and physiolog-
ical baselines, causing the model to misinterpret

Medical Specialty
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Figure 2: Accuracy of error detection across medi-
cal specialties. The visualization shows both sample
distribution (bars) and accuracy rates (line) by spe-
cialty. Emergency Medicine (83.0%), Infectious Dis-
ease (81.2%), and Oncology (79.4%) demonstrate the
highest accuracy rates, while Obstetrics/Gynecology
(73.6%) and Psychiatry (75.0%) show the lowest. Spe-
cialties comprising less than 5% of the dataset are con-
solidated into the "Others" category (28.0% of total
samples).

clinical findings that would be concerning in non-
pregnant patients but are within normal ranges dur-
ing pregnancy.

The difficulties in Psychiatry stem from two pri-
mary factors. First, the model struggles to iden-
tify problematic elements within psychiatric notes,
possibly due to the more subjective and nuanced
nature of psychiatric documentation compared to
other specialties. Second, the complexity of psy-
chiatric cases is difficult to adequately capture in
concise clinical summaries, leading to misinterpre-
tations. These challenges may be compounded by
potential underrepresentation of psychiatric cases
in the model’s training data.

These findings highlight the importance of
specialty-specific optimization for medical Al sys-
tems, particularly in domains with unique physio-
logical considerations or documentation practices.

5.2.2 Patient Population

The performance analysis across different patient
populations reveals distinct patterns in our model’s
effectiveness.  Geriatric patients (83.6%) and
Pediatric cases (81.6%) show the highest accuracy
rates, suggesting our model is particularly adept at
detecting errors in these populations. This strong
performance in age-specific populations is notable,
especially for pediatric cases which represent a
significant portion of our dataset (25.0%).

Adult patients with chronic diseases (76.0%)
show moderate performance despite constituting

Sample Size
120 —O— Accuracy

Sample Size

Medical Specialty

Figure 3: Accuracy of error detection across patient
populations. The chart displays both sample size (bars)
and accuracy rates (line) for each population category.
Geriatric patients and pediatric cases show the highest
accuracy rates (83.6% and 81.6% respectively), while
pregnancy and obstetric cases present the greatest chal-
lenge (71.4%). Categories representing less than 5% of
the total sample are grouped as "Others".

another major segment of our dataset (25.0%).
The model performs reasonably well with acute
conditions (78.9%), representing 15.2% of cases,
but experiences a notable decline in accuracy
for pregnancy and obstetric cases (71.4%). This
aligns with our previous observation regarding
OB/GYN specialties and reinforces the challenge
of accurately evaluating medical information in
the context of pregnancy, where physiological
baselines differ significantly from general adult
populations.

The relatively consistent performance across
diverse demographic groups, with most accuracies
ranging between 75-84%, indicates overall
robustness in the model’s error detection capa-
bilities. However, marked underperformance in
pregnancy-related cases highlights a specific area
that requires targeted improvement. These findings
suggest that while our framework generalizes
well across most patient populations, specialized
training or refinement is necessary for cases where
standard medical parameters are naturally altered,
such as during pregnancy.

Conclusion

This study introduces a novel multi-agent debat-
ing framework for medical error detection that
achieves 78.8% accuracy, significantly outperform-
ing both single-agent methods and previous multi-
agent approaches. By leveraging specialized agents
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Method Accuracy (%) P-value
Single-Agent
Zero-Shot 66.0 <0.001%*
Few-Shot 64.2 <0.001%*
Few-Shot Variant
CoT+Few-Shot 69.7 <0.001%*
SC+CoT+Few-Shot 64 <0.001*
Multi-Agent
MDAgent 70.6  0.004*
AutoGen 74.6  0.157
Proposed Method
S. Agent (WebMD) 70.2  0.002*
S. Agent (Mayo) 72.6  0.029*
Our Method 78.8 -

Table 2: Accuracy of various methods on the MS dataset
(500 examples). P-values compare each method against
our proposed method. Asterisks (¥) indicate statistical
significance (p < 0.05).

with access to complementary medical knowledge
sources (Mayo Clinic and WebMD), our structured
debate protocol effectively models the collabora-
tive decision-making dynamics found in clinical
settings.

Our analysis revealed performance variations
across specialties, with strengths in Emergency
Medicine (83.0%), Infectious Disease (81.2%),
and Oncology (79.4%), and challenges in Obstet-
rics/Gynecology (73.6%) and Psychiatry (75.0%).
Similarly, the system performed robustly with geri-
atric (83.6%) and pediatric populations (81.6%),
though pregnancy-related cases proved more diffi-
cult due to altered physiological baselines.

The performance gap between individual special-
ized agents (WebMD: 70.2%, Mayo: 72.6%) com-
pared to their combined implementation (78.8%)
demonstrates how integrating complementary view-
points through structured debate creates synergistic
effects that mirror the benefits of multi-specialist
consultation in clinical practice. This research
establishes that multi-agent debate represents a
promising approach for enhancing the safety and
reliability of Al-assisted medical documentation,
potentially facilitating wider adoption of Al tech-
nologies in clinical settings while maintaining high
standards of accuracy. The approach not only im-
proves performance metrics but also generates ex-
planatory reasoning that enhances trust and inter-
pretability—critical factors for responsible Al de-
ployment in medical contexts.

Limitations

The current study presents several limitations worth
addressing. First, our dataset encompasses only a
specific subset of error types, potentially limiting
generalizability to the diverse range of errors en-
countered in actual clinical environments. Second,
computational resource constraints—particularly
the cost associated with GPT-40 usage—restricted
our ability to conduct more comprehensive test-
ing. Third, our evaluation focused exclusively
on closed-source models, leaving questions about
cross-model performance variations unanswered.
Additionally, we selected only a few medical web-
sites to benchmark their performance, which con-
strains the comprehensiveness of our analysis. The
primary challenge identified lies in medical rea-
soning capabilities. Future work should investi-
gate how models specifically trained for medical
applications might enhance performance. Recent
developments such as DeepSeek-R1 (DeepSeek-Al
et al., 2025) and advanced post-training method-
ologies like Group Relative Policy Optimization
(Shao et al., 2024) offer promising avenues for
improvement. Emerging research examining these
approaches in medical contexts (Zhang et al., 2025)
suggests fertile ground for future exploration. Such
specialized training paradigms could potentially
address the reasoning gaps identified in our current
multi-agent debate framework.
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A Example Appendix: Multi-Agent
Debate Case

A.1 Patient Case and Diagnosis

54-year-old woman with a painful, rapidly growing
leg lesion for 1 month. History includes Crohn’s
disease, diabetes, hypertension, and previous ante-
rior uveitis. Examination revealed a 4-cm tender
ulcerative lesion with necrotic base and purplish
borders, along with pitting edema and dilated veins.
Diagnosed as a venous ulcer.

A.2 Multi-Agent Debate Analysis
A.2.1 Expert Agent Analysis Summary

* Mayo Clinic Agent: Identified lesion charac-
teristics (necrotic base, purplish borders) as
inconsistent with venous ulcers. Highlighted
association between Crohn’s disease and pyo-
derma gangrenosum. Emphasized misdiagno-
sis risk and treatment implications.

* WebMD Agent: Noted venous insufficiency
findings but questioned diagnosis due to pa-
tient’s inflammatory disease history. Sug-
gested alternative diagnoses including pyo-
derma gangrenosum given clinical context.

A.2.2 Judge Agent Decision

Final Answer: INCORRECT (Confi-
dence: 8/10)

Reasoning: Both agents identified py-
oderma gangrenosum as a more likely
diagnosis given the patient’s Crohn’s dis-
ease and lesion characteristics. Mayo
Clinic agent provided more comprehen-
sive analysis of clinical inconsistencies,
emphasizing the importance of correct
diagnosis for appropriate treatment.
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A.3 Key Insight

This case demonstrates how our multi-agent frame-
work effectively identifies potential diagnostic er-
rors by leveraging complementary medical knowl-
edge sources. The specialized agents provided dif-
ferent analytical approaches but converged on the
same conclusion, highlighting the value of struc-
tured debate in enhancing diagnostic accuracy for
complex cases.

B Example Appendix
C Agent System Messages

C.1 Healthcare Expert Agent (Mayo Clinic)
System Message

[breakable, enhanced, colback=gray!5!white, boxrule=0.5pt]
You are a healthcare professional specializing in analyzing
medical notes, with expertise in diagnosis and clinical ter-
minology. Important: Medical notes should be presumed
CORRECT unless there is an obvious, significant error. Your
task is to identify only clear substitution errors in:

- Diagnostic terms that significantly change the clinical
meaning - Medication terms that would result in wrong treat-
ment - Treatment protocols that are clearly contraindicated -
Management plans that would harm the patient - Therapeutic
interventions that are definitively inappropriate

Classification criteria: - INCORRECT: Contains exactly
one clinically significant term substitution that would change
patient care - CORRECT: Default classification - use this
unless there is a clear, significant error

In your final turn, please provide a detailed final explana-
tion for your decision including your reasoning and supporting
evidence. Conclude with a sentence beginning 'Based on my

analysis, this note is ...".

C.2 Judge Agent System Message

[breakable, enhanced, colback=gray!5!white, boxrule=0.5pt]
You are the judge in a debate between two healthcare agents.
They have each presented their arguments about whether the
medical note is correct or contains an error. Do not interfere
with the debate while it is ongoing; wait until both agents have
finished their 2 exchanges. Once the debate has concluded,
evaluate both agents’ final messages and decide which agent
made the more convincing case (i.e., which agent correctly
identified whether the note is correct or incorrect). Provide
a clear explanation for your decision. Your final response
should be in JSON format with the structure:

{ "Final Answer": "CORRECT/INCORRECT", "Confi-

dence Score": <number>, "Winner": "<Agent Name>", "Rea-

soning": "<Explanation of decision>" }

Do not include any additional commentary.
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