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Abstract

Retrieval Augmented Generation (RAG) com-
plements the knowledge of Large Language
Models (LLMs) by leveraging external informa-
tion to enhance response accuracy for queries.
This approach is widely applied in several fields
by taking its advantage of injecting the most
up-to-date information, and researchers are fo-
cusing on understanding and improving this as-
pect to unlock the full potential of RAG in such
high-stakes applications. However, despite the
potential of RAG to address these needs, the
mechanisms behind the confidence levels of its
outputs remain underexplored. Our study fo-
cuses on the impact of RAG, specifically exam-
ining whether RAG improves the confidence
of LLM outputs in the medical domain. We
conduct this analysis across various configu-
rations and models. We evaluate confidence
by treating the model’s predicted probability
as its output and calculating several evaluation
metrics which include calibration error method,
entropy, the best probability, and accuracy. Ex-
perimental results across multiple datasets con-
firmed that certain models possess the capa-
bility to judge for themselves whether an in-
serted document relates to the correct answer.
These results suggest that evaluating models
based on their output probabilities determine
whether they function as generators in the RAG
framework. Our approach allows us to evalu-
ate whether the models handle retrieved docu-
ments.1

1 Introduction

Retrieval Augmented Generation (RAG) (Lewis
et al., 2020) serves as a method to not only mitigate
hallucinations but also supplement the knowledge
of Large Language Models (LLMs) (Achiam et al.,
2023; Dubey et al., 2024; Aizawa et al., 2024). By
leveraging external information, RAG enhances re-
sponse accuracy and alignment with queries, mak-

1The code is available at https://github.com/
naist-nlp/CC_RAG.

Relevant documents:

{Documents}

Which of the following 

structures is derived from 

ectomesenchyme?

Choices
A: Motor neurons
B: Skeletal muscles
C: Melanocytes
D: Sweat

Answer: B -> C

Probability
w/o RAG
A: 0.04123
B: 0.8421
C: 0.11383
D: 0.04493

w/ RAG
A: 0.0024
B: 0.014933
C: 0.92317
D: 0.0031

Prompt

Does RAG affect 
Confidence 
Calibration?

LLMs

Figure 1: The focus of our research is to analyze whether
RAG improves the confidence of the model response.

ing it widely applicable in industries. Notable do-
mains include finance (Yepes et al., 2024; Setty
et al., 2024) and healthcare (Xiong et al., 2024),
where the reliability of information is critical. This
study focuses on the medical domain, which has
relatively more text data than other fields and in-
volves complex factors directly related to the hu-
man body. (Sohn et al., 2024; Jeong et al., 2024)

While researchers explore performance improve-
ments for LLMs using RAG, as illustrated in Fig-
ure 1, analyses focusing on prediction confidence
remain limited. Although RAG enhances answer
accuracy, it may lead to overconfidence, where
models exhibit unwarranted self-assurance (Chen
et al., 2024). We hypothesize that retrieving docu-
ments to support the correct answer through RAG
improve the model’s confidence, potentially lead-
ing to errors in confidence calibration. Based on
this, we pose a research question: Do LLMs im-
prove the confidence for outputs with RAG?

To address this question, we conduct a system-
atic analysis of multiple tasks and models in the
medical domain, exploring diverse scenarios using
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Dataset Size Option

PubMedQA 1,000 3
MedMCQA (Extract) 2,206 4

Table 1: The dataset used in our study. We select
datasets that not only contain QA pairs but also include
explanatory passages that justify the answers.

PubMedQA (Jin et al., 2019) and MedMCQA (Pal
et al., 2022). In particular, we create pseudo-RAG
to manipulate document content – such as adding
irrelevant documents deliberately or including only
those directly related to the answer – to simulate
the range of situations RAG encounter.

Our result shows that inserting documents delib-
erately containing answer-supporting information
improve confidence in many models, aligning with
expectations, although some models exhibited be-
havior contrary to this prediction. Additionally,
inserting documents unrelated to the correct an-
swer rarely improve the confidence, suggesting that
LLMs can discriminate whether an inserted docu-
ment relates to the answer. These results indicate
that evaluating models based on output probabili-
ties can lead to reveal the suitable generator model.

2 Related Work

2.1 Confidence of LLMs

Research on confidence has been prevalent since
before the era of LLMs (Jiang et al., 2021) and
continues to be extensively explored (Geng et al.,
2024). Becker and Soatto (2024) proposed a
framework that measures confidence by leverag-
ing explanation-generating text produced by LLMs.
Zhao et al. (2021) identified the issue that few-
shot prompting significantly impacts model confi-
dence and alters its inherent performance, and they
proposed methods to address this problem. Confi-
dence estimation is used as a technique to suppress
hallucinations, where models generate false infor-
mation (Zhang et al., 2023). Cole et al. (2023)
demonstrated that by utilizing model confidence,
it is possible to suppress outputs for ambiguous
questions. Our study contributes to this body of
research by specifically analyzing how RAG influ-
ences confidence calibration in LLM outputs. Un-
like prior works that primarily optimize retrieval
mechanisms, we directly investigate confidence cal-
ibration dynamics.

2.2 Boosting RAG with Confidence

Recent advances in RAG have leveraged model
confidence (e.g., output probability) to optimize
retrieval and generation processes. For instance,
Jiang et al. (2023) introduced FLARE, which dy-
namically decides whether to retrieve additional in-
formation based on token-level confidence during
generation, ensuring efficient retrieval by minimiz-
ing unnecessary searches. Similarly, query rewrit-
ing techniques using reinforcement learning (Ma
et al., 2023) and strategies such as Recitation-
Augmented Generation (Sun et al., 2023), which
searches for text resembling hypothetical answers,
have shown promise in enhancing retrieval accu-
racy. Moreover, recent studies like Self-RAG (Asai
et al., 2024) integrate retrieval into the generation
process itself. In many of these approaches, confi-
dence plays a crucial role either in deciding when
to retrieve or in re-ranking retrieved documents
based on their relevance. However, these studies
focus on improving RAG performance without an-
alyzing how confidence itself is influenced by the
RAG. Specifically, while confidence thresholds and
re-ranking mechanisms are employed to optimize
retrieval and generation, the underlying dynamics
of confidence calibration within the RAG pipeline
remain underexplored. Our study analyzes confi-
dence calibration with and without RAG to address
this gap, verify the implicit assumptions of prior
works, and contribute to a deeper understanding of
confidence-based mechanisms in RAG.

3 Methods

Our study analyzes whether the confidence im-
proves through RAG by calculating the model’s
confidence or entropy from the predicted proba-
bility by the model. Each input is formatted by
concatenating a system prompt, a question prompt,
and its answer options (e.g., a four-choice ques-
tion), following the design of Medical Information
Retrieval Augmented Generation Evaluation (MI-
RAGE) (Xiong et al., 2024). We also analyze the
optimal position for inserting documents retrieved
via pseudo-RAG, i.e., inserting a document directly
relevant to the answer or irrelevant deliberately into
the model input prompt. Specifically, we evaluate
three insertion patterns: before the question (Pre-
Question, denoted as Pre-Q), between the question
and the answer choices (After-Question, denoted as
Aft-Q), and after the answer choices (After-Choice,
denoted as Aft-C). This setup allows us to exam-
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ine the Lost-in-the-Middle phenomenon (Liu et al.,
2024), where models tend to overlook intermedi-
ate content when processing long-context inputs.
Moreover, in order to focus on the impact of re-
trieved document positions, we use documents that
contain the correct answer to the question. We
validate our research question under three scenar-
ios: (1): inserting only the explanation related to
the answer (denoted as Ans1). (2): combining the
correct explanation with two irrelevant documents
(denoted as Ans1-Oth2). (3): inserting three irrele-
vant documents (denoted as Oth3). The irrelevant
documents are selected from unrelated questions,
ensuring that they do not contain the correct answer
or semantically similar content.

Directly generating the choice answer by the
model complicates evaluation, because differences
in reported metrics arise even under identical con-
ditions across studies (Xiong et al., 2024; Chen
et al., 2023; Wu et al., 2024). In some studies, re-
searchers select the final candidate using regular
expressions, while in others, they treat the output
of a specific word (such as Yes or No) as the correct
answer. Thus, evaluation methods are not uniquely
defined if the sentence generated. In our study, we
predict the most plausible option from the given
choices as follows:

vi = logP (xi | prompt)

P (xi) =
exp(vi)∑J
j=1 exp(vj)

where vi represents the log probability corre-
sponding to each choice xi and the prompt refers
to the provided question or context. P (xi) denotes
the probability that the choice xi is the correct an-
swer, normalized by dividing the exponential of vi
by the sum of exponentials of all vj values, while
J is the number of options, which is 3 or 4.

4 Experimental Setup

4.1 Datasets
We focus on the application of RAG in the medical
domain. For the dataset, we select PubMedQA (Jin
et al., 2019) and MedMCQA (Pal et al., 2022),
both of which include multiple-choices QA data
along with explanatory passages that justify the
answers. These datasets follow the experimental
setup of MIRAGE (Xiong et al., 2024), as shown
in Table 1. For MedMCQA, we extract only the
questions that include supporting evidence for the
answer, resulting in a total of 2,206 instances.

You are a helpful medical 
expert, and your task is to 
answer a multi-choice medical 
question using the relevant 
documents. Please first think 
step-by-step and then choose 
the answer from the provided 
options. 
Your responses will be used for 
research purposes only, so 
please have a definite answer.

Here is the question:
{question}

Here are the potential choices:
A. {option_1}
B. {option_2}
C. {option_3}
D. {option_4}

Answer:

System Prompt

Prompt w/o RAG Prompt w/ RAG

Here are the relevant 
documents:
{context}

Here is the question:
{question}

Here are the relevant 
documents:
{context}

Here are the potential choices:
A. {option_1}
B. {option_2}
C. {option_3}
D. {option_4}

Here are the relevant 
documents:
{context}

Answer:

Pre-
Question

After-
Question

After-
Choice

pre-question
after-question
after-choice

Figure 2: Prompts used in our research. Each prompt
begins with a concatenated of the system prompt. Fol-
lowing MIRAGE (Xiong et al., 2024), we design the
templates to enable the calculation of probabilities.

4.2 Inference Models

Following prior research (Xiong et al., 2024), we
select the following models for evaluation: Phi-3.5
(3.8B) (Abdin et al., 2024), PMC-Llama (13B) (Wu
et al., 2024), Llama2 (70B) (Touvron et al., 2023b),
LLaMA3.1 (8B / 70B) (Dubey et al., 2024), and
Meditron (70B) (Chen et al., 2023). To ensure
fair evaluation across models with different ar-
chitectures and parameter sizes, we also include
Gemma2 (2B) (Team et al., 2024) and Qwen2.5
(14B / 70B) (Yang et al., 2024), bringing the total
to nine models. PMC-Llama is fine-tuned on medi-
cal domain documents based on Llama (Touvron
et al., 2023a), while Meditron undergoes continual
pretraining on Llama2 (Touvron et al., 2023b). For
70B models, we apply 4-bit quantization, and for
PMC-Llama, we use half-precision quantization to
compute probabilities. Detailed model configura-
tions are provided in Appendix A.1.

4.3 Templates

Our study modifies the approach based on the MI-
RAGE paper (Xiong et al., 2024) by excluding
Chain of Thought (CoT) (Wei et al., 2022), al-
lowing direct probability computation. (In other
words, when using CoT, the model must generate
responses, which, as discussed in Section 3, pre-
vents a valid evaluation.) Figure 2 presents the
prompts used in our study. Each prompt incorpo-
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rates system prompts from prior research (Xiong
et al., 2024) at the beginning of the input prompt.
To investigate whether the Lost-in-the-Middle phe-
nomenon (Liu et al., 2024), also occurs in RAG, our
study inserts retrieved documents at three positions:
before the question (Pre-Q), after the question (Aft-
Q), and after the answer choices (Aft-C).

4.4 Evaluation Metrics
We evaluate if RAG boosts LLM confidence using
entropy, best probability, accuracy, and Adaptive
Calibration Error. In our multiple-choice QA task,
each question has one correct answer, and output
probabilities classify responses as correct or not.

Entropy. We examine how entropy changes for
candidate answer choices under the influence of
RAG, calculating an entropy. Ideally, inserting an
answer-containing document should decrease en-
tropy (indicating a more confident selection of the
correct choice), while inserting entirely unrelated
documents should improve entropy. The entropy is
computed as:

H(P ) = −
J∑

i=1

P (xi) logP (xi)

P (xi) =
exp(vi)∑J
j=1 exp(vj)

Here, xi represents a candidate answer among
J total options, and vi denotes the logit score (i.e.,
the unnormalized log-probability) assigned to xi.
The softmax function transforms these logits into
a probability distribution P (xi), from which the
entropy H(P ) is calculated. Lower entropy in-
dicates higher model confidence in a particular
choice, while higher entropy implies uncertainty.

Best Probability. We define “Best Probability”
as the highest output probability among the candi-
date choices given to the model. In our study, we
evaluate this metric as confidence. A high output
probability shows strong confidence for correct an-
swers, while a low output probability is preferred
for incorrect answers (we want irrelevant docu-
ments to lower the model’s confidence).

The notation of best probability is as follows:

x∗ = arg max
xi∈X

(logP (xi | prompt))

P (xi) =
exp(vi)∑J
j=1 exp(vj)

Settings Options

QA PubMedQA, MedMCQA

Model Gemma2, Phi3.5, Llama2, Llama3.1
Qwen2.5, PMC-Llama, Meditron

Template w/o RAG, Pre-Q, Aft-Q, Aft-C
Evaluation Entropy, Best Prob, Accuracy, ACE

Table 2: Experimental settings used in our research.

Here, X is the set of all candidate answer
choices, and x∗ denotes the choice with the high-
est log-probability. Each vi represents the model’s
logit for the candidate xi, and the softmax function
converts these logits into a probability distribution
over all choices. The selected x∗ corresponds to the
most confident prediction the model makes under
the given prompt. This Best Probability reflects
how strongly the model favors its top prediction,
and it serves as an interpretable confidence score
in our evaluations.

Adaptive Calibration Error (ACE). Adaptive
Calibration Error (ACE) (Nixon et al., 2019) is a
metric proposed to address the shortcomings of Ex-
pected Calibration Error (ECE) (Naeini et al., 2015;
Guo et al., 2017), specifically aiming to reduce
the risk of bins with a small number of samples.
Proskurina et al. (2024) and Ulmer et al. (2022)
have pointed out that ACE is a more suitable cal-
ibration error metric for multi-class classification
problems. Based on these findings, we adopt ACE
in our evaluation. Table 2 provides a complete list
of all combinations and Appendix A.6 the details
of evaluation metrics.

5 Results

Table 3 presents the experimental results using
MedMCQA, while Table 4 shows the results for
PubMedQA. When distinguishing between cor-
rectly answered and incorrectly answered ques-
tions, Phi and Qwen exhibited ideal behavior from
an entropy perspective. Specifically, inserting sup-
porting documents for the correct answers led
to higher entropy, whereas inserting only unre-
lated documents resulted in lower entropy. In con-
trast, other models, e.g., Llama2, Llama3.1, and
Gemma2, produced unexpected results, suggest-
ing that Llama and Gemma may struggle to pro-
cess inserted documents effectively. Furthermore,
Qwen and Phi demonstrated the ability to deter-
mine whether an inserted document was relevant
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Figure 3: The transition of experimental results using MedMCQA. The figure classifies correctly answered and
incorrectly answered questions, illustrating how their distributions shift. This visualization corresponds to the Ans1
setting, with plots for all three conditions: Pre-Q, Aft-Q, and Aft-C.

MedMCQA (Entropy and Best Probability)

Model Pattern
Entropy (Correct) ↓ Best Prob (Correct) ↑ Entropy (Incorrect) ↓ Best Prob (Incorrect) ↓

None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3

Llama-2-70b-chat-hf

w/o RAG 1.24±1.11 – – – 0.42±0.55 – – – 1.28±1.27 – – – 0.38±0.38 – – –

Pre-Q – 1.12±0.16 1.12±0.16 1.27±0.10 – 0.54±0.12 0.54±0.12 0.41±0.09 – 1.27±0.08 1.28±0.08 1.31±0.06 – 0.41±0.07 0.40±0.08 0.38±0.07

Aft-Q – 1.11±0.16 1.15±0.16 1.29±0.10 – 0.55±0.12 0.52±0.13 0.40±0.09 – 1.27±0.09 1.29±0.08 1.31±0.06 – 0.41±0.08 0.40±0.08 0.38±0.07

Aft-C – 1.15±0.16 1.23±0.12 1.30±0.10 – 0.51±0.13 0.46±0.11 0.39±0.09 – 1.28±0.09 1.31±0.07 1.31±0.07 – 0.40±0.08 0.38±0.08 0.38±0.08

Llama-3.1-70B

w/o RAG 1.24±1.24 – – – 0.42±0.42 – – – 1.31±1.31 – – – 0.35±0.32 – – –

Pre-Q – 1.35±0.07 1.35±0.07 1.35±0.07 – 0.32±0.03 0.33±0.03 0.33±0.03 – 1.35±0.02 1.35±0.02 1.35±0.02 – 0.32±0.01 0.32±0.01 0.33±0.01

Aft-Q – 1.35±0.07 1.35±0.07 1.35±0.07 – 0.33±0.03 0.33±0.03 0.33±0.03 – 1.35±0.02 1.35±0.02 1.35±0.02 – 0.32±0.01 0.33±0.01 0.33±0.01

Aft-C – 1.35±0.07 1.35±0.07 1.35±0.07 – 0.33±0.03 0.33±0.03 0.33±0.03 – 1.35±0.02 1.35±0.02 1.35±0.02 – 0.32±0.01 0.33±0.01 0.33±0.01

Llama-3.1-8B

w/o RAG 1.38±1.38 – – – 0.28±0.28 – – – 1.38±1.38 – – – 0.27±0.27 – – –

Pre-Q – 1.38±0.07 1.38±0.07 1.38±0.07 – 0.28±0.03 0.28±0.03 0.28±0.03 – 1.38±0.02 1.38±0.02 1.38±0.02 – 0.27±0.01 0.27±0.01 0.27±0.01

Aft-Q – 1.38±0.07 1.38±0.07 1.38±0.06 – 0.28±0.03 0.28±0.03 0.28±0.03 – 1.38±0.02 1.38±0.02 1.38±0.02 – 0.27±0.01 0.27±0.01 0.27±0.01

Aft-C – 1.38±0.07 1.38±0.07 1.38±0.07 – 0.28±0.03 0.28±0.03 0.28±0.03 – 1.38±0.02 1.38±0.02 1.38±0.02 – 0.27±0.01 0.27±0.01 0.27±0.01

meditron-70b

w/o RAG 1.23±1.05 – – – 0.42±0.57 – – – 1.25±1.19 – – – 0.40±0.40 – – –

Pre-Q – 1.11±0.17 1.05±0.19 1.23±0.11 – 0.54±0.13 0.57±0.14 0.47±0.09 – 1.24±0.10 1.19±0.11 1.27±0.08 – 0.43±0.08 0.47±0.08 0.43±0.08

Aft-Q – 1.10±0.17 1.09±0.17 1.21±0.11 – 0.54±0.13 0.55±0.13 0.48±0.09 – 1.23±0.10 1.20±0.10 1.23±0.10 – 0.44±0.08 0.47±0.08 0.47±0.09

Aft-C – 1.15±0.17 1.28±0.10 1.30±0.08 – 0.51±0.13 0.43±0.09 0.41±0.07 – 1.27±0.08 1.31±0.06 1.31±0.06 – 0.41±0.07 0.40±0.07 0.41±0.07

PMC-LLaMA-13B

w/o RAG 1.00±1.00 – – – 0.56±0.56 – – – 1.05±1.05 – – – 0.53±0.31 – – –

Pre-Q – 1.36±0.06 1.36±0.06 1.36±0.06 – 0.33±0.05 0.32±0.05 0.32±0.05 – 1.37±0.03 1.37±0.02 1.37±0.02 – 0.31±0.04 0.31±0.03 0.31±0.03

Aft-Q – 1.36±0.06 1.36±0.06 1.36±0.06 – 0.33±0.05 0.32±0.05 0.31±0.05 – 1.36±0.03 1.37±0.03 1.37±0.03 – 0.32±0.04 0.31±0.03 0.31±0.04

Aft-C – 1.36±0.06 1.35±0.07 1.36±0.07 – 0.33±0.05 0.33±0.05 0.33±0.05 – 1.36±0.03 1.36±0.03 1.36±0.03 – 0.32±0.04 0.32±0.04 0.32±0.04

Gemma-2-2b

w/o RAG 1.17±1.11 – – – 0.52±0.56 – – – 1.18±1.13 – – – 0.52±0.51 – – –

Pre-Q – 1.12±0.08 1.13±0.07 1.15±0.06 – 0.55±0.05 0.54±0.04 0.52±0.04 – 1.17±0.05 1.16±0.04 1.16±0.04 – 0.51±0.04 0.51±0.04 0.52±0.03

Aft-Q – 1.13±0.07 1.14±0.06 1.15±0.06 – 0.55±0.05 0.53±0.04 0.52±0.04 – 1.17±0.05 1.16±0.04 1.15±0.04 – 0.51±0.04 0.51±0.04 0.52±0.03

Aft-C – 1.11±0.08 1.12±0.07 1.13±0.06 – 0.56±0.05 0.55±0.05 0.54±0.04 – 1.16±0.05 1.14±0.05 1.13±0.05 – 0.53±0.04 0.54±0.04 0.54±0.04

Phi-3.5

w/o RAG 0.93±0.05 – – – 0.62±0.98 – – – 1.09±0.39 – – – 0.51±0.51 – – –

Pre-Q – 0.06±0.17 0.07±0.18 0.24±0.32 – 0.98±0.08 0.98±0.08 0.90±0.15 – 0.39±0.34 0.43±0.35 0.49±0.38 – 0.84±0.18 0.82±0.18 0.80±0.19

Aft-Q – 0.05±0.16 0.07±0.18 0.34±0.36 – 0.98±0.07 0.97±0.08 0.87±0.17 – 0.45±0.35 0.46±0.35 0.50±0.37 – 0.81±0.18 0.81±0.18 0.80±0.19

Aft-C – 0.09±0.19 0.14±0.22 0.27±0.32 – 0.97±0.09 0.95±0.10 0.90±0.15 – 0.45±0.34 0.44±0.36 0.42±0.35 – 0.81±0.18 0.82±0.19 0.84±0.17

Qwen2.5-14B

w/o RAG 0.86±0.48 – – – 0.67±0.85 – – – 1.06±1.03 – – – 0.55±0.49 – – –

Pre-Q – 0.52±0.33 0.53±0.35 0.89±0.30 – 0.84±0.15 0.83±0.16 0.65±0.18 – 1.03±0.23 1.05±0.23 1.07±0.22 – 0.56±0.15 0.55±0.15 0.54±0.15

Aft-Q – 0.48±0.32 0.51±0.33 0.92±0.29 – 0.85±0.14 0.84±0.16 0.63±0.17 – 1.04±0.24 1.05±0.23 1.06±0.21 – 0.56±0.15 0.55±0.15 0.55±0.14

Aft-C – 0.66±0.35 0.80±0.32 1.00±0.24 – 0.77±0.17 0.71±0.18 0.59±0.16 – 1.12±0.20 1.12±0.20 1.15±0.17 – 0.51±0.13 0.51±0.14 0.49±0.12

Qwen2.5-72B

w/o RAG 0.82±0.44 – – – 0.69±0.86 – – – 1.09±0.87 – – – 0.53±0.53 – – –

Pre-Q – 0.52±0.31 0.56±0.32 0.75±0.32 – 0.83±0.14 0.80±0.15 0.71±0.18 – 0.91±0.26 0.87±0.24 0.94±0.24 – 0.61±0.16 0.63±0.15 0.62±0.15

Aft-Q – 0.44±0.30 0.54±0.31 0.83±0.31 – 0.86±0.13 0.82±0.15 0.68±0.17 – 0.99±0.27 0.97±0.24 0.99±0.22 – 0.57±0.16 0.59±0.15 0.60±0.15

Aft-C – 0.53±0.32 0.65±0.32 0.85±0.28 – 0.82±0.15 0.77±0.16 0.67±0.17 – 1.00±0.25 1.02±0.21 0.99±0.22 – 0.57±0.15 0.57±0.14 0.61±0.14

Table 3: Experimental result on MedMCQA. Bold indicates the best value among the models. Specifically, the
lowest entropy and the highest best probability (Correct case) are highlighted. This table has numerical values and
their standard deviations.

to the answer, leading to provide strong evidence
that they function as suitable generators.

6 Analysis & Discussion

How Does RAG Affect Prediction Probabilities?
Figure 3 presents partial experimental results us-
ing MedMCQA, while Figure 4 shows results from
PubMedQA. These figures correspond to the Ans1
setting, where all three phases—Pre-Q, Aft-Q, and
Aft-C—are plotted. A detailed analysis focuses
on Phi and Qwen, which exhibited ideal behavior.
When RAG was not applied, i.e., evaluating the
models’ intrinsic accuracy, the output probabili-

ties were evenly distributed across both datasets.
Furthermore, the results of Phi-3.5 on PubMedQA
reveal that the incorrect predictions tend to con-
centrate at the upper end, i.e., where output prob-
abilities are high. This pattern suggests that the
model exhibits overconfidence, making incorrect
predictions despite assigning high probabilities.
When solving a QA task under a deliberate set-
ting that includes supporting documents for correct
answers (similar to pseudo-RAG), all models (Phi
and Qwen) showed improved output probabilities.
This suggests that the models can assess whether
retrieved documents contain useful information.

5



Figure 4: The transition of experimental results using PubMedQA. The figure classifies correctly answered and
incorrectly answered questions, illustrating how their distributions shift. This visualization corresponds to the Ans1
setting, with plots for all three conditions: Pre-Q, Aft-Q, and Aft-C.

PubMedQA (Entropy and Best Probability)

Model Pattern
Entropy (Correct) ↓ Best Prob (Correct) ↑ Entropy (Incorrect) ↓ Best Prob (Incorrect) ↓

None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3

Llama-2-70b-chat-hf

w/o RAG 0.83±0.83 – – – 0.62±0.62 – – – 0.93±0.93 – – – 0.55±0.38 – – –

Pre-Q – 1.12±0.16 1.12±0.16 1.27±0.10 – 0.54±0.12 0.54±0.12 0.41±0.09 – 1.27±0.08 1.28±0.08 1.31±0.06 – 0.41±0.07 0.40±0.08 0.38±0.07

Aft-Q – 1.11±0.16 1.15±0.16 1.29±0.10 – 0.55±0.12 0.52±0.13 0.40±0.09 – 1.27±0.09 1.29±0.08 1.31±0.06 – 0.41±0.08 0.40±0.08 0.38±0.07

Aft-C – 1.15±0.16 1.23±0.12 1.30±0.10 – 0.51±0.13 0.46±0.11 0.39±0.09 – 1.28±0.09 1.31±0.07 1.31±0.07 – 0.40±0.08 0.38±0.08 0.38±0.08

Llama-3.1-70B

w/o RAG 0.86±0.86 – – – 0.59±0.59 – – – 0.87±0.87 – – – 0.57±0.32 – – –

Pre-Q – 1.35±0.07 1.35±0.07 1.35±0.07 – 0.32±0.03 0.33±0.03 0.33±0.03 – 1.35±0.02 1.35±0.02 1.35±0.02 – 0.32±0.01 0.32±0.01 0.33±0.01

Aft-Q – 1.35±0.07 1.35±0.07 1.35±0.07 – 0.33±0.03 0.33±0.03 0.33±0.03 – 1.35±0.02 1.35±0.02 1.35±0.02 – 0.32±0.01 0.33±0.01 0.33±0.01

Aft-C – 1.35±0.07 1.35±0.07 1.35±0.07 – 0.33±0.03 0.33±0.03 0.33±0.03 – 1.35±0.02 1.35±0.02 1.35±0.02 – 0.32±0.01 0.33±0.01 0.33±0.01

Llama-3.1-8B

w/o RAG 1.09±1.09 – – – 0.36±0.36 – – – 1.09±1.09 – – – 0.36±0.27 – – –

Pre-Q – 1.38±0.07 1.38±0.07 1.38±0.07 – 0.28±0.03 0.28±0.03 0.28±0.03 – 1.38±0.02 1.38±0.02 1.38±0.02 – 0.27±0.01 0.27±0.01 0.27±0.01

Aft-Q – 1.38±0.07 1.38±0.07 1.38±0.06 – 0.28±0.03 0.28±0.03 0.28±0.03 – 1.38±0.02 1.38±0.02 1.38±0.02 – 0.27±0.01 0.27±0.01 0.27±0.01

Aft-C – 1.38±0.07 1.38±0.07 1.38±0.07 – 0.28±0.03 0.28±0.03 0.28±0.03 – 1.38±0.02 1.38±0.02 1.38±0.02 – 0.27±0.01 0.27±0.01 0.27±0.01

meditron-70b

w/o RAG 0.94±0.94 – – – 0.54±0.57 – – – 0.94±0.94 – – – 0.52±0.40 – – –

Pre-Q – 1.11±0.17 1.05±0.19 1.23±0.11 – 0.54±0.13 0.57±0.14 0.47±0.09 – 1.24±0.10 1.19±0.11 1.27±0.08 – 0.43±0.08 0.47±0.08 0.43±0.08

Aft-Q – 1.10±0.17 1.09±0.17 1.21±0.11 – 0.54±0.13 0.55±0.13 0.48±0.09 – 1.23±0.10 1.20±0.10 1.23±0.10 – 0.44±0.08 0.47±0.08 0.47±0.09

Aft-C – 1.15±0.17 1.28±0.10 1.30±0.08 – 0.51±0.13 0.43±0.09 0.41±0.07 – 1.27±0.08 1.31±0.06 1.31±0.06 – 0.41±0.07 0.40±0.07 0.41±0.07

PMC-LLaMA-13B

w/o RAG 1.08±1.08 – – – 0.40±0.40 – – – 1.08±1.08 – – – 0.40±0.31 – – –

Pre-Q – 1.36±0.06 1.36±0.06 1.36±0.06 – 0.33±0.05 0.32±0.05 0.32±0.05 – 1.37±0.03 1.37±0.02 1.37±0.02 – 0.31±0.04 0.31±0.03 0.31±0.03

Aft-Q – 1.36±0.06 1.36±0.06 1.36±0.06 – 0.33±0.05 0.32±0.05 0.31±0.05 – 1.36±0.03 1.37±0.03 1.37±0.03 – 0.32±0.04 0.31±0.03 0.31±0.04

Aft-C – 1.36±0.06 1.35±0.07 1.36±0.07 – 0.33±0.05 0.33±0.05 0.33±0.05 – 1.36±0.03 1.36±0.03 1.36±0.03 – 0.32±0.04 0.32±0.04 0.32±0.04

Gemma-2-2b

w/o RAG 0.93±0.93 – – – 0.61±0.61 – – – 0.93±0.93 – – – 0.61±0.51 – – –

Pre-Q – 1.12±0.08 1.13±0.07 1.15±0.06 – 0.55±0.05 0.54±0.04 0.52±0.04 – 1.17±0.05 1.16±0.04 1.16±0.04 – 0.51±0.04 0.51±0.04 0.52±0.03

Aft-Q – 1.13±0.07 1.14±0.06 1.15±0.06 – 0.55±0.05 0.53±0.04 0.52±0.04 – 1.17±0.05 1.16±0.04 1.15±0.04 – 0.51±0.04 0.51±0.04 0.52±0.03

Aft-C – 1.11±0.08 1.12±0.07 1.13±0.06 – 0.56±0.05 0.55±0.05 0.54±0.04 – 1.16±0.05 1.14±0.05 1.13±0.05 – 0.53±0.04 0.54±0.04 0.54±0.04

Phi-3.5

w/o RAG 0.40±0.05 – – – 0.81±0.98 – – – 0.41±0.39 – – – 0.82±0.80 – – –

Pre-Q – 0.06±0.17 0.07±0.18 0.24±0.32 – 0.98±0.08 0.98±0.08 0.90±0.15 – 0.39±0.34 0.43±0.35 0.49±0.38 – 0.84±0.18 0.82±0.18 0.80±0.19

Aft-Q – 0.05±0.16 0.07±0.18 0.34±0.36 – 0.98±0.07 0.97±0.08 0.87±0.17 – 0.45±0.35 0.46±0.35 0.50±0.37 – 0.81±0.18 0.81±0.18 0.80±0.19

Aft-C – 0.09±0.19 0.14±0.22 0.27±0.32 – 0.97±0.09 0.95±0.10 0.90±0.15 – 0.45±0.34 0.44±0.36 0.42±0.35 – 0.81±0.18 0.82±0.19 0.84±0.17

Qwen2.5-14B

w/o RAG 0.90±0.48 – – – 0.59±0.85 – – – 0.92±0.92 – – – 0.58±0.49 – – –

Pre-Q – 0.52±0.33 0.53±0.35 0.89±0.30 – 0.84±0.15 0.83±0.16 0.65±0.18 – 1.03±0.23 1.05±0.23 1.07±0.22 – 0.56±0.15 0.55±0.15 0.54±0.15

Aft-Q – 0.48±0.32 0.51±0.33 0.92±0.29 – 0.85±0.14 0.84±0.16 0.63±0.17 – 1.04±0.24 1.05±0.23 1.06±0.21 – 0.56±0.15 0.55±0.15 0.55±0.14

Aft-C – 0.66±0.35 0.80±0.32 1.00±0.24 – 0.77±0.17 0.71±0.18 0.59±0.16 – 1.12±0.20 1.12±0.20 1.15±0.17 – 0.51±0.13 0.51±0.14 0.49±0.12

Qwen2.5-72B

w/o RAG 0.97±0.44 – – – 0.53±0.86 – – – 1.00±0.87 – – – 0.49±0.49 – – –

Pre-Q – 0.52±0.31 0.56±0.32 0.75±0.32 – 0.83±0.14 0.80±0.15 0.71±0.18 – 0.91±0.26 0.87±0.24 0.94±0.24 – 0.61±0.16 0.63±0.15 0.62±0.15

Aft-Q – 0.44±0.30 0.54±0.31 0.83±0.31 – 0.86±0.13 0.82±0.15 0.68±0.17 – 0.99±0.27 0.97±0.24 0.99±0.22 – 0.57±0.16 0.59±0.15 0.60±0.15

Aft-C – 0.53±0.32 0.65±0.32 0.85±0.28 – 0.82±0.15 0.77±0.16 0.67±0.17 – 1.00±0.25 1.02±0.21 0.99±0.22 – 0.57±0.15 0.57±0.14 0.61±0.14

Table 4: Experimental results using PubMedQA. Bold indicates the best value among the models. Specifically, the
lowest entropy and the highest best probability (Correct case) are highlighted. This table has numerical values and
their standard deviations.

Model Behavior When Inserting Answer-
Containing Documents. When explicitly insert-
ing documents that contain the correct answers,
Phi and Qwen demonstrated ideal behavior. For
instance, from a correct entropy perspective in Ta-
ble 3, Phi had a value of 0.933 under the w/o RAG
setting, which dropped to 0.051 after document
insertion. Similarly, for Qwen2.5 (72B), entropy
decreased from 0.819 to 0.444. This observation
indicates that the models can assess whether an in-
serted document is relevant to the question. More-
over, when they determine that the document is
unnecessary, they attempt to answer using their

own knowledge. Further evidence supporting this
conclusion comes from cases where inserting un-
related documents did not improve accuracy. This
suggests that the models selectively utilize external
information only when it is deemed useful.

Behavior of Calibration Error. Table 5 presents
the evaluation result of ACE using MedMCQA,
while Table 6 shows the results for PubMedQA.
A detailed analysis of Llama and Gemma reveals
substantial differences in behavior depending on
the model. Notably, even when inserting entirely
correct documents (Ans1), Llama3.1 (70B) experi-
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Model Pattern
ACE ↓ Accuracy ↑

None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3

Llama2 (70B)

w/o RAG 2.208 – – – 38.322 – – –

Pre-Q – 22.359 25.113 7.181 – 72.575 75.340 32.094
Aft-Q – 23.912 21.132 10.781 – 75.567 69.628 28.105
Aft-C – 19.653 17.514 9.803 – 67.498 60.743 28.876

Llama3.1 (70B)

w/o RAG 19.582 – – – 58.977 – – –

Pre-Q – 11.496 11.580 11.658 – 20.898 20.943 20.943
Aft-Q – 11.518 11.671 11.714 – 20.898 20.898 20.943
Aft-C – 11.504 11.707 11.795 – 20.943 20.943 20.943

Llama3.1 (8B)

w/o RAG 5.423 – – – 22.209 – – –

Pre-Q – 4.701 4.254 3.644 – 23.345 23.209 23.799
Aft-Q – 4.473 4.632 3.892 – 23.028 23.209 24.025
Aft-C – 4.476 4.746 4.990 – 23.209 23.255 23.663

Meditron (70B)

w/o RAG 6.412 – – – 35.525 – – –

Pre-Q – 17.684 7.652 8.665 – 67.724 54.034 36.038
Aft-Q – 15.894 9.467 15.334 – 66.682 47.144 31.958
Aft-C – 15.101 6.946 9.006 – 62.829 34.180 31.913

PMC-Llama (13B)

w/o RAG 15.671 – – – 38.107 – – –

Pre-Q – 4.943 4.367 4.357 – 32.729 31.641 26.972
Aft-Q – 4.003 2.550 5.032 – 32.910 30.009 26.972
Aft-C – 3.496 3.780 4.397 – 33.454 28.740 28.060

Gemma2 (2B)

w/o RAG 19.568 – – – 32.297 – – –

Pre-Q – 25.511 23.160 20.520 – 31.233 31.278 31.278
Aft-Q – 24.160 21.072 20.618 – 31.188 31.278 31.278
Aft-C – 24.814 23.118 22.916 – 31.324 31.324 31.324

Phi3.5 (3.8B)

w/o RAG 5.624 – – – 51.518 – – –

Pre-Q – 9.786 10.378 33.709 – 86.083 84.950 51.813
Aft-Q – 7.636 9.270 43.415 – 88.486 85.947 39.393
Aft-C – 7.682 15.952 42.476 – 87.353 76.111 44.334

Qwen2.5 (14B)

w/o RAG 12.125 – – – 49.151 – – –

Pre-Q – 8.646 8.740 11.892 – 89.483 88.441 47.280
Aft-Q – 7.013 7.257 17.592 – 89.121 87.534 40.798
Aft-C – 7.746 9.778 8.531 – 79.329 75.884 45.014

Qwen2.5 (72B)

w/o RAG 4.030 – – – 60.483 – – –

Pre-Q – 9.393 7.896 20.412 – 89.982 85.766 45.739
Aft-Q – 8.782 9.781 18.652 – 93.246 89.574 44.696
Aft-C – 9.270 5.990 23.564 – 88.622 79.284 39.483

Table 5: Evaluation results with MedMCQA. Red highlights areas where performance improved compared to the
non-RAG setting, while Blue indicates areas where performance deteriorated.

ences a drop in accuracy, whereas Llama3.1 (8B)
shows improved accuracy even when inserting com-
pletely unrelated documents (Oth3). This stark
contrast indicates that even within the same model
family, behavior can vary largely. Moreover, a com-
parison between Llama2, Meditron, and Llama3.1
shows considerable differences in behavior, ruling
out parameter size as the primary cause. These
findings suggest that while the Llama series per-
forms well under specific instruction formats, it
may negatively impact performance in other cases.
On the other hand, Qwen and Phi exhibit a clear pat-

tern: inserting entirely unrelated documents (Oth3)
worsens ACE, while inserting answer-containing
documents (Ans1 or Ans1-Oth2) leads to improve-
ments. This tendency implies that Phi and Qwen
possess the ability to assess whether retrieved doc-
uments provide useful information. These results
show that analyzing LLM confidence through pre-
dicted probabilities effectively reveals the model’s
ability to identify meaningful documents.

Did “Lost in the Middle” Phenomenon Occur?
Our study also examined the “Lost in the Middle”
phenomenon (Liu et al., 2024) by evaluating the
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Model Pattern
ACE ↓ Accuracy ↑

None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3

Llama2 (70B)

w/o RAG 12.107 – – – 46.400 – – –

Pre-Q – 29.791 30.422 14.146 – 82.200 79.800 56.500
Aft-Q – 30.380 31.220 13.234 – 81.600 74.100 53.000
Aft-C – 13.494 13.430 11.322 – 57.200 53.100 50.700

Llama3.1 (70B)

w/o RAG 6.091 – – – 58.600 – – –

Pre-Q – 11.329 11.513 11.521 – 55.200 55.200 55.200
Aft-Q – 11.343 11.532 11.539 – 55.200 55.200 55.200
Aft-C – 11.370 11.534 11.543 – 55.200 55.200 55.200

Llama3.1 (8B)

w/o RAG 24.939 – – – 11.000 – – –

Pre-Q – 23.683 23.368 23.975 – 12.200 12.600 12.000
Aft-Q – 23.085 23.576 23.988 – 12.800 12.400 12.000
Aft-C – 23.930 23.854 24.370 – 11.900 12.100 11.600

Meditron (70B)

w/o RAG 18.115 – – – 34.800 – – –

Pre-Q – 11.540 18.483 8.365 – 57.300 69.800 57.200
Aft-Q – 9.159 6.645 6.270 – 56.700 55.600 54.800
Aft-C – 4.171 5.050 7.915 – 54.700 54.800 55.100

PMC-Llama (13B)

w/o RAG 17.261 – – – 22.800 – – –

Pre-Q – 10.462 4.650 3.387 – 28.800 37.900 36.600
Aft-Q – 10.322 4.000 3.985 – 28.900 39.200 40.000
Aft-C – 4.169 5.421 7.250 – 41.200 44.500 46.100

Gemma2 (2B)

w/o RAG 6.387 – – – 55.200 – – –

Pre-Q – 5.794 5.409 5.394 – 55.300 55.200 55.200
Aft-Q – 6.159 5.098 4.188 – 55.200 55.200 55.200
Aft-C – 9.081 6.161 6.376 – 55.200 55.200 55.200

Phi3.5 (3.8B)

w/o RAG 48.176 – – – 33.400 – – –

Pre-Q – 14.640 14.777 57.831 – 81.600 81.200 21.900
Aft-Q – 13.677 31.960 52.083 – 82.300 62.700 41.300
Aft-C – 16.771 33.297 47.123 – 73.700 52.300 33.800

Qwen2.5 (14B)

w/o RAG 15.874 – – – 42.800 – – –

Pre-Q – 4.746 4.816 18.425 – 83.400 83.200 32.600
Aft-Q – 3.460 5.013 26.783 – 82.800 76.100 33.900
Aft-C – 7.616 3.088 23.229 – 74.500 63.900 32.100

Qwen2.5 (72B)

w/o RAG 7.205 – – – 46.400 – – –

Pre-Q – 10.477 3.801 25.283 – 74.900 78.100 33.000
Aft-Q – 8.024 10.931 17.828 – 80.300 71.200 34.300
Aft-C – 8.877 6.995 13.543 – 76.800 71.000 42.500

Table 6: Evaluation results on PubMedQA. Red highlights areas where performance improved compared to the
non-RAG setting, while Blue indicates areas where performance deteriorated.

impact of document placement within the template
across multiple positions (Pre-Q, Aft-Q, and Aft-
C). Focusing on Phi and Qwen, which exhibited
expected behavior in terms of entropy and accu-
racy, an intriguing pattern emerged. From an en-
tropy perspective, inserting the document after the
answer choices yielded the best results, while from
an accuracy perspective, placing it before the an-
swer choices was optimal. These findings suggest
that when prioritizing the reliability of information,
entropy should be the primary metric.

Error Analysis. Appendix B.1 presents the re-
sults of the error analysis, which examines how
the model makes mistakes. PubMedQA consists
of three answer choices: yes, no, and maybe, al-
lowing us to analyze the types of errors the model
makes. For Llama3.1 (8B, 70B), PMC-Llama, and
Gemma2, the bin colors remain unchanged, indicat-
ing that these models do not incorporate arbitrarily
inserted supporting documents (Ans1, Ans1-Oth2).
Meditron, w/o RAG, outputs “No” for all incorrect
answers. However, when a document is provided,
it changes all responses to “Yes,” revealing an ex-
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tremely sensitive behavior.

7 Conclusion

Our research explored the impact of Retrieval Aug-
mented Generation (RAG) on model confidence in
the medical domain where information reliability
is crucial. We found that when models retrieve rel-
evant documents, they not only boost accuracy but
also show higher confidence scores. In contrast, ir-
relevant documents have little effect on improving
confidence. Several models demonstrate the ability
to judge if the retrieved documents connect to the
correct answer, indicating a more discerning use
of external information than we anticipated. Our
evaluation metrics provide a clear framework for
spotting the best generator models within RAG sys-
tems. The findings reveal that models adjust their
output probabilities in response to the quality of the
retrieved documents, which opens up new ways to
measure and improve model performance. These
insights help refine RAG methods, making them
more reliable for high-stakes applications.

8 Limitations

8.1 The Experiments of the Other Domain
Our study prioritizes domains where RAG is ap-
plied, focusing specifically on the medical domain
to analyze confidence. To advance further, it be-
comes necessary to validate RAG in domains such
as finance and analyze its confidence in contexts
requiring highly reliable information.

8.2 Further Analyzing New RAG Architecture
Our study focused exclusively on analyzing the
basic RAG architecture. While the standard RAG
framework directly utilizes retrieved documents
within the LLM, newer RAG architectures incorpo-
rate various control mechanisms. Moving forward,
it is essential to analyze these advanced architec-
tures from the perspective of confidence as well.

8.3 Other Metrics for Evaluation
The evaluation metrics used in this study, ACE,
may have some drawbacks. (Kull et al., 2019; Ku-
mar et al., 2019; Baan et al., 2022). Since LLMs
outputs are not always strictly correct or incorrect,
researchers often use Prediction Rejection Ratio
(PRR), which measures the correlation between
confidence scores and output quality. (Fadeeva
et al., 2023; Vashurin et al., 2025; He et al., 2024;
Ozaki et al., 2025b). However, our study focuses

on a multiple-QA task, where each question has
a uniquely defined correct answer. Additionally,
the models were evaluated using force decoding.
Given these conditions, ACE serves as appropriate
evaluation metrics.

8.4 Methods for Generating Model Outputs

This study deliberately avoids generating free-text
responses from models. Instead, it retrieves an-
swer candidates using force decoding This de-
cision stems from an observation in prior re-
search: many studies rely heavily on regular ex-
pressions to extract correct answers, leading to
substantial accuracy variations even when using
the same QA task and model. (https://github.
com/Teddy-XiongGZ/MedRAG, https://github.
com/epfLLM/meditron, https://github.com/
chaoyi-wu/PMC-LLaMA.) To address this issue, we
select answer choices based on the model’s inherent
output probabilities. This approach avoids intro-
ducing dependencies on specific evaluation metrics,
which would otherwise occur if the model were
required to generate explanations using Chain-of-
Thought (CoT) or produce confidence scores.

9 Ethical Considerations

9.1 The Possibility of Dataset Bias

The datasets and retrieval mechanisms employed in
our study may carry inherent biases, which could
influence the model’s predictions and potentially
affect fairness in decision-making. Recognizing
these biases, we advocate for the use of diverse and
representative datasets to minimize their impact.
Additionally, we uphold transparency by analyzing
the interplay between confidence and accuracy, pro-
viding users with clearer insights into the system’s
limitations and confidence. However, we empha-
size the need for human oversight, as no automated
system can guarantee infallibility.

9.2 AI Assistant Tools

We used ChatGPT 2 and DeepL 3 to translate sen-
tences to English and accelerate our research.
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A Example Appendix

A.1 Detailed Model Settings
The PMC-Llama model was quantized to half-
precision, while the 70B / 72B models were
quantized to 4-bit precision for experimenta-
tion. The implementation relied on the Trans-
formers library (Wolf et al., 2020) and bitsand-
bytes (Dettmers et al., 2022).

Model Params HuggingFace Name

Phi-3.5 3.8B microsoft/Phi-3.5-mini-instruct
PMC-Llama 13B axiong/PMC_LLaMA_13B
LLama2 70B meta-llama/Llama-2-70b-chat-hf
Meditron 70B epfl-llm/meditron-70b
Llama3.1 8B meta-llama/Llama-3.1-8B
Llama3.1 70B meta-llama/Llama-3.1-70B
Gemma2 2B google/gemma-2-2b
Qwen2.5 14B Qwen/Qwen2.5-14B
Qwen2.5 72B Qwen/Qwen2.5-72B

Table 7: Detailed name of models.

A.2 Dataset Selection
The dataset selection is based on prior research
by Xiong et al. (2024). From the datasets they
used, we select those that include both QA pairs
and explanatory passages that justify the answers
(MedMCQA and PubMedQA) for this study.

Since the test set for MedMCQA is not publicly
available, our study used the dev set as the test
set, following the approach adopted in MIRAGE.4.
We used the datasets, especially MedMCQA5, Pub-
MedQA6.

A.3 Details of the Input Format
As described in Section 3, we determine the se-
lected choice based on the output probabilities as-

4https://huggingface.co/datasets/
openlifescienceai/medmcqa

5https://github.com/MedMCQA/MedMCQA
6https://github.com/pubmedqa/pubmedqa
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signed by LLMs to the given candidates. To pre-
vent answer choices from being split into multiple
tokens by the tokenizer, we replace them with A, B,
C, and D before feeding them into the model. This
approach ensures a fair comparison across models,
even for answer choices that would otherwise span
multiple tokens.

A.4 Inference Settings

In this study, as far as inference which needs to use
GPUs, all experiments were conducted on a single
NVIDIA RTX A6000 and NVIDIA GeForce RTX
3090 GPU.

A.5 Why Do We Focus on the Medical
Domain?

Among the various domains where information re-
liability is crucial (e.g., finance, law, autonomous
driving, and healthcare), we chose to focus on
healthcare for the following reasons:

• Complexity and Scale of Medical Texts: Med-
ical documents are inherently complex and
vast in scope, making them particularly suit-
able for RAG-based approaches. Combined
with the critical importance of information re-
liability in this field, focusing on healthcare
becomes a highly significant choice.

• Challenges in Real-World Applications: Ques-
tions involving detailed patient information,
such as medical histories and symptoms, of-
ten overwhelm retrieval systems, making it
difficult to identify crucial diagnostic clues.
Furthermore, in practical applications, patient
conditions and individual characteristics vary
widely. Differences in age, medical history,
genetic factors, and lifestyle often lead to vari-
ations in treatment for the same disease. Pro-
viding inaccurate information in such scenar-
ios can result in severe consequences. (Sohn
et al., 2024)

• Established Significance of BioNLP: The
prominence of the healthcare domain is ev-
ident from the long-standing “BioNLP” work-
shop, which has been held for over two
decades.7

• Emerging Trends in Healthcare RAG: Efforts
to improve RAG performance in the medical

7https://aclweb.org/aclwiki/BioNLP_Workshop

domain have led to developments like Self-
BioRAG, which leverages confidence scores.
Its popularity and significant citation count
highlight this field as a trending area of re-
search. (Jeong et al., 2024) These points
illustrate the rationale behind our focus on the
healthcare domain.

A.6 Details of Evaluation Metrics

Expected Calibration Error (ECE) Calibration
error metrics evaluate whether a model’s predicted
probabilities align with actual accuracy in QA tasks.
For instance, if a model assigns a 90% probabil-
ity to an answer, the accuracy of such predictions
should also be 90% for optimal calibration. Ex-
pected Calibration Error (ECE) (Naeini et al., 2015;
Guo et al., 2017) quantifies this discrepancy by seg-
menting the predicted probability range into mul-
tiple bins and computing the difference between
the predicted probability and the observed accuracy
within each bin as follows:

ECE =
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (1)

Here, M denotes the number of bins, Bm rep-
resents the set of samples within bin m, |Bm| is
the number of samples in bin m, and n is the total
number of samples. acc(Bm) refers to the accu-
racy within bin Bm, while conf(Bm) indicates the
average confidence of predictions in bin m. ECE is
computed as the weighted average of the absolute
differences between the accuracy and confidence
across bins, where the weights correspond to the
proportion of samples in each bin.

Adaptive Calibration Error (ACE) ACE per-
forms binning so that the number of samples in
each bin remains constant. This approach ensures
a more stable evaluation within each bin:

ACE =
1

KR

K∑

k=1

R∑

r=1

|acc(r, k)− conf(r, k)| (2)

Here, K denotes the number of classes, R repre-
sents the number of bins, acc(r, k) indicates the
accuracy in bin r for class k, and conf(r, k) de-
notes the confidence of predictions in the same bin
and class.
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A.7 The results using Expected Calibration
Error (ECE)

The results using ECE are presented in Table 8
and Table 9. As discussed in Section 4.4, Prosku-
rina et al. (2024) and Ulmer et al. (2022) have
pointed out that ACE is a more suitable calibration
error metric for multi-class classification problems,
while ECE is better suited for binary classification.
Nevertheless, we include ECE results for complete-
ness and additional verification.

A.8 Violin plot
Figures 5a and 5b present the violin plot results for
Llama3.1 (8B), while Figures 5c and 5d show the
results for Llama3.1 (70B). The Llama models ex-
hibit notably low output probabilities for candidate
answer choices when no supporting documents are
inserted. Furthermore, even when explicitly insert-
ing documents containing supporting evidence, the
output probabilities do not improve significantly.
This suggests that these models may strictly adhere
to predefined instructions and struggle to incorpo-
rate additional contextual information.

B Future Direction

In this study, we used a dataset containing correct
answer choices along with supporting rationale pas-
sages for QA tasks. In the future, it may be possible
to focus on non-medical domains by drawing on
previous work that semi-automatically generates
questions using LLMs (Ozaki et al., 2024; Sakai
et al., 2024). There are also studies on explana-
tion generation (Ozaki et al., 2025a; Hayashi et al.,
2024), which could inform the generation of sup-
porting rationales.

Model Pattern
ECE ↓

None Ans1 Ans1-Oth2 Oth3

Llama2 (70B)

w/o RAG 0.02 – – –
Pre-Q – 0.22 0.25 0.08
Aft-Q – 0.24 0.21 0.12
Aft-C – 0.20 0.17 0.10

Llama3.1 (70B)

w/o RAG 0.20 – – –
Pre-Q – 0.14 0.14 0.14
Aft-Q – 0.14 0.14 0.14
Aft-C – 0.14 0.14 0.14

Llama3.1 (8B)

w/o RAG 0.03 – – –
Pre-Q – 0.02 0.02 0.01
Aft-Q – 0.02 0.02 0.01
Aft-C – 0.02 0.02 0.01

Meditron (70B)

w/o RAG 0.07 – – –
Pre-Q – 0.18 0.08 0.09
Aft-Q – 0.16 0.09 0.15
Aft-C – 0.15 0.07 0.09

PMC-Llama (13B)

w/o RAG 0.16 – – –
Pre-Q – 0.01 0.01 0.04
Aft-Q – 0.01 0.02 0.06
Aft-C – 0.02 0.05 0.05

Gemma2 (2B)

w/o RAG 0.20 – – –
Pre-Q – 0.24 0.22 0.21
Aft-Q – 0.23 0.21 0.21
Aft-C – 0.25 0.23 0.23

Phi-3.5 (3.8B)

w/o RAG 0.05 – – –
Pre-Q – 0.06 0.07 0.32
Aft-Q – 0.04 0.06 0.42
Aft-C – 0.04 0.13 0.41

Qwen2.5 (14B)

w/o RAG 0.12 – – –
Pre-Q – 0.09 0.09 0.12
Aft-Q – 0.07 0.07 0.18
Aft-C – 0.08 0.10 0.09

Qwen2.5 (72B)

w/o RAG 0.04 – – –
Pre-Q – 0.10 0.08 0.20
Aft-Q – 0.09 0.10 0.19
Aft-C – 0.10 0.06 0.24

Table 8: The result of ECE using MedMCQA
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Model Pattern
ECE ↓

None Ans1 Ans1-Oth2 Oth3

Llama2 (70B)

w/o RAG 0.12 – – –
Pre-Q – 0.30 0.31 0.14
Aft-Q – 0.30 0.31 0.14
Aft-C – 0.14 0.14 0.12

Llama3.1 (70B)

w/o RAG 0.02 – – –
Pre-Q – 0.10 0.10 0.10
Aft-Q – 0.10 0.10 0.10
Aft-C – 0.10 0.10 0.10

Llama3.1 (8B)

w/o RAG 0.24 – – –
Pre-Q – 0.23 0.22 0.23
Aft-Q – 0.22 0.23 0.23
Aft-C – 0.23 0.23 0.23

Meditron (70B)

w/o RAG 0.18 – – –
Pre-Q – 0.10 0.17 0.09
Aft-Q – 0.08 0.07 0.06
Aft-C – 0.04 0.04 0.07

PMC-Llama (13B)

w/o RAG 0.17 – – –
Pre-Q – 0.09 0.01 0.01
Aft-Q – 0.09 0.01 0.02
Aft-C – 0.02 0.04 0.05

Gemma2 (2B)

w/o RAG 0.07 – – –
Pre-Q – 0.04 0.02 0.02
Aft-Q – 0.02 0.01 0.01
Aft-C – 0.09 0.05 0.07

Phi-3.5 (3.8B)

w/o RAG 0.48 – – –
Pre-Q – 0.11 0.11 0.58
Aft-Q – 0.10 0.28 0.49
Aft-C – 0.15 0.32 0.46

Qwen2.5 (14B)

w/o RAG 0.16 – – –
Pre-Q – 0.04 0.05 0.18
Aft-Q – 0.03 0.05 0.27
Aft-C – 0.07 0.03 0.24

Qwen2.5 (72B)

w/o RAG 0.06 – – –
Pre-Q – 0.11 0.03 0.25
Aft-Q – 0.08 0.11 0.18
Aft-C – 0.09 0.07 0.14

Table 9: The result of ECE using PubMedQA
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Figure 5: Results from MedMCQA and PubMedQA
using Llama3.1.
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B.1 Error Analysis
Figure 6 presents a plot illustrating the types of errors made on incorrectly answered questions. In
PubMedQA, the answer choices consist of three options: yes, no, and maybe, allowing for detailed
error analysis. Each bin represents the gold answer, and the plot visualizes the distribution of incorrect
predictions for each question. The colors within the plot indicate how the model misclassified the answers.
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(a) When not inserting anything (w/o RAG).
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(b) When inserting a document containing the correct answer (Ans1).
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(c) When inserting one relevant document containing the correct answer and two unrelated documents (Ans1-Oth2).
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(d) When inserting three unrelated documents (Oth3).

Figure 6: Error analysis on PubMedQA: This figure illustrates how the model misclassified answers in relation to
the correct ones. We gather the questions the model got wrong, group the items that actually had the correct answer
(gold answer) into bins, and use colors to show how the model erred.
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B.2 Prompts
Below are examples of prompts with and without RAG. When RAG is applied, three patterns-Pre-Question,
After-Question, and After-Choice—are used in our study.

Prompt without RAG

You are a helpful medical expert, and your task is to answer a multi-choice medical question
using the relevant documents. Please first think step-by-step and then choose the answer from
the provided options. Your responses will be used for research purposes only, so please have a
definite answer.

Here is the question:
{question}

Here are the potential choices:
{choice0}
{choice1}
{choice2}
{choice3}

Answer:

Prompt with RAG

Here are the relevant documents: (Pre-Question)
{context}

You are a helpful medical expert, and your task is to answer a multi-choice medical question
using the relevant documents. Please first think step-by-step and then choose the answer from
the provided options. Your responses will be used for research purposes only, so please have a
definite answer.

Here are the relevant documents: (After-Question)
{context}

Here is the question:
{question}

Here are the relevant documents: (After-Choice)
{context}

Here are the potential choices:
{choice0}
{choice1}
{choice2}
{choice3}

Answer:
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