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Abstract

Effective AI tutoring hinges on guiding learn-
ers with the right balance of support. In this
work, we introduce CODE (COntextually-
aware Distilled Evaluator), a framework that
harnesses advanced large language models
(i.e., GPT-4o and Claude-2.7) to generate syn-
thetic, context-aware justifications for human-
annotated tutor responses in the BEA 2025
Shared Task. By distilling these justifications
into a smaller open-source model (i.e, Phi-
3.5-mini-instruct) via initial supervised fine-
tuning and then Group Relative Policy Opti-
mization, we achieve substantial gains in la-
bel prediction over direct prompting of pro-
prietary LLMs. Our experiments show that
CODE reliably identifies strong positive and
negative guidance, but like prior work, strug-
gles to distinguish nuanced “middle-ground”
cases where partial hints blur with vagueness.
We argue that overcoming this limitation will
require the development of explicit, feature-
based evaluation metrics that systematically
map latent pedagogical qualities to model out-
puts, enabling more transparent and robust as-
sessment of AI-driven tutoring.

1 Introduction

Large language models (LLMs) have opened a
promising frontier for education, enabling con-
versational agents that deliver personalized and
adaptive guidance calibrated to a learner’s cur-
rent knowledge state and pace (Tack et al., 2023).
Indeed, the main goal of dialectic teaching is to
provoke exploration through carefully timed ques-
tions, hints, or explanations (Clark and Egan,
2015). If the guidance provided is too little, it
frustrates students, while too much erodes learn-
ing opportunities and fosters over-reliance (Le,
2019). Although striking this balance is cen-
tral to effective tutoring, the field still lacks pre-
cise operational definitions and automatic metrics
for “optimal guidance”, making systematic eval-

uation, and therefore progress, very challenging
(Kochmar et al., 2025).

In light of this missing definition, existing as-
sessments rely heavily on individual annotation
by human experts (Maurya et al., 2025). How-
ever, crafting high-quality, question-specific ex-
planations at the scale needed to train or bench-
mark modern transformer models is prohibitively
expensive. To address this bottleneck, we explore
reasoning distillation: using stronger LLMs to
generate reasoning about a tutor’s utterance as to
why it matches the gold label. Our study inves-
tigates (i) whether synthetically contexts capture
meaningful signals of pedagogical quality, and (ii)
how well these signals transfer when smaller, stu-
dent models are trained on them.

As such, our contributions from team Henry are
as follows:

• We propose COntextually-aware Distilled
Evaluator (CODE) framework, a multi-step
finetuning process that distills reasoning from
larger LLMs to train smaller open-sourced
models to better detect what “good guidance”
is. Our method consistently outperforms
state-of-the-art (SOTA) proprietary models
and aligns reasonably well with expert hu-
man judgements.

• We release an enriched dataset with syntheti-
cally generated reasoning based on their gold
labels for each of the tutor’s last utterance
across the entire human-annotated set from
(Maurya et al., 2025).

2 Related Work

2.1 AI Tutor’s Guidance Evaluation

This feature of AI tutor currently lacks a unified
definition, but there has been efforts in this area
to explore it through various perspectives. Tack
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and Piech (2022) in their work evaluates perfor-
mances of AI tutor based on how much they “help
the student” using human participants and expert
annotators. While they don’t provide a formal def-
inition, their approach to evaluation is closely re-
sembled by Daheim et al. (2024)’s ”actionability”
where the AI tutor’s utterance provides sufficient
information for the student to progress the conver-
sation and move closer to the correct answer.

In another work by Wang et al. (2024), this
feature is referred to as “usefulness”, the degree
to which the responses are productive at advanc-
ing the student’s understanding and helping them
learn from their errors, also evaluated through hu-
man judgments. These concepts are also reflected
in the work of Al-Hossami et al. (2023), where
they defined “indirectness”, where an effective tu-
tor asks questions that induce critical thinking and
not reveal the answer.

2.2 Learning via Distillation

Knowledge distillation transfers the knowledge
embedded in large, high-capacity “teacher” mod-
els into smaller, more efficient “student” models
by having the student match the teacher’s softened
probability distributions, known as “soft targets”,
rather than relying solely on hard labels. First in-
troduced by Hinton et al. (2015), this technique
has enabled compact language models to approach
the performance of much larger LLMs while us-
ing reduced architectures and training data (Hsieh
et al., 2023).

More recently, distillation has been extended
to complex reasoning tasks, spawning the field
of reasoning distillation. For example, Li et al.
(2025) present Fault-Aware Distillation via Peer-
Review (FAIR), in which multiple teacher mod-
els critique each other’s reasoning chains to im-
prove fidelity. Likewise, Dai et al. (2024) propose
training student models on key reasoning steps ex-
tracted from dual chain-of-thought explanations.
These innovations not only enhance model inter-
pretability but also substantially boost conceptual
understanding in educational applications.

3 Methods

3.1 Synthetic Context Generation

Data Preprocessing We focus exclusively on
Task 3 of the BEA Shared Task (Kochmar et al.,
2025), and so we process the original dataset
from Maurya et al. (2025) accordingly. From

the provided validation set, we construct a filtered
dataset:

D =
{
(Ci, Ri, Li)

}N

i=1
,

such that for each sample i:

• Ci : conversation history of each original ele-
ment,

• Ri : each tutor’s response,

• Li ∈ {Y es, To Some Extent,No}: the
gold label provided by “Providing Guidance”

In total, we have N = 3, 589.

Generating Reasoning with Labels To enrich
each response label with contextual justification,
we leverage two state-of-the-art models, namely
GPT-4o (OpenAI et al., 2024) and Claude-2.7
Sonnet (Anthropic, 2024). For each model, we
process batches of 10 examples from our original
dataset D1 alongside the system prompt in Ap-
pendix A. Each model then generates a justifica-
tion Ji for sample i, drawing on the provided label
Li, the conversation history Ci, and the latest tutor
response Ri. This yields an expanded dataset

D′ =
{
(Ci, Ri, Li, Ji)

}N

i=1
,

where Ji is the synthetic justification associated
with the ith response.

Selection of Justifications To ensure the quality
and utility of the synthetically generated justifica-
tions, we conduct a manual selection process to
identify the most suitable responses produced by
the two models. The selection criteria are as fol-
lows:

• Non-repetition: Justifications that are re-
peated within the same batch are excluded to
prevent redundant signals, which could lead
to overfitting during downstream model train-
ing.

• Linguistic diversity and specificity: Se-
lected justifications exhibit varied and dis-
tinctive vocabulary, reflecting the natural di-
versity found in human tutor responses. This
diversity will then enhance the generalizabil-
ity of models trained on the data.

1Batch size selected after varying from 1 to 50. We find
that beyond 10 samples, both models tend to hallucinate or
become overly generic and provide low-quality responses.
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• Adequate length and contextual richness:
Justifications are required to provide suffi-
cient explanatory detail to offer meaning-
ful context for the corresponding labeled re-
sponse.

Extracting Critical Tokens For each synthetic
justification Ji, we perform the following prepro-
cessing steps:

1. Convert to lowercase and strip lead-
ing/trailing whitespace.

2. Remove all stopwords.

3. Tokenize the resulting string.

4. Apply stemming and lemmatization to each
token.

Let
Ti = { ti1, ti2, . . . , tiKi}

be the set of remaining tokens for sample i. We
refer to Ti as the context-critical token set, and we
use these tokens as our reward signals. With this,
we now proceed to training our student model.

3.2 Expert Alignment Through
Reinforcement Learning

To best align the student model’s outputs with
those of advanced LLMs, and potentially a hu-
man tutor expert, we introduce the COntextually-
aware Distilled Evaluator (CODE) framework. In
CODE, reasoning is distilled through a multi-step
transfer process, with tailored reward signals that
guide the model to generate contextually relevant
tokens for downstream classification.

3.2.1 Initial Supervised Learning
We begin by performing supervised fine-tuning
(SFT) to teach the student model to generate Ji
given the conversation history Ci and last response
Ri. This initial stage aims to instill the desired
format, tone, and length characteristic of expert-
generated justifications. At this point, emphasis
is placed not on the semantic quality or reasoning
depth of the model’s outputs, but rather on align-
ing the stylistic aspects of the responses to facili-
tate more efficient convergence during subsequent
training phases. We have:

Ji = ( ji,1, ji,2, . . . , ji,Ti ),

where each justification is represented as a to-
ken sequence. Under a standard cross-entropy ob-
jective, the per-sample loss is

ℓi(θ) = − 1

Ti

Ti∑

t=1

log pθ
(
ji,t | Ci, Ri, ji,<t

)
,

where pθ(·) is the student model’s predicted prob-
ability and ji,<t = (ji,1, . . . , ji,t−1). Averaging
over all N samples gives the final SFT loss:

LSFT(θ) =
1

N

N∑

i=1

ℓi(θ)

The system prompt used as part of this instruc-
tion tuning is provided in Appendix C.

3.2.2 Applying GRPO with Semantic
Rewards

After supervised fine-tuning, we now refine the
student model’s output quality via an online
reinforcement-learning algorithm known as Group
Relative Policy Optimization (GRPO) (Shao et al.,
2024). We denote the student’s policy by

πθ(J | Ci, Ri) ,

parameterized by θ, which we adapt efficiently us-
ing low-rank adaptation (LoRA) (Hu et al., 2021)
updates to the transformer weights.

Group sampling and baseline For each train-
ing example (Ci, Ri), the model samples a group
of M candidate justifications:

{ J1
i , J

2
i , . . . , J

M
i } ∼

M∏

j=1

πθ(· | Ci, Ri) .

Each candidate J j
i is scored by a programmable

reward function rji . We then compute the group
baseline as the mean reward:

bi =
1

M

M∑

j=1

rji .

Reward design The total reward rji is a
weighted sum of three components:

rji = wtok r
tok
i (Jj

i ) + wsent r
sent
i (Jj

i ) + wppl r
ppl
i (Jj

i ) ,

where:
rtoki (J) =

∑

t∈Ti

1
{
t appears in J

}
,

rsenti (J) =

{
1 if the sentiment of J matches the gold label,
0 otherwise,

rppli (J) = − 1

|J |

|J|∑

t=1

log pθ0
(
jt | Ci, Ri, j<t

)
.
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Here Ti is the context-critical token set for exam-
ple i. In this reward scheme, we do not punish the
student model arbitrarily for not generating trivial
tokens. Likewise, it is only rewarded if it can gen-
erate the critical tokens that would be informative
for the response’s label based on the context pro-
vided.

Next, the sentiment score is given by a finetuned
transformer based on DistilBERT (Sanh et al.,
2020) (i.e., DistilBERT-based SST-2 classifier).
While sentiment alone is not a reliable indicator of
guidance quality (Wang et al., 2024), it provides a
concrete and readily interpretable signal that can
guide model generation. The inclusion of this
sentiment-based reward facilitates faster conver-
gence of the student model by offering an easier-
to-learn proxy objective compared to directly op-
timizing for alignment with complex gold labels.
Crucially, sentiment is not intended as a hard clas-
sification signal but rather a soft reward, encourag-
ing the generation of justifications whose affective
tone is consistent with the associated label. This
approach helps steer the model’s learning trajec-
tory in a meaningful direction in light of GRPO’s
multiple response generation.

Finally, pθ0 denotes the frozen base model (i.e.,
untrained student model) used to compute per-
plexity. Importantly, the perplexity score is added
such that the trained model does not exploit the
other reward signals by randomly inserting tokens
as part of their outputs. This ensures that the final
responses produced by the trained student model
is still cohesive and human understandable.

Before performing the policy gradient update,
these scores are then normalised to zero mean
and unit variance to prevent their magnitude
from dominating other scores, with the weights
(wtok, wsent, wppl) balancing these signals. 2

3.3 Final Classification

To produce the final label predictions, we append
a trainable classification head atop the trained stu-
dent model. The primary objective of this step is
feature selection. That is, the student model has
been previously trained to generate justifications
containing critical tokens, and as such, this clas-
sification head aims to capture and interpret these
contextual cues, mapping them effectively to the

2We experimented with several weighting schemes but
observed only minor, non-meaningful variations. As such,
for our final implementation we adopted uniform weights, as-
signing a value of 1 to each.

target label space. In this final training stage, the
model is trained to associate its own generated out-
put with the corresponding gold label.

We first map each gold label:

Li ∈ {Yes, To Some Extent, No}
to a categorical target yi ∈ {1, 2, 3}. Let θ∗ de-
note the student model parameters after merging
the LoRA adapters. Here, we freeze all θ∗ and
add a dense feedforward layer with parameters
ϕ = (W, b), where

W ∈ R3×d, b ∈ R3.

However, instead of training it on one forward
pass on each example (Ci, Ri), we first generate
the student model’s full response by

Ĵi = argmax
J

πθ∗(J | Ci, Ri).

We encode this output using the student model’s
tokenizer, and train ϕ using standard cross-entropy
loss on the last token hidden state:

LCE(ϕ) = − 1

N

N∑

i=1

3∑

c=1

1[yi = c] log p̂i,c.

where p̂i,c is the softmax of the classification
head’s predicted labels.

This pooling design choice to use the last to-
ken hidden state as the representation is particu-
larly motivated by the architecture of decoder-only
transformers, which lack a dedicated classification
token such as [CLS] found in encoder-based mod-
els (Fu et al., 2023). The last token in our gen-
erated outputs (i.e., each justification) functions
as a natural summary or conclusion to the token
sequence, providing a meaningful contextual em-
bedding that reflects the entire output. This ap-
proach balances computational efficiency, avoid-
ing the increased complexity of attention-based
pooling, and mitigates the potential noise or di-
lution of critical token signals that may arise with
mean pooling strategies (Suganthan et al., 2025).

External Benchmarking In addition to compar-
ing against gold labels and the CodaBench leader-
board submission, we also evaluate whether our
method could outperform direct prompt-tuning of
the proprietary models. For each example, we
prompt GPT-4o and Claude-2.7 Sonnet to predict
the guidance label without revealing the true la-
bel and recorded their accuracy on the validation
set. The exact prompts used for this experiment
are provided in the Appendix B.
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Model Validation set CodaBench set

Ex. F1 Ex. Acc Len. F1 Len. Acc Ex. F1 Ex. Acc Len. F1 Len. Acc

GPT-4o 56% 69% 75% 83% 49% 58% 70% 75%
Claude-2.7 Sonnet 61% 70% 73% 81% — — — —
CoDE 64% 74% 83% 89% 53% 63% 72% 78%

Table 1: Evaluation of all models across both validation set and the CodaBench test set. Due to the limited nature
of submission on CodaBench set, results from Claude-2.7 Sonnet were not submitted in the competition. All result
reported has been rounded to the nearest percent. The final reported score on the official leaderboard for CoDE is
slightly higher than the reported value in this table, but because the baseline score of GPT-4o is not reported there,
we report the values of CoDE from the unofficial table for consistency.

3.4 Experimental Setup
We used the Unsloth-provided “Phi-3.5-mini-
instruct” (Daniel Han and team, 2023; Abdin et al.,
2024) as our student model. The original valida-
tion set was further split 80/20 into training and
test subsets. All data preprocessing ran on an
NVIDIA L40 GPGPU, with model training and
evaluation performed on an NVIDIA A100 GPU.
In total, preprocessing, training, and evaluation
consumed over 70 GPU-hours. Complete details
on training hyperparameters, such as GRPO and
LoRA parameters, are detailed in the Appendix.

4 Results

As shown in Table 1, CODE consistently out-
performs state-of-the-art baselines, achieving the
tenth position in the final CodaBench ranking. We
attribute this improvement both to the quality of
the synthetic data and to the student model’s abil-
ity to capture hidden features from the extended
context. Our results suggest that existing SOTA
models possess an implicit notion of “good guid-
ance”, and their generated outputs can be effec-
tively transferred to smaller models. This obser-
vation corroborates prior work demonstrating that
large language models can serve as an effective
tutors, offering substantial instructional value, al-
beit not at expert-level proficiency (Wollny et al.,
2021).

Notably, on both the validation set and, to a
lesser extent, the CodaBench benchmark, CODE
exhibits a larger gain when evaluated with lenient
F1 compared to exact F1, with improvements un-
der strict scoring criteria remain modest. This pat-
tern indicates that fine-tuning renders CODE less
sensitive to the ambiguous label that is “To some
extent”. The strong labels, “Yes” or “No”, are
much easier to deduce, with clearer human defini-
tion, but this “middle-ground” is much more nu-

anced, and since finetuning is known to reduce
LLMs’ general reasoning (Luo et al., 2025), this
drop may be inevitable. When pedagogical value
differs only slightly, we see that even among hu-
man experts, these are difficult to discern (Macina
et al., 2023).

5 Conclusion

In this paper, we have investigated the potential
of modern large language models to both gener-
ate and train on synthetic data that emulate expert
human reasoning in educational guidance through
our CODE framework. Across both our valida-
tion and CodaBench test sets, our approach con-
sistently outperforms SOTA baselines and aligns
reasonably well with human judgments. However,
our findings also underscore the persistent chal-
lenge of the absence of a formal, operational def-
inition of this pedagogical quality. In particular,
nuances embodied by the “middle-ground” label
appear too subtle or demand too much data for cur-
rent LLMs to learn reliably.

As future direction, we advocate for the contin-
ued development of explicit metrics that system-
atically map these latent pedagogical features to
models’ outputs. By grounding fine-tuning in a
well-defined, feature-based evaluation framework,
we can move beyond black-box learning of hidden
signals and instead foster more robust, transparent,
and interpretable AI tutoring systems.

Limitations

5.1 Models Faithfulness and Prompt
Sensitivity

The dataset created is not guaranteed to match
reasoning provided by expert tutors. While we
have conducted manual inspections on samples in
the synthetic data to ensure some level of consis-
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tency between reasoning and the label provided,
this cannot be assured.

Furthermore, the SFT prompt used for training
may not be optimal. This was chosen only after a
few iterations of prompt tuning on a sample of the
synthetic data.

5.2 Distillation Cost
Both models used are not open source nor free.
Generating these takes extensive time on paid
models, limiting the number of reasoning re-
sponses to one per sample. Ideally, we would like
to expand this dataset further by generating multi-
ple responses under various prompts to better sim-
ulate the diversity in thinking among real human
tutors.

Ethical Consideration

Our research adheres strictly to ethical standards,
using publicly available datasets as well as follow-
ing distillation restriction carefully. We uphold
the principles of fairness, accountability, and aca-
demic integrity throughout the research process.
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A Synthetic Data Generation Prompt

For both GPT-4o and Claude, we used the follow-
ing prompt to create our dataset:

Data Creation Prompt

You are an expert evaluator of Socratic-
style tutoring dialogs in programming ed-
ucation. Your task is to justify the
human-supplied quality label for the tutor’s
last response You will receive: conversa-
tion history (full transcript up to, but NOT
including, the tutor’s latest reply, and the
speaker turns are prefixed with “Student:”
or “Tutor:”, last response (the tutor’s latest
reply, to be evaluated), and label (one of
Yes, To some extent, No indicating whether
the reply provides adequate, partial, or no
helpful guidance to the student.These la-
bels correspond to:

• Yes: The reply gives sufficient, spe-
cific, actionable guidance or hints that
directly help the student correct their
error or deepen understanding.

• To some extent: Contains some guid-
ance, but it is vague, incomplete, or
only tangentially helpful. Student
would likely still struggle.

• No: Gives the answer outright with-
out guidance, or offers no meaning-
ful help, such as generic reassurance,
topic change, or silence.

Return your result explaining why
the provided label is appropriate
as structured JSON with these keys:
{“label justification”: string}

B Proprietary Model Label Prompt

To produce labels from both GPT-4o and Claude
as our external baselines, we used the following
prompt:
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Data Label Prompt

You are an expert evaluator of Socratic-
style tutoring dialogs in programming ed-
ucation. You will receive: conversa-
tion history (full transcript up to, but NOT
including, the tutor’s latest reply, and the
speaker turns are prefixed with “Student:”
or “Tutor:”, and last response (the tutor’s
latest reply, to be evaluated). Your job is to
provide a label (one of Yes, To some extent,
No indicating whether the reply provides
adequate, partial, or no helpful guidance to
the student. These labels correspond to:

• Yes: The reply gives sufficient, spe-
cific, actionable guidance or hints that
directly help the student correct their
error or deepen understanding.

• To some extent: Contains some guid-
ance, but it is vague, incomplete, or
only tangentially helpful. Student
would likely still struggle.

• No: Gives the answer outright with-
out guidance, or offers no meaning-
ful help, such as generic reassurance,
topic change, or silence.

Return your result explaining why the pro-
vided label is appropriate as structured
JSON with these keys: { “label”: string }

C SFT Training System Prompt

The system prompt used to align the model’s be-
haviour to that of a professional tutor is as follows:

System Prompt

You are a professional tutor. Your goal is to
focus on whether the Last Response from
the example is providing enough guidance
(i.e, explaination, hints, guidance) to the
student to act upon, progressing the con-
versation based on the conversation his-
tory. DO NOT continue the conversation,
and you MUST use the Last Response pro-
vided. Focus on these characteristics:

1. If the Last Response provides spe-
cific, actionable guidance that iden-
tifies exactly where errors occur and

offers clear steps forward, balanc-
ing encouragement with targeted cor-
rection while addressing misconcep-
tions without giving away complete
answers.

2. If the Last Response acknowledges
problems but offer incomplete guid-
ance—they might identify errors
without explaining how to fix them,
use ambiguous language, or address
only part of the misconception, leav-
ing students without clear direction
on how to proceed.

3. If the Last Response fails to pro-
vide meaningful guidance by offering
empty praise without addressing er-
rors, changing the subject, reinforcing
incorrect understanding, giving an-
swers without explanation, or present-
ing completely irrelevant information
that leaves students with no actionable
path forward in solving their problem.

D LoRA Training Arguments

This details the full LoRA training parameters:

• max seq length: 2048

• dtype: cuda

• load in 4bit: False

• device: cuda

• device map: cuda:0

• r: 64

• target modules: {q proj, k proj,
v proj, o proj, gate proj, up proj,
down proj}

• lora alpha: 64

• lora dropout: 0

• bias: none

• use gradient checkpointing:
unsloth

• random state: 42

• use rslora: True

• loftq config: None
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E GRPO Training Arguments

This details the full GRPO training arguments:

• use vllm: True

• learning rate: 5× 10−6

• adam beta1: 0.9

• adam beta2: 0.99

• weight decay: 0.1

• warmup ratio: 0.1

• lr scheduler type: cosine

• optim: paged adamw 8bit

• logging steps: 10

• bf16: True

• per device train batch size: 1

• gradient accumulation steps: 1

• num generations: 6

• max prompt length: 2048

• max completion length: 256

• num train epochs: 5

• max steps: −1

• save strategy: steps

• save steps: 250

• max grad norm: 0.1
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