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Abstract

This paper presents our system submission to
the Building Educational Applications (BEA)
2025 Shared Task on Pedagogical Ability As-
sessment of AI-powered Tutors. The task evalu-
ates multiple dimensions of AI tutor responses
within student-teacher educational dialogues,
including mistake identification, mistake loca-
tion, providing guidance, and actionability. Our
approach leverages transformer-based models
(Vaswani et al., 2017), primarily DeBERTa
and RoBERTa, and incorporates ordinal re-
gression, threshold tuning, oversampling, and
multi-task learning. Our best-performing sys-
tems are capable of assessing tutor response
quality across all tracks. This highlights the ef-
fectiveness of tailored transformer architectures
and pedagogically motivated training strategies
for AI tutor evaluation.

1 Introduction

Nowadays, AI systems can support sophisticated
educational dialogues thanks to recent advance-
ments in large language models (LLMs), which
suggests they could be used as tutors in real-world
learning settings. Although models like GPT-4
(Achiam et al., 2023) and its successors are effec-
tive at producing coherent text (Brown et al., 2020),
their capacity to carry out pedagogical tasks, like
identifying misconceptions, assisting students, or
providing helpful criticism, is still poorly under-
stood and requires focused assessment (Tack and
Piech, 2022; Daheim et al., 2024).

Our work in the BEA 2025 Shared Task
(Kochmar et al., 2025) aims to address this gap
by systematically assessing tutor responses along
four dimensions: mistake identification, mistake lo-
cation, guidance provision, and actionability. Built
upon a unified taxonomy (Maurya et al., 2025), the
task draws on annotated exchanges from the Math-
Dial (Macina et al., 2023) and Bridge (Wang et al.,
2024) datasets to create a benchmark for evaluating

AI tutor behaviour.
This paper describes our submissions to all four

tracks of the shared task. Our systems leverage
transformer-based models, primarily DeBERTa (He
et al., 2021) and RoBERTa (Liu et al., 2019b), with
tailored architectures for each subtask. Binary and
multiclass classification are applied for Tracks 1
and 3, ordinal regression with threshold tuning for
Track 2, and ensemble classifiers for Track 4 that
combine neural features with symbolic representa-
tions (e.g., TF-IDF and entailment scores).

Several techniques have been employed to rec-
tify class imbalance and take advantage of cross-
task signals:

• Utilizing resampling strategies that have been
proven successful in analogous domains to
oversample under-represented labels, such as
"To some extent" (Saha et al., 2023; Chawla
et al., 2002).

• Adopting a standard multi-task learning ar-
chitecture comprising a shared encoder and
task-specific output layers, following estab-
lished practices in similar domains (Liu et al.,
2019a).

• Ensemble classifiers (using stacking) that im-
prove actionability prediction by combining
deep contextual representations with conven-
tional NLP features.

In every track, our models regularly outper-
form baseline systems. For instance, the multi-
task DeBERTa model attains a Macro F1 of 0.8065
on Track 4 (strict setting) and 0.8809 on Track 1.
A regression-based strategy with threshold adjust-
ment yields the most remarkable results for Track
2, with a Macro F1 of 0.58. Ensemble classifiers
on Track 4 considerably increase robustness; the
lenient Macro F1 is greater than 0.861.

These findings show that using well-designed
methods to balance and combine training data and
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Figure 1: Example of Dataset where MI - Mistake Iden-
tification, ML - Mistake Location, PG - Providing Guid-
ance, ACT - Actionability.

carefully fine-tuning transformer models can help
assess AI teachers to check if they speak fluently
and give useful educational feedback (Wollny et al.,
2021).

2 Shared Task Structure

Development phase: A dataset consisting of
2476 annotated tutor responses drawn from 300
dialogues was provided. Each response was labeled
across four pedagogical dimensions — mistake
identification, mistake location, guidance provision,
and actionability, according to the taxonomy of
Maurya et al. (2025). A 80%–20% stratified split
was performed to create training and test sets (1980
and 496 responses, respectively), preserving class
label proportions across all tracks. This stratified
sampling ensured balance across both frequent and
rare labels such as “Yes”, “No”, and “To some
extent”.

Table 1 summarizes the distribution of classes
across the four tracks before and after splitting. It is
observed considerable class imbalance in all tracks,
particularly in Track 1, where over 75% of the re-
sponses are labeled “Yes”. The “To some extent”
category appears in only 7% of cases. While Track
2 shows slightly improved balance, it still under-
represents the “To some extent” label. Track 3 is
relatively more balanced, with “To some extent”
making up over 20% of the examples. Track 4
has the most even distribution, with “No” (32.3%),

“Yes” (52.8%), and “To some extent” (14.9%) la-
bels appearing at meaningful frequencies. This
variation in class balance prompted us to use strat-
ified sampling, experimenting with a range of mod-
els (Section 3) and evaluating them using metrics
— Accuracy and Macro-F1 under both strict and le-
nient conditions. The top-performing models were
selected for final submission.

In addition to quantitative analysis, it is exam-
ined how different tutors address the four pedagog-
ical dimensions using concrete examples. Figure 1
illustrates a representative case comparing GPT-4

and Gemini on an evaluation error. Both systems
successfully identify the student’s mistake, locate
it, and provide guidance; however, only Gemini
(Reid et al., 2024) offers actionable feedback with
explicit instructions to the student on how to correct
their answer, whereas GPT-4 omits this crucial step.
This highlights the importance of distinguishing be-
tween basic guidance and true actionability in
tutor responses and underscores the nuanced chal-
lenges in reliably annotating and modelling these
dimensions.

Test phase: In the final evaluation phase, an un-
labeled test set comprising 1547 tutor responses
from 191 dialogues was given. Predictions from
our best models were submitted for each of the
four tracks, and performance was assessed using
the same evaluation metrics (Section 4). To aid
interpretation, LIME (Local Interpretable Model-
agnostic Explanations) on selected outputs was ap-
plied to visualize influential tokens (see Figure 6a),
offering insights into the model behaviour.

Track Split No Yes To some extent

Track 1 All 370 (15.0%) 1932 (78.0%) 174 (7.0%)
Train 296 (15.0%) 1545 (78.0%) 139 (7.0%)
Test 74 (15.0%) 387 (78.0%) 35 (7.0%)

Track 2 All 709 (28.6%) 1552 (62.7%) 215 (8.7%)
Train 567 (28.6%) 1241 (62.7%) 172 (8.7%)
Test 142 (28.6%) 311 (62.7%) 43 (8.7%)

Track 3 All 566 (22.9%) 1407 (56.8%) 503 (20.3%)
Train 453 (22.9%) 1125 (56.8%) 402 (20.3%)
Test 113 (22.9%) 282 (56.8%) 101 (20.3%)

Track 4 All 800 (32.3%) 1307 (52.8%) 369 (14.9%)
Train 640 (32.3%) 1045 (52.8%) 295 (14.9%)
Test 160 (32.3%) 262 (52.8%) 74 (14.9%)

Table 1: Class-wise distribution of tutor responses
across all four tracks (Train = 80%, Test = 20%). Per-
centages indicate class proportions within each split.

3 Tracks Descriptions and Methodology

• Track 1: Mistake Identification - Since stu-
dent mistakes are present in every dialogue,
a good tutor must identify them by reflect-
ing student understanding (Tack and Piech,
2022) and correctness (Macina et al., 2023).
A RoBERTa-base model is fine-tuned for 3-
way sequence classification that detects the
presence of error in tutor responses and pro-
vides dialogue context. The cross-entropy loss
function is used. Predictions at the end are all
converted to categorical labels. The RoBERTa
model is used for this task as it captures deep
contextual representations from large-scale
pretraining on diverse data, which enables it
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to effectively understand subtle distinctions
in input, making it the best-performing model
for identifying sentence-level mistakes.

• Track 2: Mistake Location - A good tutor
response should point to the error location
and explain it clearly to help the student im-
prove, capturing targetedness as defined by
(Daheim et al., 2024). It is a fine-grained task
that requires identifying the exact phrase caus-
ing the error and not just flagging the whole
sentence. An ordinal regression approach
is implemented by fine-tuning a pretrained
DeBERTa-v3-base transformer encoder. The
mapping of class labels to ordinal values was
done as follows: Class “No" was mapped to
0, Class “To Some Extent" was mapped to
1, and Class “Yes" was mapped to 2. Ran-
domOverSampler has been used to address
class imbalance, by increasing the number of
samples in the underrepresented To some ex-
tent class to equal the number of samples in
class No. The model architecture consists of
a DeBERTa encoder followed by a dropout
layer and a linear regression head that outputs
a continuous scalar. During training, optimiza-
tion is done through mean squared error loss
between predicted scalar outputs and ordinal
labels. Focal and Cross entropy loss underper-
formed compared to the Mean Squared Error
loss. Consequently, the results of these losses
are not reported in the paper. Discretization
was performed for continuous predictions into
ordinal classes through predefined thresholds
during inference, and then inverse mapping to
the original categorical labels was done. The
enhanced positional encoding and disentan-
gled attention mechanism of the DeBERTa
model allows it to locate contextual clues and
word-level dependencies, making it highly ef-
fective and the best performing for this track.

• Track 3: Providing Guidance - A good tutor
response should offer helpful guidance, like
hints without explicitly giving away the so-
lution, aligning with helping a student (Tack
and Piech, 2022) and usefulness (Wang et al.,
2024). A RoBERTa-base model is fine-tuned
on the final input sequence. Encoding of tar-
get labels via label encoding into three classes
is done. Model architecture comprises a
RoBERTa encoder, dropout, and a linear clas-

sification head. The cross-entropy loss func-
tion and a cosine learning rate with 60 epochs
are used. Mixed precision training, along with
gradient scaling and gradient clipping, has
been employed to improve efficiency. The na-
ture of deep contextual understanding and ro-
bust pretraining enables the RoBERTa model
to generate contextually relevant and accurate
suggestions, making it the best-performing
model for offering meaningful guidance on
corrections.

• Track 4: Actionability - A good tutor re-
sponse should clearly mention the next step
for the student avoiding dead ends—capturing
actionability as defined by (Daheim et al.,
2024). A stacked ensemble model combin-
ing traditional TF-IDF with contextual em-
beddings from RoBERTa is developed. TF-
IDF vectorizes the tutor responses initially
and the tokenized input is passed into a pre-
trained RoBERTa-base model which is fine-
tuned for sequence classification having three
output classes. Probability distributions from
RoBERTa are then concatenated with TF-IDF
vectors forming a comprehensive feature set.
On this, training is performed by Extra Trees
ensemble classifier. Final model evaluation
is done using accuracy and macro F1 score,
demonstrating the effectiveness of classical
integration. A stacking ensemble approach
using TF-IDF, RoBERTa and Extra Trees is
used for this track because it combines the
strengths of deep contextual embeddings, lex-
ical features and robust non-linear classifica-
tion to effectively capture both semantic and
surface-level cues, leading to superior action-
ability predictions.

3.1 Multitask Approach

A multitask RoBERTa-based model is utilized
to jointly predict four classification tasks: Mistake
Identification, Mistake Location, Providing Guid-
ance, and Actionability. The model shares frozen
embeddings and partially frozen encoder layers,
which are followed by task-specific classification
heads. The total loss is a weighted sum of cross-
entropy losses across tasks:

Ltotal =

4∑

i=1

λi · CE(ŷi, yi)
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TRACK 1: Mistake Identification
Model / Approach Strict Macro F1 (↑) Strict Accuracy (↑) Lenient Macro F1 (↑) Lenient Accuracy (↑) Rank
DeBERTa 0.607 0.827 0.849 0.919 94
DistilRoBERTa 0.621 0.818 0.823 0.892 84
BERT 0.626 0.846 0.861 0.928 80
RoBERTa 0.639 0.823 0.837 0.903 67
Multitask (RoBERTa, 40 epochs) 0.644 0.855 0.872 0.926 63

TRACK 2: Mistake Location
Model / Approach Strict Macro F1 (↑) Strict Accuracy (↑) Lenient Macro F1 (↑) Lenient Accuracy (↑) Rank
DeBERTa 0.532 0.688 0.749 0.795 23
SpanBERT 0.477 0.601 0.708 0.751 63
RoBERTa 0.495 0.624 0.712 0.749 48
BERT 0.508 0.654 0.712 0.765 42
ModernBERT 0.486 0.599 0.702 0.767 56

TRACK 3: Providing Guidance
Model / Approach Strict Macro F1 (↑) Strict Accuracy (↑) Lenient Macro F1 (↑) Lenient Accuracy (↑) Rank
DeBERTa 0.481 0.587 0.685 0.733 60
RoBERTa 0.489 0.603 0.693 0.765 52
Multitask (RoBERTa, 25 epochs) 0.460 0.658 0.723 0.789 79
Multitask (RoBERTa, 40 epochs) 0.465 0.658 0.722 0.789 78

TRACK 4: Actionability
Model / Approach Strict Macro F1 (↑) Strict Accuracy (↑) Lenient Macro F1 (↑) Lenient Accuracy (↑) Rank
Stacking (BERT + Extra Trees) 0.599 0.677 0.815 0.845 47
Stacking (RoBERTa + Extra Trees) 0.606 0.689 0.821 0.847 45
DeBERTa (Last Layer) 0.589 0.676 0.810 0.846 53
DeBERTa (Second Last Layer) 0.476 0.564 0.657 0.661 75
Multitask (RoBERTa, 40 epochs) 0.579 0.688 0.815 0.839 55

Table 2: Performance metrics (macro F1 and accuracy) across Tracks 1–4 using strict and lenient evaluation settings.
Strict evaluation best values are highlighted in blue and Lenient evaluation best values in green.

where λi are task specific weights, ŷi are the pre-
dicted logits and yi are the corresponding ground
truth labels. Hyperparameters such as learning rate,
dropout, and task weights are optimized using the
Optuna framework. Evaluation uses macro-F1 and
lenient accuracy across tracks.

4 Evaluation and Results

Tracks 1-4 are evaluated using macro F1 as the
primary metric and accuracy as the secondary met-
ric. The two evaluation formats used are as follows:

• Strict evaluation: A total of three classes
are present - "Yes", "To some extent", "No".
Based on these classes, models are assessed.

• Lenient evaluation: “Yes” and “To some ex-
tent” are merged into a single class that simpli-
fies the task into a binary classification (“Yes
+ To some extent” vs “No”).

The results obtained here (shown in Table 2) are on
the test dataset. For results obtained on the devel-
opment dataset refer to the Appendix (Section A).

4.1 Track 1: Mistake Identification
Multitask RoBERTa models, especially the one

fine-tuned for 40 epochs, outperformed all other
models with a strict macro F1 of 0.6438 and accu-
racy of 0.8546, highlighting the benefit of extended

domain-specific training. BERT maintained strong
baseline performance (F1: 0.6262), whereas Dis-
tilRoBERTa exhibited lower performance due to
its compact architecture, trading off accuracy for
efficiency.

4.2 Track 2: Mistake Location

DeBERTa achieved the best performance (F1:
0.5319, accuracy: 0.6878), likely due to its strong
token-level contextual understanding. RoBERTa
and BERT were competitive but fell slightly behind.
The overall lower scores across models reflect the
increased difficulty in precisely locating mistakes,
which demands deeper syntactic and semantic anal-
ysis.

4.3 Track 3: Providing Guidance

In this track, models had to suggest appropriate
corrections and identify errors. RoBERTa-based
models again led, with strict F1 around 0.48 and
best accuracy at 0.6580 by the Multitask variant.
While fine-tuned RoBERTa models balanced preci-
sion and recall effectively, Multitask models under-
performed.

4.4 Track 4: Actionability

Our approach to this track combined surface-
level lexical and deep contextual features to identify
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Figure 2: Radar plots comparing model performance across the four shared task tracks. The top row shows results
for Track 1 (Mistake Identification, left) and Track 2 (Mistake Location, right). The bottom row presents Track 3
(Providing Guidance, left) and Track 4 (Actionability, right). Each plot visualizes four evaluation metrics: Strict
Accuracy, Strict Macro F1, Lenient Accuracy, and Lenient Macro F1, as reported in Table 2. These radar charts
highlight the relative strengths and weaknesses of different modeling approaches across the four tracks.

actionable feedback. A stacked ensemble model
using TF-IDF features, RoBERTa embeddings, and
an Extra Trees classifier achieved the highest re-
sults (F1: 0.6055, accuracy: 0.6897), outperform-
ing standalone models like BERT and DeBERTa.
The Multitask RoBERTa model showed similar ac-
curacy but slightly lower F1, suggesting ensemble
methods can offer better generalization by leverag-
ing multiple feature types.

5 Analysis and Discussion

Various model strengths have been seen across
the four tracks. Fine-tuned RoBERTa with
40 epochs gave the best result after Multitask
(Roberta) for Mistake Identification, while De-
BERTa did better in Mistake Location due to better
token-level context. RoBERTa also performed
best in Providing Guidance. For Actionability, a
stacking ensemble model of TF-IDF, RoBERTa,
and Extra Trees outperformed transformers alone,
as it allowed the value of combining both seman-
tic and lexical features. Real-world classification

challenges are clearly visible by the gap between
the strict and lenient metrics. Overall, fine-tuned
transformers showed quite promising results, but
stacking ensemble approaches are crucial for com-
plex tasks.

Figure 2 provides a comparative view of model
performances across the four shared task tracks
using four evaluation metrics — Strict Accuracy,
Strict Macro F1, Lenient Accuracy, and Lenient
Macro F1, all derived from leaderboard submis-
sions on the test set (refer Table 2). For Track 1,
multi-task RoBERTa achieves the most balanced
performance, outperforming BERT and vanilla
RoBERTa baselines. The findings of Track 2
demonstrate how effective DeBERTa is when deal-
ing with ordinal-aware losses. Multi-task models
increase macro-F1 in Track 3. Track 4 demon-
strates that ensemble models include classifiers
and entailment scores outperform traditional NLI
(Natural Language Inferencing) or classification
baselines and provide the most promising results
across all measures. Overall, the plots highlight
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Figure 3: Box Plot showing the evaluation of different models in each track

the advantages of ordinal regression (Cheng and
Greiner, 2008; Li and Lin, 2007), stacked ensemble
classifiers (Dietterich, 2000) and multi-task learn-
ing (Ruder, 2017).

Figure 3 presents box-and-scatter plots sum-
marizing model performance across the four BEA
2025 Shared Task tracks. Each subplot represents
one track and compares five models across four
metrics: Strict Macro F1, Strict Accuracy, Lenient
Macro F1, and Lenient Accuracy. Boxplots show
metric distributions, while scatter points (colored
by model) indicate individual scores. In Tracks 1
and 4, the boxes are notably thin across all metrics,
indicating comparable performance across models
and easier tasks overall. Accuracy and macro-F1
scores appear to plateau here, suggesting that fun-
damentally different strategies could be needed to
achieve additional improvements. Tracks 2 and 3,
on the other hand, display much wider boxes, espe-
cially for strict accuracy in both tracks and lenient
metrics in Track 3, indicating greater difficulty and
more performance variation. Transformer-based
models demonstrated benefit: DeBERTa led con-
sistently in Track 2, while multitask RoBERTa
stood out in Track 3, outperforming others across
strict and lenient metrics.

Figures 4 and 5 present the t-SNE plots (van der
Maaten and Hinton, 2008), which show the best-
performing models in each track. It can be seen
that the models clearly separate "No" from "Yes" +
"To some extent" examples when used in a lenient
setup, suggesting they handle obvious cases well.
However, in a three-class setting (strict evaluation),
"Yes" and "To some extent" classes often overlap,
leading to difficulties in capturing subtle differ-
ences between full and partial affirmations. This
overlap illustrates the model’s limited capacity to
capture nuanced intent as well as the subjective na-
ture of intermediate labels (like "To some extent").

Relative difficulty among the tasks: The results
and analysis demonstrate that Tracks 2 and 3 have
a higher difficulty level. In Table 2, we see that
the metric scores for Tasks 2 and 3 are lower than
those of the other tasks. In Figure 3, we also see
that the models have diverse scores on the strict ac-
curacy metric for these tasks, indicating these tasks
require careful modelling and training. Variation
in modeling or training results in quite different
scores for Tracks 2 and 3. A similar observation
can be made from the radar plot in Figure 2 where
the polygons corresponding to different methods
are clearly distinctly visible, indicating a difference
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(a) Track 1 (b) Track 2

(c) Track 3 (d) Track 4

Figure 4: t-SNE Plot showing distribution of classes based on strict evaluation

in the scores. Furthermore, the t-SNE plots in Fig-
ures 4 and 5 show many overlaps for the points
belonging to different classes in the case of Tracks
2 and 3. We hypothesize that this difficulty might
be due to the presence of referencing (identifying
error location in Track 2 and providing guidance in
terms of how to correct the error in Track 3).

Interpretability: LIME (Ribeiro et al., 2016)
is employed for analyzing model interpretability.
This has been done for both Track 1 (Mistake Iden-
tification) and Track 4 (Actionability). In Figure 6a,
highlighted tokens show that the model attends to
corrective phrases from the tutor (e.g., "We need",
"Remember,", "Let’s try counting..."), suggesting
alignment with human reasoning when identifying
student mistakes. In Task 4 (Figure 6b), attention is
emphasized by LIME on mathematical expressions
(e.g., "20 plus 7 plus 10 plus 6") and evaluative sig-
nals (e.g., "Nice try!", "answer is incorrect"). The
suggestion that the model takes into account both
numerical and contextual feedback when determin-
ing response availability is clear. These visualiza-
tions demonstrate how the model uses meaningful
context to improve interpretability and confidence
in its predictions.

On the overall performance of different represen-

tation techniques and models: Based on our experi-
mental results shown for (a) the held-out dataset in
Table 2 and (b) the development data in Appendix
A, we see that DeBERTa performed better than
RoBERTa in most of the cases. This might be due
to the disentangled representation of the token and
position vectors of the inputs in DeBERTa, and the
attention computation performed on these word and
position matrices separately. Also, DeBERTa uses
adversarial inputs for its fine tuning which makes it
robust. We also see that MultiTask learning helps
in good performance across the tasks. This is be-
cause the tasks in the 4 tracks are strongly related
to each other. All tracks aim to help the student
with inputs to identify and correct mistakes. Due
to this commonality among the tasks, we felt that
a joint model could leverage the signals across the
tasks and perform well. We did not use any LLM
based approach as (a) it would be difficult to ex-
plain its decisions without effective prompting, (b)
the results of LLM response may change signifi-
cantly between different prompts, (c) coming up
with good prompt requires extensive trial and error,
and (d) extensive experimentations would require
costly subscription of the API keys.
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(a) Track 1 (b) Track 2

(c) Track 3 (d) Track 4

Figure 5: t-SNE Plot showing distribution of classes based on lenient evaluation

(a) Track 1 - Mistake Identification

(b) Track 4 - Actionability

Figure 6: Interpretability analysis for Tracks 1 and 4
with LIME

6 Conclusions

In conclusion, the study demonstrated the effec-
tiveness of transformer-based models, particularly
RoBERTa and DeBERTa, which addressed various
tasks of pedagogical ability evaluation of AI tutors
like mistake identification, mistake location, pro-
viding guidance and actionability. We showed how
using sampling techniques to balance the dataset
is essential to have better discrimination power for
the tasks. The results and analysis also demon-
strate that Tracks 2 and 3 have a higher difficulty
level. This is due to the presence of referencing
(identifying error location in Track 2 and providing
guidance in terms of how to correct the error in

Track 3). This may be indirectly reflected in how
the inputs are organized in the latent space. Due to
the relatedness among the tasks, we also see that a
multitask approach is well suited for approaching
all the tracks in the shared task together.

However, the models have a significant scope
for improvement as indicated by the moderate per-
formance of the methods. Also, as the tasks come
from the field of education, explainability in the
actions is also required. Our future work in this
segment will try to focus on these aspects.

Limitations

Our method’s limitations include its reliance on
the quality of labeled data and high compute re-
quirements associated with ensemble approaches.
There is room for improved semantic modeling
because it may also have trouble capturing sub-
tle contextual meanings in feedback. Additionally,
performance on the “To some extent” class is vari-
able between tracks, indicating a lack of ability to
handle ambiguity.

Ethics Statement

This work is based on a limited size dataset,
which constrains the generalizability and trustwor-
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thiness of our findings. While transformer-based
models are employed that are typically pre-trained
on large datasets, the small size of our dataset may
limit their full potential. It is acknowledged that
the reported results may not fully reflect real-world
performance, and future work should be encour-
aged to validate and extend our findings on larger
and more diverse corpora. No sensitive informa-
tion is present in the dataset. The study adheres
to ethical standards for data handling and research
transparency.
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A Appendix

This appendix presents a set of quantitative results for each of the four tracks in the BEA 2025 Shared
Task. For each track, one table (Table 3, Table 4, Table 5 and Table 6) was included for reporting evaluation
metrics - accuracy, macro-F1, precision, and recall in both strict and lenient settings for all tested models,
obtained on the development dataset.

Model Strict Evaluation Lenient Evaluation
Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑) Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑)

BERT (base, uncased) 0.849 0.593 0.633 0.574 0.929 0.852 0.878 0.830
RoBERTa-base 0.879 0.688 0.742 0.658 0.944 0.884 0.903 0.867
DistilRoBERTa-base 0.865 0.674 0.721 0.646 0.927 0.850 0.868 0.835
DeBERTa-v3-base 0.871 0.672 0.735 0.636 0.934 0.859 0.892 0.833
RoBERTa-base (Focal Loss) 0.827 0.593 0.591 0.597 0.911 0.831 0.821 0.842
MathBERT 0.845 0.596 0.633 0.581 0.919 0.836 0.848 0.825
Multitask (RoBERTa) 0.858 0.553 0.534 0.573 0.919 0.847 0.838 0.857
Multitask (DeBerta) 0.879 0.576 0.572 0.582 0.941 0.881 0.893 0.869
Multitask (Bert) 0.871 0.562 0.579 0.555 0.936 0.861 0.904 0.829

Table 3: TRACK-1: Mistake Identification performance across various transformer models using Strict and Lenient
evaluation metrics. Colour codings - Blue (Strict), Green (Lenient)

Model Strict Evaluation Lenient Evaluation
Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑) Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑)

Without Oversampling
DeBERTa-v3-base 0.729 0.580 0.592 0.577 0.813 0.753 0.779 0.738
SpanBERT-base-cased 0.684 0.533 0.568 0.527 0.817 0.745 0.803 0.722
Codebert-base 0.688 0.519 0.535 0.512 0.802 0.741 0.765 0.727
Modern-bert-base 0.671 0.564 0.599 0.599 0.813 0.739 0.796 0.717
Roberta-base 0.682 0.542 0.577 0.548 0.813 0.742 0.792 0.721
Bert-base-uncased 0.684 0.506 0.544 0.494 0.802 0.723 0.782 0.701
Multitask (RoBERTa) 0.729 0.476 0.489 0.489 0.809 0.739 0.783 0.719
Multitask (Deberta) 0.739 0.489 0.512 0.498 0.831 0.765 0.823 0.739
Multitask (Bert) 0.720 0.463 0.505 0.472 0.812 0.726 0.811 0.701

With Oversampling
SpanBERT-base-cased 0.709 0.553 0.559 0.548 0.811 0.759 0.771 0.751
DeBERTa-v3-base 0.694 0.532 0.539 0.528 0.802 0.747 0.761 0.737
Codebert-base 0.659 0.521 0.528 0.525 0.786 0.726 0.739 0.717
Modern-bert-base 0.633 0.536 0.577 0.565 0.813 0.745 0.788 0.725
Roberta-base 0.686 0.56 0.566 0.578 0.798 0.744 0.755 0.737
Bert-base-uncased 0.718 0.533 0.565 0.521 0.807 0.733 0.783 0.713

Table 4: TRACK-2: Mistake Location Performance across various transformer models using Strict and Lenient
Evaluation. Colour codings - Blue (Strict), Green (Lenient)

Model Strict Evaluation Lenient Evaluation
Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑) Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑)

Multitask (RoBERTa) 0.659 0.447 0.434 0.485 0.823 0.722 0.751 0.704
Multitask (Bert) 0.667 0.454 0.472 0.485 0.847 0.742 0.812 0.711
Multitask (Deberta) 0.664 0.458 0.567 0.486 0.836 0.730 0.784 0.704
BERT (Last layer predictions) 0.589 0.503 0.516 0.497 0.748 0.607 0.622 0.599
BERT (Second-last Layer + Linear Classifier) 0.581 0.453 0.507 0.448 0.732 0.594 0.602 0.589
RoBERTa (Last layer predictions) 0.655 0.593 0.611 0.582 0.825 0.733 0.754 0.718
RoBERTa (Second-last Layer + Linear Classifier) 0.282 0.288 0.731 0.439 0.841 0.688 0.901 0.654
DeBERTa (Last layer predictions) 0.601 0.524 0.539 0.520 0.760 0.611 0.637 0.601
DeBERTa (Second-last Layer + Linear Classifier) 0.615 0.418 0.671 0.425 0.813 0.611 0.847 0.598
DistilRoberta (Last layer predictions) 0.601 0.522 0.543 0.517 0.778 0.636 0.672 0.622
DistilRoberta (Second-last Layer + Linear Classifier) 0.479 0.376 0.525 0.427 0.561 0.529 0.568 0.597

Table 5: TRACK-3: Providing Guidance performance across various transformer models using Strict and Lenient
evaluation metrics. Colour codings - Blue (Strict), Green (Lenient)
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Model Strict Evaluation Lenient Evaluation
Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑) Accuracy (↑) Macro F1 (↑) Precision (↑) Recall (↑)

Multitask (RoBERTa) 0.669 0.449 0.469 0.472 0.801 0.722 0.784 0.701
Multitask (Bert) 0.669 0.449 0.493 0.469 0.815 0.731 0.826 0.705
Multitask (Deberta) 0.715 0.505 0.484 0.536 0.844 0.807 0.814 0.799
Stacking (BERT + Extra Trees) 0.754 0.655 0.675 0.648 0.867 0.849 0.847 0.851
Stacking (BERT + Logistic Regression) 0.744 0.637 0.654 0.632 0.873 0.855 0.854 0.856
Stacking (RoBERTa + Extra Trees) 0.744 0.632 0.646 0.628 0.875 0.857 0.858 0.855
Stacking (RoBERTa + Logistic Regression) 0.756 0.662 0.674 0.657 0.879 0.862 0.862 0.862
Stacking (DeBERTa + Extra Trees) 0.734 0.647 0.651 0.645 0.881 0.861 0.869 0.855
Stacking (DeBERTa + Logistic Regression) 0.726 0.629 0.637 0.623 0.873 0.850 0.863 0.841

Table 6: TRACK-4: Actionability performance across various models for Strict and Lenient evaluations. Colour
codings - Blue (Strict), Green (Lenient)
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