
Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications, pages 118–128
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Adapting LLMs for Minimal-edit Grammatical Error Correction
Ryszard Staruch

Adam Mickiewicz University
Center for Artificial Intelligence

ryszard.staruch@amu.edu.pl

Filip Graliński
Adam Mickiewicz University
filipg@amu.edu.pl

Snowflake
filip.gralinski@snowflake.com

Daniel Dzienisiewicz
Adam Mickiewicz University
dzienis@amu.edu.pl

Abstract

Decoder-only large language models have
shown superior performance in the fluency-
edit English Grammatical Error Correction, but
their adaptation for minimal-edit English GEC
is still underexplored. To improve their effec-
tiveness in the minimal-edit approach, we ex-
plore the error rate adaptation topic and pro-
pose a novel training schedule method. Our
experiments set a new state-of-the-art result
for a single-model system on the BEA-test set.
We also detokenize the most common English
GEC datasets to match the natural way of writ-
ing text. During the process, we find that there
are errors in them. Our experiments analyze
whether training on detokenized datasets im-
pacts the results and measure the impact of the
usage of the datasets with corrected erroneous
examples. To facilitate reproducibility, we have
released the source code used to train our mod-
els.1

1 Introduction

Grammatical Error Correction (GEC) is a Natu-
ral Language Processing task that covers the de-
tection and correction of errors in texts. Current
state-of-the-art models are either Sequence-to-Edit
(Seq2Edit) models (encoder-only Transformers)
that are trained to tag erroneous tokens and ap-
ply proper changes to them (Omelianchuk et al.,
2020), or Sequence-to-Sequence (Seq2Seq) models
(encoder-decoder Transformers) that are trained to
generate the correct version of a given text (Rothe
et al., 2021).

Over the years, two main directions have been es-
tablished in GEC research: minimal-edit GEC and
fluency-edit GEC (Bryant et al., 2023). The former
focuses on applying only the minimal changes nec-
essary to make the text grammatical and error-free.
In contrast, fluency-edit GEC goes beyond minimal
corrections to achieve native-language fluency.

1github.com/richardxoldman/llms-for-minimal-gec

Current decoder-only large language models
(LLMs) achieve state-of-the-art performance on
many NLP tasks. Instruction-tuned LLMs are able
to produce high-quality texts and correct errors in
the zero-shot approach, even without task-specific
fine-tuning (Davis et al., 2024). On the JFLEG
dataset (Napoles et al., 2017), which is a fluency-
edit GEC dataset, the GPT3 and GPT4 models
are capable of producing state-of-the-art results
(Loem et al., 2023; Coyne et al., 2023). LLMs
were also used by the winners of the recent multi-
lingual grammatical error correction shared task –
MultiGEC-2025 (Masciolini et al., 2025).

However, for a minimal-edit GEC, there is only
one research work that reports better results com-
pared to other solutions on English minimal-edit
GEC benchmarks (Liang et al., 2025). The prob-
lem encountered by LLMs can be explained by the
phenomenon of overcorrection (Fang et al., 2023).

To further explore LLMs adaptation for minimal-
edit GEC, there is a need to find solutions that
could allow LLMs to produce more strict outputs.
Junczys-Dowmunt et al. (2018) by exploring the
error rate adaptation topic show that neural net-
work based solutions need more erroneous exam-
ples. Their experiments show that removing the
correct examples leads to greater recall. Our in-
tuition is that for modern LLMs, which are able
to produce fluent corrections with high linguistic
freedom even in the zero-shot manner, the opposite
direction is needed, as there is a need for higher
precision.

Sun and Wang (2022) propose a method for a
precision-recall trade-off that requires beam-search
decoding, which increases computational resources
and inference time compared to greedy decod-
ing. To overcome this issue, we propose a novel
training schedule method to control the precision-
recall trade-off during training instead of inference.
Our method allows for the application of standard
greedy decoding during inference without the need

118

https://github.com/richardxoldman/llms-for-minimal-gec

...to a cafe and and I drank a drink.
I recommend you to practise any sport...

She is one of the ones that...
Sometimes we go to partyies in the city.

...and I was very happy to hug him because I miss
him...

Table 1: Examples of changes in target texts made dur-
ing detokenization process by the Llama 3 70b model.
Deletions are highlighted with a strikethrough, and in-
sertions are highlighted in bold.

for external tools or algorithms to control the infer-
ence process.

Since LLMs are trained on raw texts and exist-
ing GEC datasets are available in word-tokenized
(henceforth referred to as ”tokenized”) format
(Bryant et al., 2023), it forces models to switch
from working on raw texts to tokenized texts.

Another case that would require detokenized
texts is any work that leverages probability dis-
tributions for language models, for example the
Scribendi Score reference-less metric (Islam and
Magnani, 2021).

To solve this issue, we detokenize the most com-
mon GEC datasets and verify whether training
models on detokenized texts leads to better results.
The detokenization process involved the usage of
the LLM, during which we discovered that even
the most popular datasets contain errors in annota-
tions. We make the detokenized datasets available
to the public to make them accessible to other re-
searchers2.

In summary, our contributions in this work are
as follows:

• The LLM that achieves the state-of-the-art
single-model system on the BEA-19 Shared
Task test set.

• The study of error rate adaptation in the con-
text of LLMs.

• The novel training schedule method that en-
ables control of the precision-recall trade-off
during training.

• The detokenization of the most common En-
glish GEC datasets, and the detailed analysis
of annotation errors in them.

2 Datasets and their detokenization

The most common GEC datasets for English are
available in a tokenized format due to evaluation
tools that use the M2 format (Dahlmeier and Ng,
2012) such as ERRANT (Bryant et al., 2017).
LLMs are trained on raw texts, so the tokeniza-
tion process forces them to switch to the tokenized
text and also to learn the tokenization process. To
solve this issue, we detokenize FCE-train (Yan-
nakoudakis et al., 2011), W&I+LOCNESS train
and dev part (hereafter, we refer to the train split of
this dataset as BEA-train, the dev split as BEA-dev
and the test split as BEA-test) (Bryant et al., 2019)
CoNLL-2014-test (Ng et al., 2014), and JFLEG
datasets — these are the datasets we decided to use
in our work, as they are one of the most commonly
used GEC resources (Bryant et al., 2023). The
statistics about them are given in the Appendix.

For the FCE-train, BEA-train, and BEA-dev
datasets, the source texts were available in the raw
format (the only work needed was to properly split
them line by line). To detokenize the target texts
of these datasets, we used the Sacremoses Detok-
enizer3, but it did not correctly detokenize all the
examples.

To improve the detokenization process, we lever-
aged the Llama-3.1-70b-Instruct model (denoted
as Llama 3 70b), where the model task was only
to detokenize the target text. We included a source
text that is properly detokenized in the prompt to
help the model in the detokenization process. The
prompt is given in the Appendix.

In order to detokenize the CoNLL-2014 input
texts, we had to properly split paragraphs at the
sentence level, which are available in SGML for-
mat. We did this using a simple Python script with
split rules and then manually adjusted examples
that were not properly handled by the script.

For the JFLEG dataset we only had to detokenize
inputs of the dataset, since the dataset has only dev
and test splits. Due to the small size of the JFLEG
dataset, we used Sacremoses Detokenizer and then
manually adjusted the texts.

It should be emphasized that our work does not
affect the examples in the test sets. The source
texts for both the BEA-test and the CoNLL-2014-
test were unchanged. The BEA-test target texts
are hidden on the CodaLab platform and are not
available publicly. There was no need to detokenize

2github.com/richardxoldman/detokenized-gec-datasets
3pypi.org/project/sacremoses/

119

https://github.com/richardxoldman/detokenized-gec-datasets
https://pypi.org/project/sacremoses/

Dataset modified essential optional erroneous not assessable

wrong
annotations
(estimated

lower bound)
BEA-dev 6.52% 80.77% 2.80% 12.59% 3.85% 5.22%

BEA-train 6.22% 78.67% 4.90% 9.80% 6.64% 4.89%
FCE-train 8.42% 71.68% 12.24% 12.24% 3.85% 6.04%

Table 2: Details for annotations to examples changed by the Llama 3 70b model.

the CoNLL-2014-test target texts, since the scoring
script uses the M2 format to compute the results.
It makes outcomes based on our version of the
datasets fully comparable to the previous research.

The results reported on our version of the BEA-
dev dataset may differ slightly from those reported
by other researchers due to the changes described
in Section 2.1, but are intended to select the most
promising model, not to report the final results.

2.1 Incorrect annotations in datasets

In less than 10% of the examples, the Llama 3 70b
model, when used for detokenization, occasionally
modified the text beyond simply removing spaces
in the correct version of the text. Table 1 shows ex-
amples of differences between the target texts in the
dataset and the changes made by the Llama 3 70b
model. Our initial investigation showed that those
changes are mostly errors that were not corrected
by a human annotator. Given this, we decided to
do a manual annotation of such samples.

For our annotation purposes, the considered sen-
tences were assigned four labels: essential, op-
tional, erroneous and not assessable.

The essential label was assigned to sentences
in which corrections were necessary and actually
contributed to improving their accuracy.

The optional label was attributed to sentences
in which the corrections made were not necessary,
as their original versions were considered correct
as well (e.g. sentences originally written in capital
letters, which were then changed to lower case).

The erroneous label refers to situations where
the corrections either do not fix the original mis-
takes in the sentences or create new mistakes in
sentences that were already correct.

Finally, the not assessable label is used to mark
corrections for which the quality, for various rea-
sons, cannot be assessed by the annotator.

For BEA-dev, all examples (284) modified by
the Llama 3 70b model were verified, whereas for

the other two datasets, random samples of the same
size (284 examples) were checked. The results of
the annotation process are shown in Table 2.

2.2 Detokenization impact

To verify whether the detokenization process and
the modification of examples by the Llama 3 70b
model have an impact on the GEC models, we
decided to train the LLMs on the FCE-train and
the BEA-train datasets in four different processing
setups:

1. detokenized-filtered: Detokenized datasets
excluding examples modified by the Llama 3
70b model.

2. tokenized-filtered: Tokenized datasets corre-
sponding to the examples that remained un-
modified in the detokenized version.

3. detokenized-full: Detokenized datasets in-
cluding all examples, both modified and un-
modified.

4. tokenized-full: Tokenized datasets corre-
sponding to the full set of detokenized exam-
ples (original, untouched datasets).

Please note that tokenized-* setups refer to the
original examples ”as is”, without any modifica-
tions introduced by the Llama 3 70b model.

The detokenized-filtered setup compared to the
tokenized-filtered setup shows whether the deto-
kenization process has an impact on the models’
performance, since both models are fine-tuned on
the same examples with the same hyperparameter
setup. The details about the hyperparameters are
given in the Appendix.

The *-full setups against the *-filtered setups
show whether the changes made by the Llama 3
70b model in the datasets have an impact on the re-
sults, because the detokenized-full setup contains
the modified examples by the Llama 3 70b model,

120

Model Size Setup BEA-dev JFLEG-dev

P R F0.5 GLEU

Qwen 2.5 1.5B detokenized-filtered 57.90 42.10 53.86 56.10
Qwen 2.5 1.5B tokenized-filtered 59.00 38.48 53.31 56.17
Qwen 2.5 1.5B detokenized-full 57.86 42.75 54.04 56.22
Qwen 2.5 1.5B tokenized-full 59.92 37.79 53.63 56.01
Llama 3 Small 3B detokenized-filtered 63.34 47.52 59.39 57.42
Llama 3 Small 3B tokenized-filtered 63.31 47.29 59.29 57.58
Llama 3 Small 3B detokenized-full 63.04 48.32 59.42 57.56
Llama 3 Small 3B tokenized-full 62.61 46.22 58.46 56.96
Gemma 2 9B detokenized-filtered 68.84 56.40 65.93 58.70
Gemma 2 9B tokenized-filtered 68.84 55.90 65.79 58.99
Gemma 2 9B detokenized-full 69.07 57.13 66.30 58.72
Gemma 2 9B tokenized-full 69.86 55.67 66.47 58.40

Table 3: Results for different dataset processing setups.

Dataset M R U
BEA-dev 50.74% 38.87% 10.39%

BEA-train 46.93% 40.28% 12.79%
FCE-train 61.33% 31.96% 6.71%

Table 4: Details about the operations performed by the
Llama 3 70b model. The labels stand for: Missing,
Replacement and Unnecessary.

whereas the tokenized-full setup contains all the
original examples (also the erroneous ones). Again,
the number of training examples is the same, but
the difference lies in the quality of the annotations
in examples that were changed by the Llama 3 70b
model.

All models were trained for one epoch on the
FCE-train dataset and then for one epoch on the
BEA-train dataset. In this and subsequent experi-
ments, we report the results for the BEA-dev and
JFLEG-dev datasets, since these datasets give a
view for both minimal-edit and fluency-edit GEC.
Table 3 presents the results for 3 different LLMs
of different sizes: Qwen2.5-1.5B-Instruct (denoted
as Qwen 2.5), Llama-3.2-3B-Instruct (denoted as
Llama 3 Small) and gemma-2-9b-it (denoted as
Gemma 2).

2.3 Results analysis

The results show that LLMs can learn the tokenized
version of the texts and in some cases even achieve
better metric scores compared to the models trained
on the detokenized texts. We can see that there are
no clear gains in terms of F0.5 score from using the

detokenized version of datasets.
The transition from the tokenized-filtered to the

tokenized-full setup increases precision in each
experiment but lowers recall and GLEU values. In
all cases, transition from the detokenized-filtered
setup to the detokenized-full setup improves recall
and slightly improves the GLEU score. It shows
that the changes made by the Llama 3 70b model
result in outputs with higher linguistic freedom,
which is expected, since the most common change
made by the Llama 3 70b model is the Missing op-
eration (Table 4), while using the original sentences
makes the models produce more strict outputs.

We can also see that the size of the models signif-
icantly impacts the results. Therefore, for the next
experiments we will further explore the Gemma
2 model, as it is the best performing model. Al-
though Gemma 2 achieves the best F0.5 score on
the tokenized-full setup, the next experiments will
be performed on the detokenized version of the
datasets, as they contain corrected erroneous anno-
tations. The other reason is that our systems can be
used in the work of other researchers who need a
model that produces detokenized output. It would
be also simply practical in terms of using the sys-
tem in the environment where the output does not
require removing the unnecessary spaces.

3 Overcorrection problem

In the minimal-edit GEC task, the goal is to find
and correct only those parts of the texts that are
clearly erroneous, without making further improve-
ments to their fluency. Due to the pre-training goal

121

Figure 1: Visualization of the fine-tuning process for our best performing Gemma 2 model on the BEA-dev dataset.

of LLMs, which is to maximize the probability of
the next token, and the flexibility they gain from
instruction fine-tuning process, LLMs tend to pro-
duce more fluent output. While this characteristic
may be advantageous for fluency-edit GEC, the ob-
jective of minimal-edit GEC is to apply only the
minimal necessary corrections.

Standard minimal-edit GEC benchmarks, which
are based on texts written by English language
learners, put a greater weight on precision than on
recall, because suggesting an incorrect change is
considered more negative than ignoring an error
(Ng et al., 2014). Therefore, a proper adaptation
of the model is needed to correct errors with high
precision.

For the Chinese minimal-edit GEC, Yang and
Quan (2024) proposes an alignment model which
is used to filter only minimal corrections from the
initial correction, which may be fluent.

One of the most recent works proposes the novel
method for LLM fine-tuning, Edit-Wise Prefer-
ence Optimization (EPO) that fits the minimal-edit
GEC task better than the standard supervised fine-
tuning (SFT) approach (Liang et al., 2025). In our
work, we explore the SFT approach with a focus
on the datasets rather than the different training
approaches, and show that proper data preprocess-
ing or training schedule can lead to the successful
minimal-edit LLM model.

4 Data augmentation

During GEC model fine-tuning, datasets play a cru-
cial role in the whole process. One of the most
important attributes of the GEC datasets is the er-
ror rate. The common practice for neural models
that are trained from scratch is to remove unedited
pairs (Chollampatt and Ng, 2018; Kiyono et al.,
2019), because for these models there is a need for
improved recall.

Large language models produce fluent output
with high recall, which may suggest that removing
unedited pairs for LLMs is unnecessary and could

worsen the results. Furthermore, it may be possi-
ble that providing additional unedited pairs could
improve minimal-edit error correction for LLMs.

To provide more real examples that may not
be fluent, but are still acceptable, we propose a
data augmentation method to split each example
(consisting of source text and corrected text) into
two pairs. The new pair is created by using the
corrected text as both the source and target text.
For example, the sentence pair “Alice have a cat.”
and “Alice has a cat.” can be split into the following
examples:

• Alice have a cat. → Alice has a cat.

• Alice has a cat. → Alice has a cat.

Our method can be applied to any dataset and
does not require any additional models/tools to
extend a given dataset.

5 Training schedule

Current approaches to GEC training scheduling
consist of dividing data into 2 or 3 groups based on
data quality and then training a model in the correct
order, from the lowest quality data to the highest
(Bout et al., 2023). We follow this approach, but to
control the precision-recall trade-off, we propose
to extend it even further.

In the final stage (with the highest quality dataset
– in our case it is BEA-train dataset), we split the
data into two groups. The first group contains only
erroneous texts, whereas the second group contains
only correct examples. During the stage, we first
train the model on the first group (only erroneous
examples), and then we train the model on the
second group (only correct examples) with lower
learning rate. Figure 1 shows the step-by-step train-
ing schedule for the best performing model on the
BEA-dev set.

Our intuition behind this approach is that a
model first learns how to correct errors and later is
tuned to understand which examples are correct but

122

Dataset processing approach Erroneous sentences BEA-dev JFLEG-dev

FCE-train BEA-train P R F0.5 GLEU

ONLY-ERRONEOUS 100% 100% 60.74 58.79 60.34 58.16
UNCHANGED 65.43% 69.02% 68.99 57.12 66.24 58.73
AUGMENTED 39.55% 40.83% 71.42 53.42 66.92 58.21

Table 5: Results for the dev sets for the experiment with our data augmentation method.

in some cases not perfectly fluent. During the last
stage, when the model is fine-tuned only on cor-
rect examples, the model only learns to not apply
corrections to texts.

Choosing a proper learning rate value (or num-
ber of examples) enables controlling the precision-
recall trade-off in LLMs, as lowering learning rate
should make the model learn not to correct more
smoothly while still being able to correct the errors
in texts.

6 Experiments

6.1 Data augmentation experiments
To test whether the addition of unedited pairs can
positively affect LLMs in the minimal-edit GEC
task, we train the Gemma 2 model4 with the same
hyperparameter setup as in the experiment from
Section 2 in three different dataset processing ap-
proaches:

• only erroneous examples (denoted as ONLY-
ERRONEOUS)

• erroneous examples + unedited examples (de-
noted as UNCHANGED)

• erroneous examples + unedited examples +
unedited examples created from erroneous ex-
amples by applying our data augmentation
method (denoted as AUGMENTED)

As in the previous experiment, we first train one
epoch on the FCE-train dataset and then one epoch
on the BEA-train dataset.

Table 5 shows the results on the BEA-dev and
JFLEG-dev datasets. We can see that unedited
examples are needed to improve the LLMs per-
formance. Even on the fluency-edit dataset, the
scores are better when unedited pairs are added to

4For the data augmentation and training schedule experi-
ments we also tested the gemma-2-9b-it-SimPO model and
achieved slightly better results, but we decided to use the
original Gemma 2 model as our goal is not to maximize the
benchmark scores.

the dataset (the UNCHANGED approach). For
the AUGMENTED approach, the F0.5 score is
the highest among all approaches, but the GLEU
score is lower compared to the UNCHANGED
approach.

This study shows that lowering the error rate in
the GEC datasets is a way to make LLMs produce
minimal-edit outputs. It also shows that when new
solutions are available, such as modern LLMs, ap-
proaches or practices from previous research, such
as removing unedited pairs, should be reevaluated
and tested again.

6.2 Training schedule experiment

We also carried out an experiment with different
learning rate values for the last group (only correct
examples) for our training schedule method for the
Gemma 2 model. We also test whether applying
our data augmentation method for the FCE-train
dataset improves the results.

Note that in this experiment data augmentation
method is not applied to the BEA-train dataset.

Table 6 shows how the precision-recall trade-off
depends on the learning rate value. It can be ob-
served that even small changes in the learning rate
value noticeably influence the trade-off, making the
hyperparameter very sensitive.

When applying the data augmentation method
for the FCE-train dataset, the BEA-dev set F0.5
score can be improved compared to the best value
achieved in the previous experiment (the AUG-
MENTED dataset processing approach).

Although the data augmentation method was
designed to enhance precision, we observe that
results with data augmentation on the FCE-train
have higher recall. In this experiment, we hypothe-
size that training on the FCE-train provides general
GEC knowledge, while fine-tuning on the BEA-
train determines the model’s behavior in terms of
the precision-recall trade-off as model is first fine-
tuned on erroneous examples and then on the cor-
rect ones.

123

Learning rate FCE-train
Augmented

BEA-dev JFLEG-dev

P R F0.5 GLEU

1e-7 ✗ 65.90 58.18 64.19 58.58
1e-7 ✓ 65.10 58.33 63.62 58.60
2e-7 ✗ 69.30 56.05 66.17 58.64
2e-7 ✓ 69.22 56.40 66.21 58.66

2.5e-7 ✗ 70.94 53.73 66.67 58.47
2.5e-7 ✓ 70.96 54.40 66.89 58.28
3e-7 ✗ 73.63 48.72 66.80 57.60
3e-7 ✓ 73.52 50.10 67.23 57.90

3.5e-7 ✗ 75.81 44.92 66.65 56.74
3.5e-7 ✓ 75.38 46.82 67.18 57.35
4e-7 ✗ 77.49 40.15 65.34 55.48
4e-7 ✓ 76.74 43.49 66.57 56.15
5e-7 ✗ 79.74 24.79 55.29 50.26
5e-7 ✓ 78.88 31.78 60.85 52.91

Table 6: Results for the dev sets for the experiment with our training schedule method.

Figure 1 shows the complete training process for
the model with the highest F0.5 score.

6.3 Results on the test datasets

From each experiment, we choose the most promis-
ing model based on its performance on the BEA-
dev dataset to evaluate it on the BEA-test, CoNLL-
2014-test, and JFLEG-test datasets. In Table 7,
Gemma 2 Augmentation refers to the best model
from Section 6.1 (only applying the data augmen-
tation method) and Gemma 2 Training-Schedule
refers to the best model from Section 6.2.

Table 7 shows that our model from the training-
schedule experiment achieves a new state-of-the-
art single model result on the BEA-test dataset
and has competitive results with other solutions
on the CoNLL-2014-test dataset. It should be
noted that our models were trained only on two
relatively small datasets, whereas other solutions
were trained on a much larger number of examples,
except for the Mistal-7b-EPO model.

To get more insights about the impact of the dif-
ferent model selection on the results, we also per-
formed a single experiment with the gemma-2-27b-
it and llama-2-13b-chat (Gemma 2 (27b) Training-
Schedule and LLama-2-13b Training-Schedule in
the tables) models with the same training schedule
and hyperparameters as the best performing model
on the BEA-dev dataset, so the model training is
exactly the same as for the Gemma 2 Training-
Schedule model.

The Llama-2-13b achieves even worse results
than these reported by (Omelianchuk et al., 2024).
It can be explained by using different datasets dur-
ing fine-tuning process. The precision and recall
are both worse than those of the Gemma 2 model.
This suggests that model size is not the only im-
portant factor; other details about the LLM, such
as its novelty, architecture, and the dataset used for
training, also matter.

The Gemma 2 (27b) achieves even a better score
than the best Gemma 2 9b model on the BEA-test
set, but it may be slightly overtuned for precision
due to the same learning rate value in the final stage
with the bigger model, which can be observed in
the worse results for the CoNLL-2014-test dataset.

Table 8 shows the results for the JFLEG-test
dataset. We can see that even if our models are fine-
tuned for minimal-edit GEC, they achieve a higher
score than the average of the scores computed for
the JFLEG-test references. It suggests that LLMs
can find a proper balance between minimal-edit
GEC and fluency-edit GEC.

7 Conclusions

Our work demonstrates that there are several ways
to fine-tune an LLM for minimal-edit grammatical
error correction, without the need for pre-training
them on a large number of examples. We pro-
pose easy-to-implement methods for controlling
the precision-recall trade-off during fine-tuning.

Moreover, we show that choosing a more recent

124

Model Size CoNLL-2014-test BEA-test

P R F0.5 P R F0.5

T5 Large (Rothe et al., 2021) 700M - - 66.04 - - 72.06
T5 XL (Rothe et al., 2021) 3B - - 67.65 - - 73.92
T5 XXL (Rothe et al., 2021) 11B - - 68.75 - - 75.88
GECToR (Tarnavskyi et al., 2022) 355M 74.40 41.05 64.00 80.70 53.39 73.21
TemplateGEC (Li et al., 2023) 770M 74.80 50.00 68.10 76.80 64.80 74.10
FLAN-T5 XXL (Cao et al., 2023) 11B 75.00 53.80 69.60 78.80 68.50 76.50
DeCoGLM (Li and Wang, 2024) 335M 75.10 49.40 68.00 77.40 64.60 74.40
BART Base (Wang et al., 2024) 400M 76.20 52.20 69.80 77.70 67.50 75.40
Llama-2-13b (Omelianchuk et al., 2024) 13B 77.30 45.60 67.90 74.60 67.80 73.10
Mistral-7b-EPO (Liang et al., 2025) 7B 76.71 52.56 70.26 78.16 68.07 75.91
Gemma 2 Augmentation 9B 73.80 56.16 69.43 74.86 71.35 74.13
Gemma 2 Training-Schedule 9B 75.74 51.47 69.24 79.87 68.90 77.41
Llama-2-13b Training-Schedule 13B 71.07 50.11 65.59 74.10 67.54 72.69
Gemma 2 (27b) Training-Schedule 27B 77.38 47.88 68.89 82.28 67.03 78.70

Table 7: Single model results for the minimal-edit GEC test sets.

Model GLEU
Source (Uncorrected) 40.54
Reference (Average) 62.37

Conv Seq2Seq (Ge et al., 2018) 62.42
Transformer

(Stahlberg and Kumar, 2021)
64.70

GPT-3.5 (Coyne et al., 2023) 63.40
GPT-4 (Coyne et al., 2023) 65.02
Gemma 2 Augmentation 63.72

Gemma 2 Training-Schedule 62.91
Llama-2-13b Training-Schedule 62.53

Gemma 2 (27b) Training-Schedule 62.42

Table 8: Results for the fluency-edit GEC dataset
(JFLEG-test).

LLM is also an important factor that impacts the
overall performance of the model. The Gemma 2
9b model, even as a smaller model achieved much
better performance compared to the Llama-2-13b
model.

The detokenization process did not improve
model performance, but our findings on the errors
in the most common GEC datasets show the need
for a proper curation of datasets. Our work also
shows that LLMs can be effectively used as a deto-
kenization tool.

8 Limitations

Our work covers only experiments on English GEC
datasets, so it would be beneficial to extend the re-

search to check how LLMs would perform in other
languages. We did not conduct experiments on
other types of models. It is hard to tell whether our
methods would improve the Seq2Seq or Seq2Edit
approaches.

The other issue is that we applied only greedy de-
coding during inference. The results could be even
better if different decoding methods were applied.
It would also be worth comparing these methods
applied in LLMs with the Seq2Seq or Seq2Edit
models.

The reusability of the training schedule method
is limited by the requirement for extensive learning
rate tuning for any different model or dataset due to
high sensitivity to minor changes in learning rate.

Obtaining the highest F0.5 might be considered
overfitting for a specific test set and evaluation met-
ric, but in practical terms, the style of grammar
correction depends on specific needs, guidelines,
etc., so this might be a desired behavior.

Lastly, running our models requires a lot of mem-
ory and computational power, so for many people
it would be impossible to run them on their devices.
Our models may not be practical for everyday use,
but they can be used to create synthetic datasets
that can be used to train smaller models.

References
Andrey Bout, Alexander Podolskiy, Sergey Nikolenko,

and Irina Piontkovskaya. 2023. Efficient grammat-
ical error correction via multi-task training and op-

125

https://doi.org/10.18653/v1/2023.emnlp-main.355
https://doi.org/10.18653/v1/2023.emnlp-main.355

timized training schedule. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 5800–5816, Singapore.
Association for Computational Linguistics.

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 52–75,
Florence, Italy. Association for Computational Lin-
guistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 793–805, Vancouver, Canada. Association for
Computational Linguistics.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.
2023. Grammatical error correction: A survey of the
state of the art. Computational Linguistics, pages
643–701.

Hannan Cao, Liping Yuan, Yuchen Zhang, and
Hwee Tou Ng. 2023. Unsupervised grammatical
error correction rivaling supervised methods. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3072–
3088, Singapore. Association for Computational Lin-
guistics.

Shamil Chollampatt and Hwee Tou Ng. 2018. A multi-
layer convolutional encoder-decoder neural network
for grammatical error correction. In Proceedings of
the Thirty-Second AAAI Conference on Artificial In-
telligence and Thirtieth Innovative Applications of Ar-
tificial Intelligence Conference and Eighth AAAI Sym-
posium on Educational Advances in Artificial Intelli-
gence, AAAI’18/IAAI’18/EAAI’18. AAAI Press.

Steven Coyne, Keisuke Sakaguchi, Diana Galvan-Sosa,
Michael Zock, and Kentaro Inui. 2023. Analyzing
the performance of gpt-3.5 and gpt-4 in grammatical
error correction. Preprint, arXiv:2303.14342.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572, Montréal, Canada. Association for Compu-
tational Linguistics.

Christopher Davis, Andrew Caines, O Andersen, Shiva
Taslimipoor, Helen Yannakoudakis, Zheng Yuan,
Christopher Bryant, Marek Rei, and Paula Buttery.
2024. Prompting open-source and commercial lan-
guage models for grammatical error correction of En-
glish learner text. In Findings of the Association for
Computational Linguistics ACL 2024, pages 11952–
11967, Bangkok, Thailand and virtual meeting. As-
sociation for Computational Linguistics.

Tao Fang, Shu Yang, Kaixin Lan, Derek F. Wong, Jin-
peng Hu, Lidia S. Chao, and Yue Zhang. 2023. Is
chatgpt a highly fluent grammatical error correc-
tion system? a comprehensive evaluation. Preprint,
arXiv:2304.01746.

Tao Ge, Furu Wei, and Ming Zhou. 2018. Reaching
human-level performance in automatic grammati-
cal error correction: An empirical study. Preprint,
arXiv:1807.01270.

Md Asadul Islam and Enrico Magnani. 2021. Is this the
end of the gold standard? a straightforward reference-
less grammatical error correction metric. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 3009–3015,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as a
low-resource machine translation task. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 595–606, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-
moto, and Kentaro Inui. 2019. An empirical study of
incorporating pseudo data into grammatical error cor-
rection. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1236–1242, Hong Kong, China. Association for Com-
putational Linguistics.

Wei Li and Houfeng Wang. 2024. Detection-correction
structure via general language model for grammatical
error correction. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1748–1763,
Bangkok, Thailand. Association for Computational
Linguistics.

Yinghao Li, Xuebo Liu, Shuo Wang, Peiyuan Gong,
Derek F. Wong, Yang Gao, Heyan Huang, and Min
Zhang. 2023. TemplateGEC: Improving grammatical
error correction with detection template. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6878–6892, Toronto, Canada. Association for
Computational Linguistics.

Jiehao Liang, Haihui Yang, Shiping Gao, and Xiao-
jun Quan. 2025. Edit-wise preference optimization
for grammatical error correction. In Proceedings of
the 31st International Conference on Computational
Linguistics, pages 3401–3414, Abu Dhabi, UAE. As-
sociation for Computational Linguistics.

Mengsay Loem, Masahiro Kaneko, Sho Takase, and
Naoaki Okazaki. 2023. Exploring effectiveness of

126

https://doi.org/10.18653/v1/2023.emnlp-main.355
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.1162/coli_a_00478
https://doi.org/10.1162/coli_a_00478
https://doi.org/10.18653/v1/2023.emnlp-main.185
https://doi.org/10.18653/v1/2023.emnlp-main.185
https://arxiv.org/abs/2303.14342
https://arxiv.org/abs/2303.14342
https://arxiv.org/abs/2303.14342
https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067
https://doi.org/10.18653/v1/2024.findings-acl.711
https://doi.org/10.18653/v1/2024.findings-acl.711
https://doi.org/10.18653/v1/2024.findings-acl.711
https://arxiv.org/abs/2304.01746
https://arxiv.org/abs/2304.01746
https://arxiv.org/abs/2304.01746
https://arxiv.org/abs/1807.01270
https://arxiv.org/abs/1807.01270
https://arxiv.org/abs/1807.01270
https://doi.org/10.18653/v1/2021.emnlp-main.239
https://doi.org/10.18653/v1/2021.emnlp-main.239
https://doi.org/10.18653/v1/2021.emnlp-main.239
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/2024.acl-long.96
https://doi.org/10.18653/v1/2024.acl-long.96
https://doi.org/10.18653/v1/2024.acl-long.96
https://doi.org/10.18653/v1/2023.acl-long.380
https://doi.org/10.18653/v1/2023.acl-long.380
https://aclanthology.org/2025.coling-main.229/
https://aclanthology.org/2025.coling-main.229/
https://doi.org/10.18653/v1/2023.bea-1.18

GPT-3 in grammatical error correction: A study
on performance and controllability in prompt-based
methods. In Proceedings of the 18th Workshop on
Innovative Use of NLP for Building Educational
Applications (BEA 2023), pages 205–219, Toronto,
Canada. Association for Computational Linguistics.

Arianna Masciolini, Andrew Caines, Orphée De Clercq,
Joni Kruijsbergen, Murathan Kurfalı, Ricardo Muñoz
Sánchez, Elena Volodina, and Robert Östling. 2025.
The MultiGEC-2025 shared task on multilingual
grammatical error correction at NLP4CALL. In Pro-
ceedings of the 14th Workshop on Natural Language
Processing for Computer Assisted Language Learn-
ing, pages 1–33, Tallinn, Estonia. University of Tartu
Library.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. JFLEG: A fluency corpus and bench-
mark for grammatical error correction. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 229–234, Valencia,
Spain. Association for Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task, pages 1–14,
Baltimore, Maryland. Association for Computational
Linguistics.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163–170, Seattle, WA, USA →
Online. Association for Computational Linguistics.

Kostiantyn Omelianchuk, Andrii Liubonko, Oleksandr
Skurzhanskyi, Artem Chernodub, Oleksandr Korni-
ienko, and Igor Samokhin. 2024. Pillars of gram-
matical error correction: Comprehensive inspection
of contemporary approaches in the era of large lan-
guage models. In Proceedings of the 19th Workshop
on Innovative Use of NLP for Building Educational
Applications (BEA 2024), pages 17–33, Mexico City,
Mexico. Association for Computational Linguistics.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 702–707,
Online. Association for Computational Linguistics.

Felix Stahlberg and Shankar Kumar. 2021. Synthetic
data generation for grammatical error correction with
tagged corruption models. In Proceedings of the

16th Workshop on Innovative Use of NLP for Build-
ing Educational Applications, pages 37–47, Online.
Association for Computational Linguistics.

Xin Sun and Houfeng Wang. 2022. Adjusting the
precision-recall trade-off with align-and-predict de-
coding for grammatical error correction. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 686–693, Dublin, Ireland. Association
for Computational Linguistics.

Maksym Tarnavskyi, Artem Chernodub, and Kostiantyn
Omelianchuk. 2022. Ensembling and knowledge dis-
tilling of large sequence taggers for grammatical error
correction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3842–3852, Dublin,
Ireland. Association for Computational Linguistics.

Yixuan Wang, Baoxin Wang, Yijun Liu, Qingfu Zhu,
Dayong Wu, and Wanxiang Che. 2024. Improving
grammatical error correction via contextual data aug-
mentation. In Findings of the Association for Compu-
tational Linguistics ACL 2024, pages 10898–10910,
Bangkok, Thailand and virtual meeting. Association
for Computational Linguistics.

Haihui Yang and Xiaojun Quan. 2024. Alirector:
Alignment-enhanced Chinese grammatical error cor-
rector. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 2531–2546,
Bangkok, Thailand. Association for Computational
Linguistics.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
180–189, Portland, Oregon, USA. Association for
Computational Linguistics.

127

https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://aclanthology.org/2025.nlp4call-1.1/
https://aclanthology.org/2025.nlp4call-1.1/
https://aclanthology.org/E17-2037/
https://aclanthology.org/E17-2037/
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://aclanthology.org/2024.bea-1.3
https://aclanthology.org/2024.bea-1.3
https://aclanthology.org/2024.bea-1.3
https://aclanthology.org/2024.bea-1.3
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://aclanthology.org/2021.bea-1.4/
https://aclanthology.org/2021.bea-1.4/
https://aclanthology.org/2021.bea-1.4/
https://doi.org/10.18653/v1/2022.acl-short.77
https://doi.org/10.18653/v1/2022.acl-short.77
https://doi.org/10.18653/v1/2022.acl-short.77
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2024.findings-acl.647
https://doi.org/10.18653/v1/2024.findings-acl.647
https://doi.org/10.18653/v1/2024.findings-acl.647
https://doi.org/10.18653/v1/2024.findings-acl.148
https://doi.org/10.18653/v1/2024.findings-acl.148
https://doi.org/10.18653/v1/2024.findings-acl.148
https://aclanthology.org/P11-1019
https://aclanthology.org/P11-1019

A Training details

We trained our <=13b models on a 2xA100 (80GB)
GPU setup and the 27b model on a 4xA100 (80GB)
GPU setup. We used 4xA100 (80GB) GPU setup
to run the Llama 3 70b model for the detokeniza-
tion process. A single model training took 2-3
hours. The hyperparameter values are described in
Table 10. The following prompt was used during
training our models and during inference:

Correct the following text, making only minimal
changes where necessary.

Text to correct:
<source text>
Corrected text:
<target text>

B Detokenization prompt

The following prompt was used to detokenize the
datasets:

You will receive two texts: source text and cor-
rected text. Corrected text may not have proper
spaces. Your task is to remove/add proper spaces
to the corrected text. Do not write any comments,
just write corrected text with proper spaces.

Source text: <source text>
Corrected text: <target text>
Only change spaces, you must not change punc-

tuation.

Dataset #Examples Erroneous
sentences

FCE-Train 28.4k 65.43%
BEA-train 34.3k 69.02%
BEA-test 4.5k –
BEA-dev 4.4k 67.36%

CoNLL-2014-test 1.3k 71.90%
JFLEG-dev 754 95.36%
JFLEG-test 747 95.31%

Table 9: Details of the datasets used in our work. Note
that there ratio of erroneous sentences could be differ-
ent compared to the statistics about the datasets from
different research works due to the changes made by the
Llama 3 70b model during the detokenization process.

Hyperparameter name Value
learning rate 5e-6

batch size 4
gradient accumulation steps 4

warmup steps (for each dataset) 100
lr scheduler linear

epochs (for each dataset) 1
optimizer AdamW8bit

weight decay 0.01

Table 10: Hyperparameter values used to train our mod-
els.

128

