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Abstract

This paper describes our approach to the 5 clas-
sification tasks from the Building Educational
Applications (BEA) 2025 Shared Task. Our
methods range from classical machine learning
models to fine-tuning large-scale transformer
architectures. Despite the diversity of tech-
niques, performance differences were often mi-
nor, suggesting the presence of strong surface-
level signal in the data and a limiting effect of
annotation noise – particularly around the “To
some extent” label. Under lenient evaluation,
simple models perform competitively, show-
ing their effectiveness in low-resource settings.
Our submissions rank in the top 10 in three
out of five tracks. The code and models are
publicly available at: https://github.com/
ana-rosu/Archaeology-at-BEA2025

1 Introduction

This paper presents an exhaustive set of experi-
ments conducted for the BEA 2025 Shared Task,
which revolves around assessing the pedagogi-
cal abilities of AI tutors in educational dialogues
within the mathematical domain.

We start with classical machine learning meth-
ods like logistic regression over TF-IDF encod-
ings and String Kernel SVMs, gradually scaling
up to more complex approaches such as zero-shot
and few-shot prompting with Mistral-7B-Instruct
(Jiang et al., 2023), feature-based methods us-
ing frozen transformer representations (from mod-
els like ModernBERT (Warner et al., 2024a) and
GritLM (Muennighoff et al., 2024)), decoder-style
architectures such as GPT2-XL (Radford et al.,
2019) combined with a linear classification head,
parameter-efficient fine-tuning with LoRA adapters
in 4-bit precision on Mistral-7B, as well as BERT-
like classifiers (e.g., RoBERTa (Liu et al., 2019),
ModernBERT (Warner et al., 2024b), DeBERTa
(He et al., 2021)).

*Corresponding author.

Our best-performing submissions across all
tracks use fine-tuned BERT-style classifiers. Fi-
nal submissions are selected in an unsystematic
way due to the five-submission limit per track; we
focus on choosing the models that perform best on
our local validation set, while also ensuring that
they differ from each other. Although most of our
submissions are based on Masked Language Mod-
els, we include a broader set of experiments in this
paper to document our development process and
highlight that some alternative approaches remain
competitive.

We place greater emphasis on Track 1 (Mistake
Identification), as it is the first task we explore
and serves as a foundation for the others. Some
of our preliminary experiments, including prompt-
ing and decoder-based fine-tuning, are conducted
exclusively on this track.

Despite using a wide range of models, we ob-
serve that performance is often surprisingly similar
across setups, suggesting that model architecture
may not be the dominant factor for this task. One
possible explanation is that subtle annotation in-
consistencies, especially between “Yes” and “To
some extent”, introduce noise that limits perfor-
mance (see Appendix G). We notice that tutor re-
sponses with very similar wording (e.g., “Please
recheck your answer”) are labeled “Yes” in some
dialogues and “To some extent” in others. In this
context, the order in which training examples are
presented becomes important, especially in such a
small and imbalanced setting. When the model sees
one interpretation early on, it may implicitly learn
to generalize that decision across similar examples,
reinforcing a bias. This makes the optimization
sensitive to random factors such as batch order or
initialization.

The “To some extent” label is the main source
of difficulty in this task. Without it, the classifi-
cation becomes much easier, a fact supported by
the lenient evaluation scores, which reach or even
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exceed 85% F1 on all tracks but one (Providing
Guidance, where the best lenient performance on
the public leaderboard is 78% F1), suggesting that
models perform well when ambiguity is removed
from the label space.

When evaluated under the lenient setting (“Yes”
and “To some extent” are merged into a single
class), traditional machine learning models have
surprisingly strong performance even with minimal
effort, using default configurations. As shown in
Table 9, the validation accuracies achieved with
these models are very close to the best public
leaderboard results, with gaps between 0.37%-
4.15%. In terms of Macro F1, these models also
achieve competitive scores, with gaps between
3.70%-10.41%, demonstrating that pedagogical
signal can be captured effectively under a binary
framing, making them strong baselines in scenarios
with constrained resources.

The presence of strong surface-level signal may
allow even simple models to perform well. An-
other potential hypothesis is that there is simply
not enough data for larger models to generalize
better.

Our team’s submissions were competitive across
all tracks:
Track 1 (Mistake Identification): 8th out of 44
teams
Track 2 (Mistake Location): 12th out of 31 teams
Track 3 (Providing Guidance): 13th out of 35 teams
Track 4 (Actionability): 7th out of 29 teams
Track 5 (Tutor Identification): 6th out of 20 teams
Team ranks are based on the results according to the
main shared task metric – exact Macro F1 score.

2 Data and Tasks

2.1 Shared-Task Tracks

The data provided for this shared task builds on
MRBench, a dataset of short alternate-turn dia-
logues sourced from MathDial (Macina et al., 2023)
and Bridge (Wang et al., 2024). Each dialogue is
annotated for eight pedagogical dimensions based
on a unified evaluation taxonomy introduced by
Maurya et al. (2025a). This taxonomy reflects core
learning sciences principles and builds on prior
work in AI tutor evaluation (Tack and Piech, 2022;
Daheim et al., 2024; Wang et al., 2024)

The task focuses on four key dimensions – which
also form the first four of the five tracks in the BEA
2025 shared task:

Track 1 - Mistake Identification: determine if

the tutor identifies the student’s mistake.
Track 2 - Mistake Location: determine if the

tutor pinpoints where the mistake occurs.
Track 3 - Providing Guidance: determine if

the tutor gives helpful and relevant feedback.
Track 4 - Actionability: determine if the student

can clearly understand what to do next.
Track 5 - Tutor Identification: predict which

tutor produced the response.

2.2 Dataset

The dataset includes 300 dialogues in the de-
velopment set and 191 in the test set, each
paired with responses from both human tutors
(Expert and Novice) and 7 LLM-based tutors
(GPT4 (OpenAI et al., 2024), Gemini (Team et al.,
2025), Llama31405B (Grattafiori et al., 2024),
Llama318B, Mistral (Jiang et al., 2023), Phi3 (Ab-
din et al., 2024), Sonnet (Anthropic, 2024)). Each
dialogue ends with a student turn that contains a
mistake, confusion, or misconception, to which
multiple tutor responses are provided. Every tutor
reply is annotated with gold-standard labels along
four dimensions – Mistake Identification, Mistake
Location, Providing Guidance, and Actionability
– using a three-class scheme: “Yes”, “To some ex-
tent”, and “No”.

The label distribution is imbalanced across tasks,
with “Yes” being the majority class, “No” moder-
ately represented, and “To some extent” notably
underrepresented (Figure 1). Furthermore, the 2D
scatter plots (Figure 2), generated using t-SNE
on tutor response embeddings extracted from the
ModernBERT-large model, show that responses
labeled “No” tend to form small, tight clusters, re-
gardless of the task. These responses often share
similar semantic structures, such as starting with
phrases like “Good job!”, “Good catch!”, or “You
are absolutely correct.” In contrast, responses la-
beled “Yes” show consistent distributions across
tasks, suggesting that positive responses are more
generalizable. The Actionability task exhibits the
highest dispersion among “No” responses.

During our experiments, we identify some cases
of label inconsistencies, especially between the
labels “Yes” and “To some extent”, which we report
in Appendix G.

2.2.1 Training and Validation Splits
For model development, we create separate train-
validation splits for each of the first four tasks, to
accommodate the varying label distributions across
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them. It is important to ensure that all samples from
the same conversation remain in the same split to
avoid data leakage – otherwise, multiple tutor re-
sponses with the same conversation history could
appear in both training and validation sets. For
that, we group all samples by conversation_id and
compute the majority label for each dialogue. This
majority label is then used to perform stratified sam-
pling, helping us preserve the overall class distribu-
tion of the full development set in both the training
and validation sets. An 80/20 train/validation ratio
is used, with a fixed random seed for reproducibil-
ity. Detailed statistics on the splits, including label
ratios and counts, are provided in Appendix A.

For Track 5, we perform a stratified 80/20
train/validation split to maintain balanced propor-
tions of tutor identities across both sets. Unlike
the other tracks, grouping by conversation_id is
not required here, since all samples with the same
conversation_id share an identical conversation his-
tory that includes previous tutor turns not authored
by the tutor being identified. As a result, only the
final generated response can be used to distinguish
between them.

For each track, we submit the runs that achieve
the highest validation performance. In addition, we
include results from lower-performing methods to
document the full range of approaches explored.

2.3 Evaluation Metrics

According to Kochmar et al. (2025), Tracks 1 –
4 (Mistake Identification, Mistake Location, Pro-
viding Guidance, and Actionability) are evaluated
using Macro F1 as the main metric, with accuracy
as the secondary metric. The evaluation is done in
two ways:

• Exact evaluation: the model has to predict
the correct label among the three options
(“Yes”, “To some extent”, or “No”).

• Lenient evaluation: “Yes” and “To some ex-
tent” are combined into a single class and com-
pared against “No”.

Track 5 (Tutor Identity) is a 9-class classification
task, evaluated using Macro F1 as the main metric
and accuracy as the secondary metric, without any
lenient setting.

3 Methods

3.1 Traditional ML Methods

As a baseline1 we use traditional machine learning
models across all tracks. For all experiments in
this approach, we use TF-IDF for feature extraction
covering both unigrams and bigrams from the input
text.

Logistic Regression gives us a baseline with a
Macro F1 of 0.63 on Track 1, and confirms that
the TF-IDF features are useful. We train the model
using balanced class weights to handle label im-
balance and set the maximum number of iterations
to 1000. XGBoost, which is known for strong per-
formance on tabular data and classification tasks
(McElfresh et al., 2023), reaches a Macro F1 of
0.625 for Track 1, slightly below Logistic Regres-
sion. In all our experiments with this model, we use
a learning rate of 0.1, 200 estimators, and set both
subsample and colsample bytree to 0.8 for regular-
ization. Ensembling XGBoost with other boosting
methods such as LightGBM provides small im-
provements in a few cases, but overall, the results
remain close to those obtained with XGBoost alone
(see Table 8).

We also explore a character-level string kernel
using an SVM with a precomputed spectrum kernel
(Ionescu and Butnaru, 2018). The string spectrum
kernel measures the similarity between two strings,
s1 and s2, based on their n-grams. It is defined as:

Kspectrum(s1, s2) =

∑
u,v κ(u, v)√∑

u κ(u, u)
∑

v κ(v, v)

where u and v represent the n-grams (substrings of
lengths ∈ [2, 5]) from s1 and s2, respectively. And
κ(u, v) is a dot product over binary occurrences of
n-grams u and v.

This approach appears competitive to deep-
learning based models on several tracks. For exam-
ple, on Mistake Identification it achieves a Macro
F1 score of 0.6346, indicating that a lot of the sig-
nal can be captured just by comparing strings di-
rectly. We take this as an indicator that some of
the Yes/No annotations for different tasks share
similar-looking strings.

For these experiments, all the validation results
are included in the Appendix E.

1We also use LLM prompting the Mistral-7B-Instruct
model, but results are weaker than even traditional ML base-
lines - best F1 on Task 1 is 0.42. In the few-shot setting, best
is 0.45. We describe the entire approach in Appendix C
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3.2 Frozen Embeddings + Linear Classifiers

We compare several feature extraction strate-
gies using ModernBERT-large for logis-
tic regression classifiers (max_iter=2000,
class_weight=’balanced’) on Mistake Identifica-
tion, Mistake Location, Providing Guidance and
Actionability. All embeddings are computed over
the tutor response only, without including any
surrounding conversational context. We evaluate
4 pooling methods: the final hidden state of the
[CLS] token, mean pooling, max pooling, and a
concatenation of [CLS] and mean. Results are
summarized in Appendix E.1.1.

Mean pooling appears to perform slightly better
when tasks do not require fine-grained distinctions,
such as in Mistake Identification and Actionabil-
ity, likely due to better aggregation of distributed
semantic cues across the tutor response. For ex-
ample, using mean-pooled embeddings on the Mis-
take Identification task, the classifier achieves a
Macro F1 of ∼ 0.65 on the fixed validation split,
outperforming [CLS] pooling (∼ 0.62). However,
[CLS] pooling demonstrates superior performance
on the validation split on more complex tasks like
Mistake Location and Providing Guidance. These
likely require more nuanced representations. The
complexity of these tasks is further evidenced by
their overall performance, results remaining no-
tably lower, suggesting they depend more on the
dialogue context and how the response relates to
the student’s earlier reasoning, which cannot be
captured in the response itself.

For Mistake Identification, on the other hand, sig-
nal can be inferred from the response alone from
the presence/absence of corrective language. Sim-
ilarly, the model performs well on Actionability
under the same conditions, likely because action-
able feedback is sometimes expressed directly in
the tutor’s reply through question words that en-
courage the student to take action. As a result, the
signal required for predicting Mistake Identifica-
tion and Actionability is more localized, allowing
the classifier to perform well without access to prior
student turns.

Additionally, we extract embeddings from in-
termediate layers for Mistake Identification, mo-
tivated by findings from Skean et al. (2025) that
middle-to-late layers may encode more useful in-
formation for the MTEB benchmarks. In our case,
the performance peaks around layers 9 and 15 for
mean and CLS respectively.

Last but not least, we explore GritLM - a
Mistral-based 7b parameter fine-tuned using
GRIT (Muennighoff et al., 2024). This autore-
gressive model achieves state-of-the-art results on
MTEB benchmarks. We compare the embeddings
extracted from different layers combined with sev-
eral classifiers: logistic regression, a multi-layer
perceptron (MLP), a Gaussian Naive Bayes and
a k-nearest neighbor models. For GritLM we do
not observe any significant decay in performance
from middle layers up until the final ones (see Fig-
ure 9). The weakest classifiers are the KNN and
GaussianNB, while between MLP and logistic re-
gression there does not seem to be a clear winner.
Our submission number 2 on Mistake Identification
obtains 0.6532 F1 score on the final leader board
using the embeddings from layer 24. The compara-
tive results across layers on the validation set are
included in Appendix E.1.2.

3.3 Decoder LM Fine-Tuning

We experiment with full fine-tuning of GPT2-XL
on the Mistake Identification task by applying mean
pooling over its last hidden state and training a
linear classification head. This setup achieves a
Macro F1 score of 0.65 on local split using only
the tutor responses as input. We also explore the
frozen version of GPT2-XL, updating only the
final transformer block. This approach reaches
0.55 Macro F1. We do not pursue these experi-
ments further as the performance plateaued even
when experimenting with stratified batches, alter-
native loss functions, and varying input context on
the last-transformer-block version. Configuration:
epochs=10, batch_size=32, lr=2e-5, dropout=0.1,
loss_fn=CrossEntropyLoss(), optimizer=AdamW.
This result reinforces that pedagogical signal de-
tection requires specialized approaches rather than
simply scaling model size.

3.4 BERT-like encoders

The final best results are obtained by fine-tuning
masked language models. We experiment with
three model families: RoBERTa (Liu et al., 2019),
DeBERTa (He et al., 2021), and ModernBERT
(Warner et al., 2024b). For all models, we apply
a linear classification head on top of the final hid-
den state of the first token (corresponding to the
[CLS] token). No additional pooling or attention
mechanisms are introduced beyond the pretrained
architecture. We begin with base-sized variants on
Track 1, but the better performance of the large
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variants motivates us to adopt them for our next
experiments on all tracks.

For each track and model, we compare three
main input formats, which we refer to throughout
the paper as:

• response-only: consists only of the tutor’s re-
sponse, isolating the pedagogical value of the
response itself without surrounding dialogue

• context: includes the final student turn con-
catenated with the tutor’s response, capturing
the local misunderstanding or confusion the
tutor is addressing

• full context: includes the entire conversa-
tion history preceding the tutor’s response en-
abling multi-turn reasoning over the dialogue
and potentially identify earlier misalignments

These representations allow us to assess how much
conversational context is necessary or beneficial
for each track, and how different models leverage
that context.

To address the severe class imbalance and re-
duce bias toward the majority label, we experiment
with three loss functions: standard cross-entropy
as a baseline; class-weighted cross-entropy, where
class weights are set to the inverse of class fre-
quencies; and focal loss (Lin et al., 2018), with
γ ∈ [1.0, 3.0] and various α configurations, in-
cluding uniform (α = [1.0, 1.0, 1.0]), inverse-
frequency class weights, and class-balanced α as
proposed by Cui et al. (2019).

We also experiment with prepending natural lan-
guage task prompts to the input, inspired by re-
cent work on instruction tuning and prompt-based
adaptation. These prompts frame the classification
task using instructions, such as ordinal scales (“To
what extent does the tutor identify the mistake?
0 = not at all, 1 = partially, 2 = fully”) or evalu-
ator roles (“You’re evaluating a tutor’s response.
Score how clearly they identify the student’s mis-
take”). The prompt text is prepended to the input
before tokenization. Although BERT-like models
are not autoregressive, we find that in some cases,
prompts improve validation performance and make
the task framing more consistent across examples
(see Appendix B). Further exploration is needed to
fully quantify their impact, but we include this as a
promising direction for instruction-aware encoder
fine-tuning.

3.5 Submissions

3.5.1 Mistake Identification
Submission 1 uses a fine-tuned RoBERTa-large
model, trained with context input format and focal
loss (γ = 2.0, uniform α) for 4 epochs. For all hy-
perparameters and the approach used for selecting
the input configuration and loss function, refer to
Appendix D.1. We train the model on five random
seeds, average the logits across seeds, and apply
post-training calibration using temperature scaling
and per-class thresholding based on validation per-
formance. On the validation set, this approach
achieves a 0.7072 Macro F1. In the public leader-
board, it obtains 0.6919 Macro F1, making it our
second-best overall submission.

Training observations:
Initially, random batches leads the model to see

mostly majority-class examples early on, which
causes a bias to predict predominantly a single
label (e.g., "Yes"), hard to correct in later stages.
This is visible in the first-epoch confusion matrix.

To resolve this, we implement a custom stratified
batch sampler that maintains around the same class
ratios as the full training set within each batch,
which proves beneficial for small batch sizes in
our setup, where a random batch could otherwise
contain only examples from the "Yes" class. This
helps the model learn minority classes from the
start.

Submission 2 uses embeddings from layer 24
of GritLM (Muennighoff et al., 2024), selected
based on validation performance (Figure 9). The
classifier is an ensemble of logistic regression and a
multilayer perceptron (MLP) with a hidden size of
100. The best development set score is 0.71, while
the leaderboard score is 0.65. The performance
gap indicates overfitting and suggests that layer-
wise performance variation can significantly affect
decisions, as such, high evaluation scores may not
generalize well on new test sets.

Submission 3 is fine-tuned on the
mistralai/Mistral-7B-v0.1 backbone with
a maximum sequence length of 1536 and three
output labels. Tokenization uses left-side padding
and truncation with the fast tokenizer. LoRA
is applied to the q_proj and k_proj modules
with rank r = 16, α = 16, and dropout rate 0.1.
The classification head is excluded from LoRA
adaptation.

Training uses the AdamW8bit optimizer from
bitsandbytes, with separate learning rates for the

1228



backbone (2 · 10−5) and classification head (2 ·
10−6). Parameters are grouped based on whether
they belong to the head or body and whether they
are subject to weight decay. A lower weight decay
is applied to the body parameters. The training runs
for up to 24 epochs with early stopping (patience
20), a warm-up of 10% of the steps, and evaluation
every 10 steps. The best model is selected based
on validation performance. On the local split this
approach reaches 0.74 Macro F1 score, while on
the public leaderboard the results are weaker than
other masked language modeling approaches.

Submission 4 uses a ModernBERT-large
model with a response-only input (no additional
context). Unlike Submission 1, it does not use strat-
ified batches and training is done on a single fixed
random seed. The model is trained for 3 epochs,
followed by per-class threshold calibration on the
validation set for post-training adjustments.

This configuration achieves a Macro F1 of
0.7145 on the validation set and 0.6976 on the
test set, making it our best-performing submission
overall.

Submission 5 uses the same configuration as
Submission 4, but consists of predictions from
a second inference checkpoint corresponding to
epoch 4 of the same run.

This is motivated by the use of early stopping
with patience=2 during experiments, which causes
training to terminate at variable points depend-
ing on the run. Since early stopping introduces
non-determinism and cannot be controlled directly
during inference, we submit this variant to ex-
plore whether extending inference to the subse-
quent saved epoch could yield marginal gains.

Submission Macro F1 Accuracy Ranking

Submission 1 0.6919 0.8746 26
Submission 2 0.6532 0.8423 58
Submission 3 0.6860 0.8565 27
Submission 4 0.6976 0.8675 17
Submission 5 0.6812 0.8681 31

Table 1: Leaderboard Results for Track 1 (Mistake Iden-
tification)

3.5.2 Mistake Location
Submission 1 and 2 use a RoBERTa-large model,
trained with context input and weighted cross-
entropy loss function. Submission 2 introduces
a two-phase training strategy: in the first phase,

the model is trained as a binary classifier, distin-
guishing between "Yes" and "No" labels only; in
the second phase, the model is further fine-tuned
using the full three-way label set, starting from the
weights learned in phase one. This curriculum-like
strategy consistently outperformed the single-phase
baseline, obtaining higher F1 scores on the valida-
tion set. The performance gain also persists on the
public leaderboard, where it results in an approxi-
mate 3% absolute increase in F1.

Submission 3 uses a fine-tuned
microsoft/deberta-v3-large. The input
sequence length is capped at 1536 tokens. Training
is conducted a batch size of 8 for up to 26 epochs
with early stopping (patience 15), a warm-up
phase comprising 10% of the training steps,
and evaluation every 60 steps. The optimizer is
AdamW8bit (bitsandbytes), using layer-wise
learning rate decay (LLRD) with a decay factor of
0.9. The learning rate is set to 2 · 10−5 for both the
backbone and classification head.

The dataset is split using stratified group k-fold
to ensure balanced class distributions between train-
ing and validation sets. Training batches are con-
structed using a custom BalancedBatchSampler
that ensures balanced class representation by over-
sampling minority classes and yielding samples in
a round-robin fashion across classes.

This achieves the best overall result for Mistake
Location, however, we find this solution to be over-
engineered compared to the actual results obtained.

Submission Macro F1 Accuracy Ranking

Submission 1 0.5013 0.6348 44
Submission 2 0.5301 0.6826 25
Submission 3 0.5318 0.6568 24

Table 2: Leaderboard Results for Track 2 (Mistake Lo-
cation)

3.5.3 Providing Guidance
Submissions 1, 2 and 4 all use a RoBERTa-large
model trained for 4 epochs with class-weighted
cross-entropy loss. Submissions 1 and 2 use a
response-only input and a cosine learning rate
scheduler without warm-up. Submission 2 addi-
tionally applies post-training calibration via tem-
perature scaling and per-class threshold adjustment.
Submission 4 differs by using a context input and
a linear cosine scheduler with warmup ratio 0.1,
while keeping the rest of the configuration un-
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changed. Submission 3 is based on the same
DeBERTa-large model as Submission 3 for Mis-
take Location 3.5.2. Both submissions 2 and 3
achieve strong validation Macro F1 scores (0.58
and 0.59, respectively), but drop significantly on
the test set (to 0.50 and 0.48), suggesting a degree
of overfitting to the validation distribution. Alter-
natively, the discrepancy may suggest a mismatch
in class proportions between the dev and test sets
for this metric. In contrast, Submission 4, which
scores lower on validation (0.56), achieves 0.52
on the test set – a smaller drop that could indicate
better generalization.

Submission Macro F1 Accuracy Ranking

Submission 1 0.4945 0.5398 42
Submission 2 0.5068 0.5740 35
Submission 3 0.4839 0.6025 58
Submission 4 0.5208 0.5734 23

Table 3: Leaderboard Results for Track 3 (Providing
Guidance)

3.5.4 Actionability
Submission 1 uses a ModernBERT-large model
trained for 4 epochs on full context input with stan-
dard cross-entropy loss. This serves as our starting
point for the track, providing a baseline for com-
paring different architectures and training setups.

Submission 2 uses a RoBERTa-large model
trained for 4 epochs, this time with context input
(instead of full context) and weighted cross-entropy
loss. This setup ends up performing the best in our
experiments, giving us the highest test score on this
track.

Submissions 3 and 4 use DeBERTa-v3-large
with the same setup as Submission 2: context in-
put and weighted cross-entropy loss. We switch
to DeBERTa-v3-large after noticing improvements
on the validation set, but the performance turns out
to be lower on the test set. For Submission 3, we
train for 4 epochs and initially observe promising
validation results. In Submission 4, we reduce the
training to 3 epochs to see if it improves general-
ization, but the results remain below expectations.

Submission 5 is based on the same DeBERTa-
large model as Submission 3 for Providing Guid-
ance and Mistake Location 3.5.2.

3.5.5 Tutor Identification
For this track, we use the tutor’s response as in-
put, as the goal is to identify which tutor (LLM

Submission ModernBERT Accuracy Ranking

Submission 1 0.6571 0.7136 23
Submission 2 0.6776 0.7214 11
Submission 3 0.6434 0.7214 33
Submission 4 0.6146 0.7098 41
Submission 5 0.6430 0.7033 34

Table 4: Leaderboard Results for Track 4 (Actionability)

Submission Macro F1 Accuracy Ranking

Submission 1 0.8866 0.8882 13
Submission 2 0.8794 0.8759 16
Submission 3 0.8786 0.8817 18

Table 5: Leaderboard Results for Track 5 (Tutor Identi-
fication)

or human) generates it. For all of the experiments,
we use cross entropy loss, a learning rate of 1e-5,
a batch size of 8, a weight decay of 0.05 and a
warmup ratio of 0.1.

Submission 1 uses a RoBERTa-large model
trained for 4 epochs. We notice that the validation
score is very close to the test score, so we use it as
a starting point to decide what to try next.

Submission 2 uses a ModernBERT-large
model trained for 5 epochs. We observe that the
validation score is higher than what we obtain with
RoBERTa, but when we actually submit it, the
test performance is lower, which suggests that the
model doesn’t generalize as well.

Submission 3 also uses ModernBERT-large,
but trained for 4 epochs. The motivation behind
this submission is to see if reducing the number of
epochs helps the model generalize better to unseen
data, especially after seeing a performance drop in
submission 2. While the validation score is similar,
the test performance is not improved, so we con-
clude that simply reducing the number of training
epochs isn’t sufficient to improve generalization.

We notice that the model sometimes predicts the
same tutor identity for multiple responses within
the same dialogue, even though each tutor gener-
ates only one response per dialogue. Due to time
constraints, we do not implement this refinement,
although it likely leads to improvements in both
accuracy and F1 scores.

4 Conclusions

Our work presents a comprehensive empirical ex-
ploration of text classification methods for the
Shared Task at BEA2025. We explore a wide range
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of modeling approaches – from classical machine
learning methods to large-scale transformer-based
models with parameter-efficient fine-tuning. De-
spite this diversity, we find that simple baselines
can achieve good enough evaluation scores and
that additional engineering using larger deep mod-
els adds less than 0.1 extra points for the Macro F1
evaluation score or accuracy.

The “To some extent” label emerges as a key
source of difficulty, introducing inconsistency that
complicates learning and evaluation. Our results
suggest that simple models can achieve competitive
performance when ambiguity is reduced, particu-
larly under lenient evaluation settings.

Across all tracks, our models achieve compet-
itive results, with top-10 rankings in three out of
five tracks.

To the question posed in our title – Are Simple
Baselines Good Enough? – we offer an answer in
the spirit of the task itself: “To some extent”.

Limitations

Model selection for the final leaderboard is based
on classification performance on a local dev split,
without in-depth qualitative analysis of the clas-
sifiers or their features. We believe that such ap-
proaches in the future lead to a better understand-
ing of why some responses are suitable and some
others are not, based on so-called "reasoning" ca-
pabilities of LLMs. Furthermore, the LLM we use
for prompting is a relatively weak one, and due
to compute limitations, we do not explore higher-
performing open source LLMs, nor closed-source
systems.
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A Data Distribution

Figure 1: Label distribution

For the first four tasks, we generate stratified
group splits that maintain label distribution balance
while ensuring that all responses from the same di-
alogue (identified by conversation_id) are assigned
to the same split. The stratification is based on the
majority (mode) label per conversation.

A.1 Conversation-Level Label Distributions
in Devset

Below are the counts of dialogues grouped by their
majority label for each task:
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Figure 2: T-SNE plots of tutor response embeddings
extracted from model ModernBERT-large. We can ob-
serve on the left-hand side of each plot several tiny clus-
ters of responses labeled with "No". These responses
have similar semantic patterns (e.g., starting with "Good
job!", "Good catch!", "You are absolutely correct") and
share similar labels regardless of task. The Actionabil-
ity task has the highest spread of negatively annotated
responses.

• Mistake Identification:

– Label Yes: 282 dialogues

– Label No: 12 dialogues

– Label To some extent: 6 dialogues

• Mistake Location:

– Label Yes: 216 dialogues

– Label No: 69 dialogues

– Label To some extent: 15 dialogues

• Providing Guidance:

– Label Yes: 204 dialogues

– Label To some extent: 50 dialogues

– Label No: 46 dialogues

• Actionability:

– Label Yes: 185 dialogues

– Label No: 92 dialogues

– Label To some extent: 23 dialogues

These distributions guides stratification during
splitting.

A.2 Label Distribution Within Splits

The table below shows the relative frequency of
each label within the training and validation splits
for each task. Proportions are expressed as percent-
ages of total samples within each split.

Task Label Train (%) Val (%)

Mist. Id. No 14.98 14.81
TSE 7.21 6.29
Yes 77.81 78.90

Mist. Loc. No 29.22 27.11
TSE 8.85 9.04
Yes 61.93 63.86

Prov. Guid. No 22.63 23.79
TSE 20.35 20.16
Yes 57.02 56.05

Act. No 31.85 33.54
TSE 14.84 15.15
Yes 53.31 51.31

Table 6: Label distribution percentages in the train and
validation splits for each task

B BERT tokenization with and without
prepended prompts.

Table 7: ModernBERT-large with default config
(lr=10−5, batch size=8, epochs=4, weight decay=0.01,
lr_scheduler=linear, warmup_ratio=0.1, cross entropy
loss) across tokenization strategies with and without
prepended prompts (prompt="Rate how well the tutor
identifies the student’s mistake on a scale from 0 (not at
all) to 2 (clearly)). Prompted variants improve perfor-
mance across all metrics, likely due to the model better
internalizing task-specific instruction tokens.

Strategy Macro F1 Accuracy

no_context 0.6759 0.6188
context 0.6495 0.6020
context_full 0.6413 0.6125
prompt_no_context 0.6951 0.6609
prompt_context 0.6799 0.6493
prompt_context_full 0.6740 0.6382

C Zero-shot and Few-shot Prompting
Approach

We evaluate the Mistake Identification task
using zero-shot and few-shot prompting with
mistralai/Mistral-7B-Instruct-v0.2, under greedy
decoding. All scores are reported on our validation
split.

In the zero-shot setting, a simple prompt
achieves a Macro F1 of 0.419, but tends to over-
predict “To some extent”. Adding label defini-
tions reduces performance (F1 drops to 0.367), and

1233



prompting with “think step by step” introduces
some invalid outputs and we decide not to invest
effort into resolving this behaviour. Introducing
a soft constraint, asking the model to avoid pre-
dicting “To some extent” unless clearly justified,
reduces overprediction overprediction (from 154 to
40 on validation split) and preserves performance
(F1 0.411), with a refined version reaching 0.421.

In the few-shot setup, we retrieve three di-
verse training examples using embeddings from
all-mpnet-base-v2 (bi-encoder) and rerank them
with the cross-encoder cross-encoder/ms-marco-
MiniLM-L-6-v2.This setup achieves 0.392 Macro
F1, with frequent “To some extent” predictions.
Simplifying retrieval increases these predictions
without improving performance. Adding label def-
initions and the same constraint improves F1 to
0.452 and reduces overprediction.

We do not invest further effort into optimizing
this approach, as performance remains well below
our logistic regression baseline.

This aligns with findings from Maurya et al.
(2025b), who report that LLM-based evaluators
correlate poorly with human judgments on peda-
gogical tasks.

C.1 Base prompt
Task: You are an expert tutor evaluator. Label
whether the tutor identifies the student’s mistake.
There are 3 possible labels:
- Yes
- To some extent
- No
Provide only the label.

C.2 With label definitions
These are added after listing labels and before the
instruction to provide only the label:

Label definitions:
- Yes: The tutor clearly identifies and addresses the
mistake.
- To some extent: The tutor hints at or partially
recognizes the mistake, but not clearly.
- No: The tutor does not identify or acknowledge
the mistake.

C.3 Anti-"To some extent" constraints
We experiment with two variants of constraints.
These are added after listing labels and before the
instruction to provide only the label.
1: Avoid choosing "To some extent" unless it is

clearly not a full "Yes" or a full "No".
2: Use "To some extent" only when the tutor’s
response **clearly shows partial understanding** –
not as a fallback when unsure.

C.4 Final Prompt Composition

In the zero-shot setting, this is appended after the
instruction:
### Student: student
### Tutor: response
### Label:

In the few-shot setting, this is appended af-
ter the instruction:
### Example i:
Student: student
Tutor: response
Label:

### Now classify:
Student: student
Tutor: response
Label:

Each few-shot prompt includes three examples
(one per class) retrieved using a combination of
bi-encoder similarity and cross-encoder reranking.
Cosine similarity is computed over the concatena-
tion of last student utterance + tutor response.

C.5 Inference Configuration

• Model & Tokenzier: mistralai/Mistral-7B-
Instruct-v0.2

• Decoding: Greedy (do_sample=False)
• Max tokens: 5
• Quantization: 4-bit NF4 (bitsandbytes)

D Hyperparameters and Training
Configurations

D.1 BERT-like encoders

Mistake Identification, Submission 1:
• Learning rate: 1e-5
• Weight decay: 0.01
• Scheduler: cosine learning rate scheduler (no

warmup)
• Epochs: 4
• Batch size: 8
• 5 different training seeds
Ensembling: We train five models (one per

seed) and average the logits at inference time.
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Post-training calibration: After ensembling,
we apply temperature scaling (T = 1.049) and
per-class threshold tuning using validation perfor-
mance. Since we use a threshold-based override
strategy, we only tune thresholds for the "Yes" and
"To some extent" classes. The "No" class is treated
as the default fallback when neither of the other
logits pass their respective thresholds. Final thresh-
olds:

• Yes: 0.4429
• To some extent: 0.3776
• No: default threshold

Mistake Identification, Submission 4:

• Learning rate: 2e-5
• Weight decay: 0.05
• Scheduler: cosine learning rate scheduler with

10% warmup
• Epochs: 3
• Batch size: 8
• Loss: Focal loss with γ = 1.3, class-balanced
α = [0.9216, 1.7772, 0.3012]

Post-training calibration: Temperature scal-
ing with T = 1.0, and threshold override strategy
using:

• Yes: 0.63
• To some extent: 0.22
• No: default fallback

To select the optimal input format and loss function,
we conduct multiple runs using different configu-
rations and evaluate them using Macro F1 on the
validation set. This selection procedure is applied
systematically to almost all submissions.

Figure 3: Macro F1 scores with and without context
across seeds

Figure 4: Macro F1 score comparison for loss functions
across seeds

Figure 5: Confusion matrix on the full dev set after train-
ing, ensembling, and calibration, just before generating
test predictions

Figure 6: Distribution of prediction confidences (maxi-
mum softmax probability) on the dev set, after ensem-
bling and temperature scaling

Mistake Identification, Submission 5: Same as
Submission 4, except trained for 4 epochs instead
of 3.
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E Validation Performance Tables

Model Track Macro F1 Accuracy

Logistic Regression Track 1 0.6318 0.8499
Logistic Regression Track 2 0.5167 0.6647
Logistic Regression Track 3 0.4947 0.5665
Logistic Regression Track 4 0.5547 0.6384
Logistic Regression Track 5 0.7455 0.7289

XGBoost Track 1 0.6254 0.8803
XGBoost Track 2 0.4671 0.7329
XGBoost Track 3 0.4775 0.6190
XGBoost Track 4 0.5374 0.6869
XGBoost Track 5 0.7758 0.7731

XGB + LightGBM Track 1 0.6230 0.8783
XGB + LightGBM Track 2 0.4734 0.7309
XGB + LightGBM Track 3 0.4584 0.6230
XGB + LightGBM Track 4 0.5291 0.6869
XGB + LightGBM Track 5 0.7846 0.7892

Spectrum Kernel Track 1 0.6346 0.8844
Spectrum Kernel Track 2 0.4728 0.7430
Spectrum Kernel Track 3 0.4410 0.6351
Spectrum Kernel Track 4 0.5490 0.7212
Spectrum Kernel Track 5 0.8186 0.8092

Table 8: Exact evaluation on the validation set using
minimal preprocessing and no fine-tuning.

Note: Tree-based models perform particularly well
on Mistake Location (Track 2) and Providing Guid-
ance (Track 3), achieving Macro F1 scores of 0.541
and 0.542 respectively – comparable to BERT-
like models on these tracks – when optimized via
randomized search over standard hyperparameter
grids.

Task Model Metric Val LB
MI String Kernel Acc. 0.9391 0.9541

String Kernel F1 0.8597 0.9185
ML String Kernel Acc. 0.8233 0.8630

String Kernel F1 0.7363 0.8404
PG XGBoost Acc. 0.8185 0.8222

XGBoost F1 0.6919 0.7860
AC String Kernel Acc. 0.8525 0.8940

String Kernel F1 0.8289 0.8659

Table 9: Comparison between the scores obtained with
traditional machine learning models on validation split
and the best public leaderboard results (LB), for each
task, under lenient evaluation.

Track Macro F1 Accuracy

Track 1
Submission 1 0.9054 0.9463
Submission 2 0.8675 0.9250
Submission 3 0.8907 0.9392
Submission 4 0.8959 0.9405
Submission 5 0.8917 0.9399

Track 2
Submission 1 0.7406 0.7666
Submission 2 0.7506 0.7886
Submission 3 0.7558 0.8009

Track 3
Submission 1 0.7303 0.7854
Submission 2 0.7228 0.7725
Submission 3 0.6730 0.7666
Submission 4 0.7171 0.7770

Track 4
Submission 1 0.8229 0.8571
Submission 2 0.8302 0.8565
Submission 3 0.8250 0.8500
Submission 4 0.8370 0.8655
Submission 5 0.8152 0.8487

Table 10: Lenient evaluation of our submissions on the
public leaderboard.
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E.1 Transformer Embeddings
E.1.1 Frozen ModernBERT-large Embeddings + Linear Classifier

Figure 7: Pooling strategy comparison across 2 split strategies; CV - StratifiedKFold(n_splits=5, shuffle=True,
random_state=42), Fixed - 80/20 train/validation splits as described in A

Evaluation is conducted using two split strategies: stratified 5-fold cross-validation and a fixed 80/20
train/validation split.

Since only the tutor response is used for embedding extraction, the folds are not grouped by conversa-
tion_id, which may partially explain why scores are higher under cross-validation for three out of four
tasks (not grouping by conversation_id can lead to leakage across folds by having similar responses from
the same dialogue appearing in both train and validation).

E.1.2 Various Model layers + Linear Classifier
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Figure 8: Pooling strategies from BERT model comparison across layers for Mistake Identification. Mean pooling
appears to perform better on early and late layers.

Figure 9: Comparison of different predictors using embeddings from middle layers of GritLM. The are no striking
differences between MLP and Logistic Regression classifiers. Furthermore, there is no pattern showing that late
layers are performing significantly better than early layers using embeddings from GritLM. The k-nearest neighbors
(knn) and Gaussian Naive Bayes models perform weaker.

F Misclassified Examples

Here we provide several misclassified examples from our best predictor on Mistake Identification.
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Example of chat misclassified as "No" for Mistake Identification; True label: "Yes"

Tutor: Hi, could you please provide a step-by-step solution for the question below? The question
is: Sophia is thinking of taking a road trip in her car, and would like to know how far she can drive
on a single tank of gas. She has traveled 100 miles since last filling her tank, and she needed to put
in 4 gallons of gas to fill it up again. The owner’s manual for her car says that her tank holds 12
gallons of gas. How many miles can Sophia drive on a single tank of gas?
Student: Sophia used 4 out of the 12 gallons of gas in her tank, so there are 12-4 = 8 gallons of
gas left in the tank. If Sophia can drive 100 miles on 4 gallons of gas, then she can drive 100/4 =
25 miles per gallon. Therefore, with 8 gallons of gas left in the tank, Sophia can drive 25 x 8 = 200
miles on a single tank of gas. 200
Tutor: talk me through your solution
Student: Hi I started by figuring out how many gallons of gas were left in Sophia’s tank. I knew
that she had used 4 gallons of gas to fill it up so I subtracted 4 from 12 to get 8 gallons of gas left
in the tank. Then I figured out how many miles Sophia could drive on a single gallon of gas. I
knew that she had driven 100 miles on 4 gallons of gas so I divided 100 by 4 to get 25 miles per
gallon. Finally I multiplied 25 by 8 to get 200 miles which is how many miles Sophia can drive on
a single tank of gas.
Response: Great job! To further enhance your understanding, let’s explore more examples and
practice problems related to this concept

Interpretation: Student’s math is correct, 8 gallons × 25 miles gallon = 200 miles, but the answer should
be 300 since Sophia can drive 12 gallons × 25 miles gallon = 300 miles. The ground truth label is "Yes",
implying that the tutor correctly identified the mistake. Language in the tutor’s response is affirming and
does not correct the student’s incorrect logic, so the model likely sees Great job! .. and looking only at
the tutor response, assumes no mistake is identified.

Example of chat misclassified as "Yes" for Mistake Identification; True label: "No"

Tutor: Hi, could you please provide a step-by-step solution for the question below? The question
is: A customer’s loyalty card at a store gives them rewards of $1 off their next purchase for every
$20 they spend. Their last shopping trip, they spent $80. This shopping trip, they spent $43, used
their rewards, and applied a coupon that took twice the amount of rewards off the price. How many
dollars did the customer pay on this shopping trip?
Student: The customer earned 80/20 = 4 rewards on their last shopping trip.
They had 4 x $1 = $4 in rewards to use this shopping trip. The coupon took twice the amount of
rewards off, so it took $4 x 2 = $8 off the price. The original price of the items was $43 + $4 = $47.
After the coupon and rewards were applied, the customer paid $47 - $8 = $39.
Tutor: could you please walk me through your solution?
Student: Sure. I started by calculating the rewards the customer earned on their last shopping trip.
They spent $80 so they earned 80/20 = 4 rewards. Then I multiplied 4 rewards by $1 to get the
total amount of rewards which was $4. I then applied the coupon that took twice the amount of
rewards off the price so it took $4 x 2 = $8 off the price. The original price of the items was $43 +
$4 = $47. After the coupon and rewards were applied the customer paid $47 - $8 = $39.
Tutor: If i purchase a bicycle worth $100 and have a coupon of $24 and rewards worth 6$ how
much do i actually pay for it?
Student: You would pay $100 - $24 - $6 = $70.
Response: That’s close, but remember to apply the coupon first since it has a higher value and can
reduce the price before the rewards. So, you would pay $100 - $24 = $76 and then subtract the
rewards, which is $76 - $6 = $70, not the other way around.

Interpretation: Student’s answer of 70 is mathematically correct. The tutor’s reasoning about the order
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is irrelavant, since subtracting fixed dollar amounts is order-invariant. The tutor gives a correct final
answer but justifies it incorrectly, which should count as a failure to identify a student mistake (correct
answer by chance). The model likely sees the phrase: "That’s close, but remember..." which resembles
correction, and may interpret it as mistake identification, when in reality, no actual error is identified.

These misclassifications highlight the limitations of response-only models for Mistake Identification.
In both cases, the tutor’s language is superficially corrective or affirming, but semantically misaligned
with the student’s actual performance.

G Data observations

During our experiments, we identify some cases of label inconsistencies, especially between label "Yes"
and "To some extent".
Label disagreement on nearly identical tutor responses when the student makes a mistake:

1. Mistake Identification

Sample A (Label: Yes)

Conversation ID: 413876945_2
History:
Tutor: Please recheck your answer once.
Tutor: What is the product of this equation?
Tutor: 7*60 = ?
Student: 520
Response: Please recheck your answer.

Sample B (Label: To some extent)

Conversation ID: 294929858
History:
Tutor: We are asked to find the quotient of 72 and 6.
Tutor: Let n be the number of doughnuts.
Tutor: Are you working on this question?
Student: 0.0833333
Response: Please recheck your answer.

2. Actionability

Sample A (Label: Yes)

Conversation ID: 29892262_1
History:
Tutor: Happy to work with you today!
Tutor: Today, let us review and master the lesson "Rounding Whole Numbers."
Tutor: Which is the greatest number among 5 and 3?
Student: 4
Response: That’s a good try, but remember, we’re looking for the greatest number between 5 and 3.
Let’s try again!
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Sample B (Label: To some extent)

Conversation ID: 29892262_2
History:
Tutor: Happy to work with you today!
Tutor: Today, let us review and master the lesson "Rounding Whole Numbers."
Tutor: Which is the greatest number among 5 and 3?
Student: 4
Response: That’s a good try, but remember we’re looking for the greatest number between 5 and 3.
Let’s try again.

H Team rankings

Metric Mistake ID Mistake Loc Prov. Guid. Actionability Tutor ID

Strict Macro F1 8 12 13 7 6
Strict Accuracy 4 23 21 7 6
Lenient Macro F1 8 12 11 10 –
Lenient Accuracy 7 10 10 10 –

Table 11: Archaeology’s offical team ranking per task under all evaluation metrics.
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