
Proceedings of the 24th Workshop on Biomedical Language Processing (BioNLP 2025), pages 101–113
August 1, 2025 ©2025 Association for Computational Linguistics

RadQA-DPO: A Radiology Question Answering System with
Encoder-Decoder Models Enhanced by Direct Preference Optimization

Md Sultan Al Nahian and Ramakanth Kavuluru
Division of Biomedical Informatics, Department of Internal Medicine

University of Kentucky, Lexington, KY USA
{mna245,ramakanth.kavuluru}@uky.edu

Abstract

Extractive question answering over clinical text
is a crucial need to help deal with the deluge of
clinical text generated in hospitals. While en-
coder models (e.g., BERT) have been popular
for this reading comprehension–style question
answering task, recently encoder-decoder mod-
els (e.g., T5) are on the rise. There is also
the emergence of preference optimization tech-
niques to align decoder-only LLMs with human
preferences. In this paper, we combine encoder-
decoder models with the direct preference op-
timization (DPO) method for the RadQA radi-
ology question answering task. Our approach
achieves a 12–15 F1 point improvement over
previous state-of-the-art models. To the best of
our knowledge, this effort is the first to show
that DPO method also works for reading com-
prehension via novel heuristics to generate pref-
erence data without human inputs.

1 Introduction

Clinical domain is rich in text data, such as
progress notes, discharge summaries, and radiol-
ogy/pathology reports, which constitutes a signifi-
cant portion of electronic medical records (EMRs).
These documents contain essential patient infor-
mation but are often lengthy and idiosyncratic
to specific clinicians, making it difficult and in-
efficient for doctors to manually extract specific
details during care transfers or follow-ups (Jin
et al., 2022). From a natural language processing
(NLP) perspective, machine reading comprehen-
sion (MRC) systems can address this challenge
by extracting precise answers to specific queries
directly from these documents, facilitating more
efficient decision-making for physicians (Demner-
Fushman et al., 2009). In this paper, we achieve
state-of-the-art results for a MRC task in radiology,
with encoder-decoder language models (LMs) en-
hanced by direct preference optimization (DPO).
Before we proceed, we first trace the origins of

DPO since it was first introduced for a very differ-
ent purpose than reading comprehension.

Since mid 2020, large language models (LLMs)
have become pivotal in NLP, showcasing remark-
able performance across a variety of tasks. These
models undergo an initial phase of unsupervised
pretraining, acquiring a comprehensive language
representation that equips them with robust and
contextual generation capabilities, which can then
be transferred to specific downstream tasks through
supervised fine-tuning (Dai and Le, 2015; Radford
et al.; Devlin et al., 2019; Khandelwal et al., 2019).
However, while supervised fine-tuning has been
proven effective in enhancing model performance,
it struggles to align models with human prefer-
ences (Stiennon et al., 2020). The high-quality
output achieved through supervised fine-tuning of-
ten poorly correlates with human judgment, as the
maximum likelihood objective struggles to capture
the nuances of human preferences (Chaganty et al.,
2018; Dusek et al., 2017). To address this chal-
lenge, reinforcement learning from human feed-
back (RLHF) has recently emerged as a promising
approach for aligning LLMs with human prefer-
ences (Ziegler et al., 2019; Stiennon et al., 2020).
RLHF utilizes human feedback on the model’s out-
put to guide its learning process, resulting in en-
hanced performance and better correlation with hu-
man judgment across diverse NLP tasks (Ouyang
et al., 2022; Glaese et al., 2022; Bai et al., 2022a).

Ability to evaluate the output of LLMs based
on human preferences is a core part of RLHF. To
acquire this ability, the RLHF technique involves
building a reward model from human annotated
preference data. The objective of the reward model
is to assess the output of the language model based
on human preferences and represent it in a scalar
value, which is used to optimize the language
model using RL algorithms, most commonly prox-
imal policy optimization (PPO) (Schulman et al.,
2017). Usually the reward models are built by fine-
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tuning another LLM as it is expected that the re-
ward model should have the similar language mod-
eling capabilities to the original language model
it is used to optimize. While RLHF demonstrates
impressive performance across various NLP tasks
(Chowdhery et al., 2023; Touvron et al., 2023), it is
a complex and computationally expensive process
that involves training multiple models, including
a supervised fine-tuned model, a reward model,
and the final RLHF model. To address this com-
plexity, Rafailov et al. (Rafailov et al., 2024) intro-
duced DPO, which directly learns human prefer-
ences from the preference dataset without requiring
a reward model. By eliminating this step, DPO
reduces computational costs while preserving the
same optimization objectives as RLHF, making it a
more efficient and dynamic alternative.

Thus far DPO has been primarily used to align
decoder-only LLMs with human preferences; it
has not been applied to encoder-decoder models
used for the MRC task with a likelihood maxi-
mization objective. DPO inherently aims to in-
crease the log probability of expected outputs over
rejected outputs. A dataset of diverse instances
of correct and incorrect output pairs can provide
proper signals to the model about challenging ex-
amples that a supervised fine-tuned model struggles
to predict accurately. Based on this observation, we
hypothesize that DPO can be utilized to enhance
the performance of a supervised fine-tuned encoder-
decoder model in log-likelihood maximization. To
test this, we experiment with a recent biomedi-
cal MRC dataset, Radiology Question Answering
(RadQA) (Soni et al., 2022), resulting in the fol-
lowing contributions and findings:

• Compared with the encoder-only models used
in prior efforts with RadQA, we show over
10% F-score improvement by shifting to
encoder-decoder models, achieving a new
state of the art (SoTA) score.

• We introduce two new methods to automati-
cally generate paired preference data for the
MRC task and use them to produce additional
1-3% F1 gains with DPO, leading to overall
gains of 12–15% F1 points over SoTA.

The code and data from our experiments are
available here: RadQADPO-code. If accepted, we
will make them available on our lab’s GitHub.

2 Related Work

2.1 Machine reading comprehension

MRC is a key research area within information
extraction that focuses on enabling machines to
extract answers from given texts. Specifically, an
MRC model receives a passage (context) and a
question as input and aims to answer the question
by reasoning over both. Unlike general or open-
domain question answering (QA) (Reddy et al.,
2019; Karpukhin et al., 2020; Yasunaga et al.,
2021), which typically involves retrieving answers
from large corpora or knowledge bases, MRC op-
erates in a more constrained setting where the rel-
evant information is already provided in the input
context. While MRC is important in and of itself,
it also plays a crucial role in open ended QA where
an initial retrieval model extracts relevant docu-
ments for a question from a search index. MRC
is then applied to each of these documents and the
answers are ranked using other heuristics. Prior ef-
forts in deep learning for MRC focused on attention
mechanisms, which helped models focus on rele-
vant parts of the query and the context (Seo et al.,
2016; Cui et al., 2017). More recently, approaches
using transformer-based LMs, such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) and
XLNet (Yang et al., 2019) have demonstrated su-
perior performance on this task. These models
leverage large-scale pre-training on diverse datasets
followed by fine-tuning on specific MRC tasks, en-
hancing their ability to generate accurate answers.
For example, ForceReader (Chen and Wu, 2020) is
a BERT based method that addressed the attention
deconcentration problem in MRC and introduced
a few novel ideas including attention separate rep-
resentation, multi-mode reading, and conditional
background attention to improve MRC. Similarly,
Lu et al. (Luo et al., 2020) proposed a novel ap-
proach that leverages BERT and BiDAF (Seo et al.,
2016), extending probability vectors to probability
matrices to predict the start and end positions of
the answer span more accurately.

More recently, transformer-based decoder-only
large language models (LLMs) (Yang et al., 2022;
Singhal et al., 2023; Wu et al., 2024) have demon-
strated strong or even state-of-the-art performance
on a variety of machine reading comprehen-
sion (MRC) benchmarks across both general and
biomedical domains, largely due to their powerful
generalization capabilities. These models are typi-
cally evaluated on generative and multiple-choice
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Figure 1: Pipeline of fine-tuning the language model using DPO. πθ is the language model we want to fine-tune,
and πref is the reference model, which is kept frozen during the fine-tuning process. Both models are initialized
with the Supervised Fine-Tuned (SFT) model.

question-answering tasks that rely on given con-
texts, rather than on traditional span-based MRC
tasks such as SQuAD (Rajpurkar et al., 2016) or
RadQA, which require predicting exact answer
spans within the context.

In our approach we also used transformer-based
LMs. In contrast to the previously discussed meth-
ods, we have used an encoder-decoder transformer
model (Raffel et al., 2020) as the base model and
fine-tuned it by adopting the DPO method. Thus,
the most closely related work to ours involves RL-
based MRC methods. Although this domain is
less explored compared to other deep learning ap-
proaches discussed above, several studies have ap-
plied RL techniques in question answering systems
(Hu et al., 2018; Lee et al., 2021; Gharagozlou
et al., 2022). These approaches typically design a
reward function to optimize the model using RL
algorithms. However, by leveraging the DPO tech-
nique in our method, we obviate the need of a
reward function for training the model.

2.2 Reinforcement learning from human
feedback (RLHF)

RLHF is an RL technique that optimizes models
using human feedback instead of predefined re-
ward functions. Initially explored for training RL
agents (Akrour et al., 2012) where reward functions
are difficult to specify, RLHF has more recently
been widely used to fine-tune LLMs to better align
with human preferences. This method has been suc-
cessfully applied in various NLP tasks, including
conversational agents (OpenAI, 2022), text and dia-
logue summarization (Chen et al., 2023), question-
answering (Nakano et al., 2021), and recommen-
dation systems, where aligning the responses with
human judgment is crucial. However, RLHF is

a multi-step process that can be computationally
intensive. Direct Preference Optimization (DPO)
(Rafailov et al., 2024) has emerged as a more ef-
ficient alternative, aiming to achieve similar ob-
jectives with reduced computational costs. While
DPO is primarily used to align language models
with human judgment (Tunstall et al., 2023; Zhao
et al., 2023), we explore its application in likeli-
hood maximization for MRC. By applying DPO to
enhance supervised fine-tuned models, we aim to
improve performance by optimizing responses to
match ground truth answers more closely.

3 Methods

We use the encoder-decoder model T5 (Raffel et al.,
2020) as the backbone of our main method as op-
posed to the BERT based baselines reported ear-
lier (Soni et al., 2022). We also experimented with
the Flan-T5 model (Longpre et al., 2023) which
have been instruction tuned on a variety of NLP
datasets and tasks. Our DPO-based optimization
consists of two steps: (1) training a supervised fine-
tuned T5 model and (2) optimizing it using DPO.

3.1 Training supervised fine-tuned (SFT)
model

In this step, we trained an initial model for MRC
using the supervised fine-tuning approach with the
original training data, which we refer to as the SFT
model. We model MRC as a text to text task and
opted to use a seq-2-seq model for training the
SFT model. The model’s input is the tokenized
vectors of the concatenated context and question
and the output is the answer span from the context
or “no answer” if the answer is not available in the
context. We formatted the input sequence before
tokenization as follows: “context: the text of the
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context <SEP>question: text of the question.”

3.2 Optimizing using DPO

After training the SFT model, we further fine-tuned
it using the DPO method. This requires a prefer-
ence dataset consisting of tuples (x, yw, yl), where
x is a prompt and yw and yl are the preferred and
rejected responses for the prompt x, respectively.
In standard RLHF/DPO techniques, the preference
dataset is usually constructed using human annota-
tors. For each input, multiple outputs are generated
by the initial SFT model and human annotators
are asked to rate them as preferred or rejected out-
puts. In contrast to the standard DPO, here we
built the preference dataset automatically without
human interventions. Our approaches to create the
preference dataset are discussed in Section 4.2.

After generating the preference dataset, we ap-
plied DPO to optimize the SFT models. The DPO
architecture employs two models simultaneously
for fine-tuning: one is the reference model (πref ),
while the other is the active model, πθ, which is
being optimized. Both models are initialized with
the SFT model trained in the previous step. The
weights of the reference model (πref ) are kept
frozen throughout the training process, while the
weights of the model πθ are updated using the DPO
loss (Eq. (4) of Appendix A.1). The reference
model ensures that fine-tuning does not cause the
policy of the model πθ to deviate significantly from
the initial SFT model. While the DPO loss aims to
increase the difference between the policies for the
preferred and rejected outputs, it also aims to mini-
mize the difference between the policies of the SFT
and the active model πθ. Both models receive input
in the form of the tuple (x, yw, yl). In our study,
the prompt x consists of the concatenated string of
the context and question, yw is the correct answer
span and yl corresponds to one of the incorrect an-
swers for the question, given the context. Given the
prompt, both models provide the probability distri-
bution of the tokens of the preferred and rejected
answers, which are used to compute the loss and
update the weights of the active model πθ. Figure
1 depicts the process of DPO more elaborately.

4 Datasets

We need two datasets to build the models in the
two phases of our method. The first is the original
RadQA dataset, which was used for training and
validating the SFT model. The second is a pref-

Preference Dataset
F1 Threshold

0.9 0.7 0.5

Model-based-T5 3280 2865 2354
Model-based-Flan-T5 3089 2533 2036
Rule-based 3716 3501 3332

Table 1: #instances in the preference dataset created by
each method applying different F1 threshold values.

erence dataset created from RadQA, and used for
further tuning of the SFT model via DPO.

4.1 RadQA

RadQA(Soni et al., 2022) is an MRC dataset cre-
ated from radiology reports from the MIMIC III
dataset (Johnson et al., 2016). The questions were
manually created from the clinical referral sections
to capture the actual information needs of ordering
physicians, without being influenced by seeing the
answer context. Answers were annotated in the
Findings and Impressions sections and consist of
complete, concise phrases that may span multiple
lines and are not limited to named entities. The
dataset also includes unanswerable questions, sup-
porting the challenges of real-world clinical ques-
tion answering.

The RadQA dataset comprises 6148 unique
question-answer pairs sourced from 1009 radiology
reports of 100 patients. The dataset was split at the
patient level into training, development, and testing
sets, with an 8:1:1 ratio, respectively. This resulted
in 4878 questions in the training set, 863 questions
in the development set, and 894 questions in the
test set. We used the original format of training
data of RadQA exclusively to train the SFT model,
while the development and test data were used for
evaluating both the SFT and DPO models to assess
the effectiveness of our approach.

4.2 Preference dataset

Preference data is the main element for optimizing
a language model through DPO. This consists of tu-
ples that include examples of preferred and rejected
outputs for a given prompt. Although preference
data is typically collected from human annotators,
we automatically generated it, eliminating the need
for manual annotation. We used the original train-
ing corpus of RadQA for this purpose. Specifically,
each prompt was formed by concatenating the con-
text and question from the RadQA training dataset,
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separated by a special token. The preferred output
is the original gold answer span provided in the
dataset. To generate the corresponding rejected
output, we propose two automated approaches: a
model-based approach and a rule-based approach.

4.2.1 Model based approach
In this approach, we used the SFT model itself to
generate negative examples. The process began by
training a model on 50% of the RadQA training
data and then using it to predict answers for the
entire training dataset, including the data it was
trained on. The rationale behind training on half
of the data was to equip the model with sufficient
knowledge for effective performance. Thus, mis-
takes made during these predictions indicate the
types of examples the model needs to focus on to
improve its performance. Testing the model on
both seen and unseen data helps identifying spe-
cific examples that remain challenging despite prior
exposure. Our intuition behind this design is that
by using the model’s own incorrect predictions, we
can better identify the types of examples where
it struggles. These incorrect predictions highlight
situations where the model needs improvement,
making them valuable for training. Additionally,
since the model is also tested on examples it was
trained on, any errors it makes on these familiar
examples indicate that they are particularly chal-
lenging. By focusing on these hard examples, we
aim to improve the model’s overall performance.

We identified all instances where the model gen-
erated incorrect answers. For each prompt and
question pair where the model’s prediction differed
from the original answer, the incorrect prediction
was recorded as the rejected output in our prefer-
ence dataset. To refine the preference dataset, we
filtered these incorrect answers based on their F1
scores. The F1 score was calculated by comparing
word-level matches between each incorrect answer
and its corresponding original answer. To filter the
incorrect predictions, we applied three different
thresholds for the F1 score: 0.9, 0.7, and 0.5. If
the F1 score between the original and the predicted
answer was less than the chosen threshold, the pre-
dicted answer was selected as the rejected output.
To ensure comprehensive coverage, we repeated
this process by training another model on the re-
maining 50% of the training data. This model was
then used again to predict answers for the entire
dataset, allowing us to identify additional incorrect
predictions. We used two variants of SFT models

(T5-3B and Flan-T5-3B) to create the negative ex-
amples. The total number of instances created by
this process is shown in Table 1.

By iteratively training on different halves of the
dataset and collecting incorrect predictions, we
effectively created a robust set of negative exam-
ples without the need for manual annotation. This
automated generation of preference data not only
streamlined our process but also ensured a diverse
range of negative examples, enhancing the quality
of our preference dataset. Our assumption is that
DPO will help the model improve on these chal-
lenging examples, enhancing overall performance.

4.2.2 Rule based approach
We generated negative examples from the training
data by applying a set of predefined rules. These
rules were formulated based on experimental find-
ings regarding the types of errors that SFT model
typically makes. For each tuple (context, question,
gold answer) in the training data, we generated
a number of incorrect answers applying the fol-
lowing rules (also shown with a few examples in
Figure 3 of Appendix A.3):

• Random text span: Select a random span from
the context that does not contain any part of
the gold answer.

• Text span containing part of the gold answer:
Here, a text span from the context that in-
cludes a part of the original answer is ran-
domly chosen. This partial inclusion can oc-
cur in two ways: 1) choosing a segment start-
ing a few words before the left side of the gold
answer and continuing until it includes a par-
tial span from the gold answer, or 2) selecting
a partial segment from the right side of the
answer and including a few words after the
answer text. The lengths of these segments
are chosen randomly (see Figure 3).

• Longer answer: This entails a text span that
includes the entire gold answer as a part of it
with ≥ 1 additional tokens.

• Partial answer only: This involves selecting
a smaller segment (strict substring) from the
original answer.

• Answers of a different question: Here, an an-
swer text from another question in the same
context is chosen, provided it is not the same
as the original gold answer or a part of it. For
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example in Figure 3 of Appendix A.3, “kid-
neys are normal in appearance" is an answer
to a different question for the same context,
but is not part of the ground truth answer.

• No answer: In this approach, we used empty
string in place of the gold answers to cre-
ate negative examples. For questions without
available answers, we chose responses from
other questions within the same context as
negative examples. If there were no other
questions within the same context that pro-
vided answers, we randomly selected a span
from the context as the negative answer.

Following these rules provided us with a large num-
ber of examples of rejected answers for each (con-
text, question, gold answer) tuple. From each set
of rejected answers, we randomly chose a few ex-
amples to create the preference data. We did not
include the entire set of rejected answers for gen-
erating the preference data to prevent the dataset
from becoming intractably large. Finally, we in-
cluded 4000 instances and further filtered them by
applying F1 threshold (see Table 1).

5 Experimental Setup

5.1 Baselines
We compared our T5-based SFT models with the
BERT-based models from Soni et al. (Soni et al.,
2022), which offered SoTA results on the RadQA
dataset. Thus, we selected all of their BERT-
MIMIC-based models as our baselines. These mod-
els come in four variants, based on the datasets used
for fine-tuning. The first variant, BERT-MIMIC-
RadQA, was fine-tuned only on the RadQA dataset.
The remaining three variants were additionally fine-
tuned on external QA datasets such as SQuAD
(Rajpurkar et al., 2016) and EmrQA (Pampari
et al., 2018). For example, BERT-MIMIC-SQuAD-
RadQA was trained on both RadQA and SQuAD,
while BERT-MIMIC-EmrQA-RadQA was trained
on both EmrQA and RadQA.

We also compared our DPO-based method with
the T5 SFT models to assess the effectiveness of
applying DPO on an already high-performing fine-
tuned model.

5.2 Evaluation metrics
To evaluate our proposed method, we used the stan-
dard MRC metrics: Exact match (EM) and F1-
Score. Exact Match is a strict metric that compares

the predicted answer with the exact ground truth
answer, ensuring they are identical. The F1-Score,
on the other hand, is calculated by taking word-
level matches between the predicted and ground
truth answers. To maintain consistency and compa-
rability in our evaluation, we used the evaluation
code from SQuAD (Rajpurkar et al., 2016).

5.3 Network parameters and resources

The network parameters for each model in our
experiments were chosen through hyperparame-
ter tuning. We used the validation F1 score as an
evaluation metric to select the optimal values of
these parameters. For training both the SFT and
DPO models, we employed the Adam optimizer.
The learning rate for the SFT model was set to
5e−5, and for the DPO model, it was 5e−7. The
weight decay was set to 0.01 for both models. The
batch size was 16 for T5-Large models; however,
to accommodate the 3 billion parameter models in
memory, we used a batch size of 2 with gradient
accumulation steps of 8. The maximum prompt
length was set to 768, and the target length was
128. Early stopping was applied during the training
of both the SFT and DPO models, by using the val-
idation F1 score to select the best models. All our
experiments were conducted on a single NVIDIA
H100 GPU, equipped with 80 GB of memory.

6 Results

Table 2 presents the main results of our experi-
ments, comparing the performance of BERT base-
lines, the T5-based supervised fine-tuned (SFT)
models, and the DPO based models. The results
are evaluated on the development and test sets of
the RadQA dataset.

The SFT model type includes three T5 variants
(T5-large, T5-3B, and Flan-T5-3B) trained on the
RadQA training data. From Table 2, we can see
that all the T5 variants outperform the baseline
RadQA models on the test set, with Flan-T5-3B
also performing better on the dev set. Specifically,
the SFT Flan-T5-3B achieves an F1 score of 76.38
and an exact match (EM) score of 55.93 on the test
set, marking improvements of 13 points in F1 score
and 6.5 points in EM over the best baseline model.
Although the three variants of BERT-MIMIC were
trained on additional datasets (SQuAD and em-
rQA) along with RadQA, the T5 models still out-
performed them, establishing a strong baseline for
our DPO-based method. It is important to note
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Model Type Models
Dev Test

EM F1 EM F1

Baseline (BERT-MIMIC) (340M)

RadQA 48.05 65.85 45.73 60.08
emrQA-RadQA 50.65 67.97 47.71 61.60
SQuAD-RadQA 52.28 69.42 49.39 63.55
SQuAD-emrQA-RadQA 53.26 67.79 48.32 62.29

T5-large (770M)

SFT 47.86 66.22 49.89 71.10
DPO-MB 47.74 66.25 51.34 71.62
DPO-RB 48.20 66.59 51.00 71.36
DPO-MRB 47.80 66.10 50.11 71.20

T5-3B

SFT 49.83 68.59 51.68 72.29
DPO-MB 51.10 70.45 52.46 74.29
DPO-RB 50.87 70.26 52.57 74.03
DPO-MRB 50.40 70.13 52.01 75.18

Flan-T5-3B

SFT 54.35 72.62 55.93 76.38
DPO-MB 53.77 73.68 55.15 77.48
DPO-RB 52.49 72.55 56.15 77.40
DPO-MRB 53.42 73.51 55.70 77.41

Table 2: Model performances on the RadQA development and test sets compared with the RadQA BERT-MIMIC
model variants.

that, although BERT-MIMIC was fine-tuned on
a large corpus of clinical notes (Si et al., 2019)
(1.9 million notes comprising approximately 786
million tokens), our T5 models have more parame-
ters than the 340M BERT-based models used in the
RadQA paper and were pretrained on a much larger
and more diverse dataset—the C4 corpus, which
contains around 750GB of clean web text. This
provides T5 with stronger language capabilities.

The DPO-based methods include three groups
of models: DPO-Model Based (DPO-MB), trained
on model-based preference data; DPO-Rule Based
(DPO-RB), trained on rule-based preference data;
and DPO-Model & Rule Based (DPO-MRB),
trained on a combined dataset of model-based and
rule-based preference data. For all the models, we
selected the preference data generated by 0.9 F1
threshold. Additionally, for training the DPO-MB
models, we used the model specific preference data.
For instance, we applied model-based-T5 prefer-
ence data for the T5 models and model-based-Flan-
T5 preference data for the Flan-T5 based DPO mod-
els. From Table 2 we can see that both model and
rule-based DPO models improved the performance
of the corresponding SFT models. Although the

T5-large SFT model did not see a significant im-
provement, the T5-3B and Flan-T5-3B improved
their corresponding SFT models nontrivially, both
in DPO-MB and DPO-RB settings. For instance,
the F1 score of the DPO-MB T5-3B is 74.29, a 2-
point improvement over its SFT counterpart and an
11-point increase compared to the best performing
baseline model, BERT-MIMIC-SQuAD-RadQA,
on the test F1 score. The combined dataset further
improved the test F1 score of the T5-3B model by
1%, but it did not enhance the other variants, indi-
cating saturation in the performance of the models.

7 Discussion

Our experimental results demonstrate that further
fine-tuning an SFT model through DPO can en-
hance its performance between 1–3% F1 points.
This is particularly important because these SFT
models have already been optimized using the full
training dataset, making further improvements chal-
lenging. From our experiments, we found several
factors that influence the performance of the mod-
els trained with DPO, including the size of the SFT
models, the method used to create negative exam-
ples in the preference data, the types of examples
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included, and the quantity of preference data. In
this section, we provide a detailed discussion on the
observed performance improvements using DPO
and the factors influencing these improvements.

7.1 Size of the model

From our results, we notice that a smaller model
is less likely to benefit from additional fine-tuning
with DPO. However, with larger models, notable
improvements were observed. For instance, with
DPO both T5-3B and Flan-T5-3B increased the
test F1 score of their corresponding SFT models by
1-3%. This indicates the ability of larger encoder-
decoder models to capture signals from examples
of preferred and rejected outputs. However, among
3B models, the improvement is much better in the
non-Flan model. Since the Flan model is instruc-
tion tuned on hundreds of datasets, its SFT perfor-
mance (76.38 F1) is already over 1% better than
the best DPO model of its non-Flan counterpart.

7.2 Model- vs rule-based preference data

While DPO-MB and DPO-RB both enhanced the
performance of the SFT models, our experiments
showed that the model-based approach yielded
comparatively better results than the rule-based
approach. One potential reason for this could be
the nature of the negative examples generated by
each method. Rule-based examples are created
using predefined rules. Although these rules are
designed to generate plausible negative examples,
they may not always reflect the same distribution
as the original RadQA dataset. This can lead to
less effective training, as the model might not en-
counter a representative range of challenging ex-
amples during the DPO training. In contrast, the
model-based approach derives negative examples
from the predictions of the SFT model itself. These
examples are intrinsically linked to the specific
weaknesses of the model. By focusing on these
model-specific errors, the preference data reflects
the instance spaces where the model is prone to
generate incorrect outputs. Consequently, this ap-
proach may offer more targeted training, enabling
the model to learn from its mistakes and improve
its performance. However, one limitation of this
method is that each new model requires the cre-
ation of a new preference dataset, as each model
has different weaknesses and strengths. In contrast,
the training examples created by the rule-based
approach are model-agnostic.

Figure 2: Performance comparison of DPO-T5-3B
model with varying training examples and preference
datasets generated using different thresholds. X-axis
plots #training-examples, Y-axis is the F1 score, and
the line colors represent different preference datasets
created by applying three different F1 thresholds.

7.3 Diversity of training instances

Filtering the preference data based on different F1-
score thresholds also influences the performance
of DPO. Negative examples with higher F1 scores
tend to be closer to the ground truth answers, while
those with lower F1 scores present more dissim-
ilarity with gold spans. Incorporating a broader
range of negative examples from both ends of the
F1-score spectrum provides a diverse and more
informative training set for the model. A higher
F1-score threshold facilitates a mix of examples
that are both similar and dissimilar to the ground
truth answers, offering a wide variety of training
data. Conversely, a lower threshold focuses only
on the examples that are very different from the
ground truth, excluding those that are more simi-
lar. Therefore, preference data created using higher
thresholds may enable the model to learn from a
diverse set of examples, which can enhance its gen-
eralization and performance. Our experiments also
support this hypothesis. Figure 2 illustrates the
test F1-scores of DPO-T5-3B models trained with
preference data filtered at different thresholds. The
results show that the model trained with a thresh-
old of 0.9 outperforms those trained with lower
threshold data, demonstrating the benefits of using
a more diverse set of training examples.

7.4 Number of training Instances

Besides diversity of training examples, the number
of training examples also impacts the performance
of DPO based models. We fine-tuned DPO-T5-3B
with different numbers of training examples (500,
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1000, 1500 and 2000) for each filtering threshold.
As shown in Figure 2, an increase in the number of
training examples generally leads to an increase in
the test F1 score across all thresholds.

7.5 Other variants of DPO

DPO has evolved into several variants, each with
different a loss function, designed to address spe-
cific issues. For instance, Identity Preference Opti-
mization (IPO) (Azar et al., 2024) was developed to
mitigate the overfitting problem identified in DPO
by introducing a new loss function. We trained our
model using three DPO variants: Identity Prefer-
ence Optimization (IPO), Kahneman-Tversky Op-
timization (KTO) (Ethayarajh et al., 2024), and
Statistical Rejection Sampling Optimization (RSO)
(Liu et al., 2024). Our experimental results show
that DPO outperforms other variants for both T5-
3b and Flan-T5-3b models. Detailed results are
provided in Table 3 of Appendix A.2.

8 Conclusion

In this paper, we proposed an approach that com-
bines encoder-decoder models with DPO based
optimization to achieve new SoTA performances
on the MRC task for radiology using the RadQA
dataset. Our study shows that encoder-decoder
models, although computationally expensive due
to large model capacities, can offer substantial
gains in performance (by over 10% in F1 scores).
Originally introduced for aligning LLMs with hu-
man preferences, our study demonstrated that DPO
methods can also be effectively used for likelihood
maximization for MRC tasks and can lead to fur-
ther gains of up to 3% beyond the encoder-decoder
based gains. By focusing on challenging examples
(the model-based preference data setup), DPO can
further improve large models already fully trained.

While effective, one key challenge in fine-tuning
models using DPO is that its performance is highly
dependent on the quality of the preference data.
Collecting high-quality examples of preferred and
rejected outputs is crucial for maximizing the
model’s performance through DPO. In this work,
we introduced two techniques—the model-based
and the rule-based approaches to generate prefer-
ence data for the MRC task, which can be adopted
in other tasks as well. In future, we will explore the
applicability of our approach in other information
extraction tasks such as named entity recognition
and relation extraction.
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A Appendix

A.1 Background for RLHF and DPO
Fine-tuning LLMs for downstream tasks using RLHF technique involves three main phases (Stiennon
et al., 2020; Bai et al., 2022b): 1. supervised fine-tuning, 2. constructing reward model, and 3. fine-tuning
the language model using RL methods.

A.1.1 Supervised fine-tuning
This is the initial step of RLHF technique, where the language model undergoes supervised fine-tuning
on downstream tasks. During this phase, the model is trained on specific task-related training datasets,
allowing it to adapt its pre-trained knowledge to the particular downstream task. The model trained in this
phase is commonly referred to as supervised fine-tuning (SFT) model, denoted as πsft.

A.1.2 Constructing reward model
After training the SFT model, the next step is to develop a reward model that evaluates the SFT model’s
outputs based on human preferences and represent it as scalar values. This reward model can be built
using pre-trained models capable of assessing outputs according to human judgment (Bai et al., 2022b),
or by training it on human preference data collected from annotators.

To construct human preference data, multiple responses are first generated for each prompt by the
SFT model, using different variants of the model or sampling methods (Stiennon et al., 2020; Bai et al.,
2022a). The collection of prompts and their generated responses are then formatted into a batch of tuples
(x, y1, y2), where x is the prompt and y1 and y2 are pair of responses sampled from the set of generated
responses of the prompt x. Human labelers are then instructed to choose their preferred response between
the two. This process creates a preference dataset consisting of tuples (x, yw, yl), where yw represents the
preferred output and yl represents the rejected output.

From the generated preference dataset D, the probability distribution of human preference can be
formulated as

p(yw > yl|x) = σ(r(x, yw)− r(x, yl)) (1)

using Bradley-Terry model (Bradley and Terry, 1952) given an optimal reward model r, where σ is the
logistic function.

With the preference dataset D = {(xi, yiw, yil)}Ni=1, we parameterize the reward model rσ and optimize
it by maximizing the log likelihood of the difference between the reward of preferred response and rejected
response (as in Eq. (1)) and hence minimize the loss

L(rσ) = E(x,yw,yl)∼D[− log(p(yw > yl|x))]. (2)

A.1.3 Fine-tuning Using RL method
Finally, in this step, the trained reward model rσ is used to provide feedback on the output of the
parameterized language model πθ and optimize it by the objective of maximizing the expected reward

r(x, y) = rσ(x, y)− β(log(πθ(y|x))− log(πref (y|x))) (3)

where πθ denotes the policy of the language model we are optimizing and πref is the initial SFT model.
During the RL training phase, the parameters of the SFT model πref remain fixed. πθ is initialized with
πref and optimized using an RL algorithm, most commonly PPO (Schulman et al., 2017) and other
variants of actor-critic (Ramamurthy et al., 2023) algorithms. The parameter β ensures that the trained
policy πθ will not deviate significantly from the initial SFT model πref .

While RLHF is effective, it requires training a separate reward model, which makes the overall process
costly. DPO eliminates the need for a reward model by directly optimizing the language model πθ using
the policies of both the reference model πref and πθ itself. The objective function of DPO is to maximize
the policy difference between the preferred output yw and the rejected output yl as in

LDPO(πθ;πref ) = −E(x,yw,yl)∼D

[
log σ(β log

πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

)

]
. (4)

112



A.2 Additional results

Loss
T5-3B Flan-T5-3B

Dev Test Dev Test

EM F1 EM F1 EM F1 EM F1

DPO 51.10 70.45 52.46 74.29 53.77 73.68 55.15 77.48
IPO 50.64 69.41 51.57 73.41 53.53 73.06 53.36 76.79
RSO 49.83 69.55 50.90 74.31 53.88 73.50 55.48 77.24
KTO 47.74 68.21 51.12 74.24 54.11 73.76 53.36 77.20

Table 3: Results on the variants of DPO.

Table 3 shows the performance of the models for different variants of DPO. Although different DPO
variants achieve better performance on different metrics, overall, DPO outperforms others for T5-3B in
most cases, except for the test F1 score, where RSO achieves an F1 score of 74.31. For Flan-T5-3B, DPO
outperforms others in the test F1 score and performs comparably to the others on the remaining metrics.

A.3 Examples of negative outputs created by rules
Figure 3 shows the example of negative samples created by the rule–based method.

Figure 3: Examples of negative (rejected) outputs created by rules.
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