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Abstract

The rapid adoption of AI in educational tech-
nology is changing learning settings, making
the thorough evaluation of AI tutor pedagogical
performance is quite important for promoting
student success. This paper describes our so-
lution for the BEA 2025 Shared Task on Ped-
agogical Ability Assessment of AI-powered
tutors, which assesses tutor replies over sev-
eral pedagogical dimensions. We developed
transformer-based approaches for five diverse
tracks: mistake identification, mistake location,
providing guidance, actionability, and tutor
identity prediction using the MRBench dataset
of mathematical dialogues. We evaluated sev-
eral pre-trained models including DeBERTa-
V3, RoBERTa-Large, SciBERT, and EduBERT.
Our approach addressed class imbalance prob-
lems by incorporating strategic fine-tuning with
weighted loss functions. The findings show
that, for all tracks, DeBERTa architectures have
higher performances than the others, and our
models have obtained in the competitive posi-
tions, including 9th of Tutor Identity (Exact F1
of 0.8621), 16th of Actionability (Exact F1 of
0.6284), 19th of Providing Guidance (Exact F1
of 0.4933), 20th of Mistake Identification (Ex-
act F1 of 0.6617) and 22nd of Mistake Location
(Exact F1 of 0.4935). The difference in per-
formance over tracks highlights the difficulty
of automatic pedagogical evaluation, especially
for tasks whose solutions require a deep under-
standing of educational contexts. This work
contributes to ongoing efforts to develop robust
automated tools for assessing.

1 Introduction

In the past few years, the combination of natural
language processing (NLP) and education technol-
ogy has become one of the most popular areas
of study to improve learning, automate feedback,
and assist educators and students. With the expan-
sion of blended and fully online courses, there has

*Authors contributed equally to this work.

been a marked increase in the need for scalable
and sophisticated systems that can process learn-
ers’ responses and tutors’ comments. Such systems
do not deal well with the subtle, context-sensitive
characteristics of educational dialogues. So, assess-
ing the pedagogical effectiveness and a standard
evaluation taxonomy of such systems still remains
a critical challenge.

An example of effective teaching is when an
educator accurately pinpoints a student’s misun-
derstanding, provides appropriate scaffolding to-
wards clear concepts, and gives insightful feed-
back on desk-work that the students need to ac-
complish. Some automating aspects of this feed-
back loop, such as automated essay scoring (Phandi
et al., 2015) and dialogic tutoring systems (Wang
et al., 2024) have been given attention, but there
is not much research that has been done to effec-
tively capture the dynamics of the interplay student
answers, tutor’s engagement, and teaching style
through feedback text’s narrative structure.

While LLMs can generate coherent and contex-
tually relevant responses, their ability to understand
student misconceptions, provide actual guidance,
and create meaningful learning experiences is not
guaranteed. The general, area-independent metrics
for natural language generation (NLG) (Liu et al.,
2023; Gao et al., 2020) do not fit here as the ma-
jority of them lack consideration for pedagogical
values and need gold references, which are seldom
present in online interactions.

In this work, we tackle a comprehensive multi-
track evaluation task designed for the evaluation
of AI-tutor responses using a set of pedagogically
motivated metrics. Building upon the foundations
laid by the BEA 2023 Shared Task (Tack et al.,
2023), which focused on generating AI teacher
responses in educational dialogues, in the BEA
2025 Shared Task (Kochmar et al., 2025) iteration
the focus shifted toward evaluating the quality of
AI tutor responses. Specifically, it introduced a
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taxonomy encompassing four pedagogically moti-
vated dimensions: Mistake Identification, Mistake
Location, Providing Guidance, and Actionability.
Additionally, a fifth track challenged participants to
identify the source of anonymized tutor responses,
distinguishing between various LLMs and human
tutors.

Our key contributions are as follows:

• Developing transformer-based approaches for
comprehensive evaluation of AI-tutor re-
sponses using a set of pedagogically moti-
vated metrics: mistake identification, mistake
location, guidance provision, feedback action-
ability, and tutor identity prediction.

• Evaluated the performance of state-of-the-art
transformer models across five key educa-
tional NLP tasks related to tutoring dialogues.

2 Related Works

Daheim et al. (2024) introduced a framework for
stepwise solution verification for math reasoning,
showing that grounding tutor responses in identi-
fied errors improves feedback accuracy where AI
tutors are evaluated on their ability to identify and
locate mistakes within student responses. Macina
et al. (2023) presented MathDial, a large dataset
of tutoring dialogues where LLMs often struggle
with correct mistake spotting without targeted an-
notations. It includes annotations for mistake lo-
cations in math dialogues. This resource has been
instrumental in training and evaluating models that
can accurately identify and address specific errors
in student solutions. Chen et al. (2024) proposed
VATE, an AI-driven virtual teacher using prompt
engineering and error pools for autonomous mis-
take analysis, achieving high accuracy in real-world
deployment. Lastly, Macina et al. (2024) bench-
marked pedagogical capabilities of LLM tutors,
confirming that subject knowledge alone doesn’t
ensure effective error identification without spe-
cialized pedagogical training. Additionally, Yan
et al. (2024) propose architectures designed to im-
prove error localization in multimodal math tutor-
ing, enhancing the clarity and usefulness of feed-
back. Recent work in intelligent tutoring systems
(ITS) has emphasized the importance of scaffold-
ing and adaptive feedback to enhance student learn-
ing outcomes. Liu et al. (2024) explored multi-
modal tutoring systems powered by large language
models, demonstrating how pedagogical instruc-

tions can improve self-paced learning through struc-
tured scaffolding, evaluated via a seven-dimension
rubric. Complementing this, Kochmar et al. (2020)
showed that automated, personalized feedback us-
ing NLP and machine learning significantly boosts
student performance, highlighting the need for tai-
loring feedback to individual learners. Similarly, Li
et al. (2024) applied NLP-driven adaptive dialogs
informed by the Knowledge Integration framework,
illustrating how guided conversations help students
integrate accurate scientific concepts during instruc-
tion. Together, these studies underline the potential
of adaptive, pedagogically-aware NLP systems in
delivering effective, personalized guidance within
educational contexts. Maniktala et al. (2020) pro-
posed "Assertions," an unsolicited hint mechanism
delivering partially-worked example steps, which
notably increased hint usage and improved learning
outcomes, particularly for lower-proficiency learn-
ers. Blancas-Muñoz et al. Blancas-Muñoz et al.
(2018) further emphasized the importance of action-
able support by comparing task-relevant hints to
distractions in robotic tutoring, finding that direct,
task-specific guidance led to better learner perfor-
mance. Extending this focus to virtual education
settings, Liang Liang (2025) applied NLP-based
Seq2Seq models for automated feedback genera-
tion, achieving high accuracy while enhancing per-
sonalization and actionability of feedback in online
environments. Collectively, these studies highlight
that actionable, timely, and context-aware feedback
mechanisms are essential for effective ITS design.

3 Task and Dataset Description

We competed on the BEA 2025 Shared Task1

(Kochmar et al., 2025) on Pedagogical Ability As-
sessment of AI-powered tutors. The goal of the
work is to assess AI tutor responses in mathemati-
cal dialogues when students make errors or show
uncertainty. The provided dataset, MRBench (Mau-
rya et al., 2025), includes dialogue contexts, the
final student utterance, and corresponding tutor
responses from various LLMs (e.g., GPT-4, Llama-
3.1) and human tutors. The aim is to find the tutor
or predict pedagogical quality in many spheres, in-
cluding mistake identification and guidance.

The organizers provided Development set,
mrbench_v3_devset.json, split into 90% for
training (2,228 Instances) and 10% for validation
(248 Instances). The final evaluation came from

1https://sig-edu.org/sharedtask/2025
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Split Instances Unique Words Total Words
Train 2,228 8,134 512,392
Validation 248 3,833 52,981
Test 1,547 7,057 454,720

Table 1: Dataset statistics across different splits.

the Test set, mrbench_v3_testset.json (1,547
Instances). Table 1 shows the dataset statistics.

4 Methodology

This section outlines our approaches utilized for
Track 1 - Mistake Identification, Track 2 - Mistake
Location, Track 3 - Providing Guidance, Track
4 - Actionability, and Track 5 - Guess the Tutor
Identity. The study evaluated many transformer-
based approaches using hyperparameter optimiza-
tion to improve performance. The architectural
frameworks used for all tasks is illustrated in Fig-
ure 1

Figure 1: Overview of the Pedagogical Ability Assess-
ment Process for AI-powered Tutors

4.1 Data Preprocessing and Feature
Extraction

We processed mrbench_v3_devset.json and
mrbench_v3_testset.json files for all five
tracks. Every distinct tutor response in a con-
versation stood isolated. Using descriptive mark-
ers and newlines, concatenating the “Conversa-
tion History” and “Tutor Response” produced
the input text for models; instances lacking tu-
tor responses were removed. Relevant annotations
(e.g., “Mistake_Identification”) were retrieved for
Tracks 1–4 (Mistake Identification, Mistake Lo-
cation, Providing Guidance, Actionability); their

“Yes,” “To some extent,” “No” labels were mapped
to [0, 1, 2]. Development set tutor identities for
Track 5 (Guess the Tutor Identity) were mapped
to one of nine canonical tutor classes then to
numerical labels [0–8]. Feature extraction used
pre-trained Transformer models (DeBERTa-V3
base/large, RoBERTa-Large, EduBERT, SciBERT).
each model’s particular AutoTokenizer turned in-
put texts into input_ids, attention_mask, and
optionally token_type_ids, Padded or trimmed
to 512 tokens.

4.2 Transformer-Based Models

The methodological foundation for all five tracks of
BEA 2025 Shared Task focuses on the fine-tuning
of pre-trained Transformer models (Vaswani et al.,
2017). These architectures, with their well-known
self-attention mechanisms, are proficient in cap-
turing contextual relationships within text because
of the highly sophisticated contexts and excel at
capturing intricate contextual relationships within
text makes them very suitable for a range of chal-
lenges in Natural Language Processing (NLP) (De-
vlin et al., 2019). Transformer’s ability to model
long-range dependencies is critical given the nu-
anced nature of assessing pedagogical abilities and
identifying distinctive tutor characteristics from
snippets of dialogues. A collection of models
from the Hugging Face Transformers library2 was
chosen, including those pre-trained specifically on
scientific or educational corpora as well as more
general NLU models. SciBERT (Beltagy et al.,
2019) and EduBERT (Clavié and Gal, 2019) are
two, alongside RoBERTa-Large (Liu et al., 2019)
and DeBERTa-V3 base and large configurations
(He et al., 2021). For each task, these pretrained en-
coders were modified by adding a sequence classi-
fication head for each task. This head has a dropout
layer and a linear layer that maps the output rep-
resentation of the encoder associated with the spe-
cial [CLS] token to the logits for the respective
number of classes for each track. All models had
the same input constructed by joining the “Tutor
Response” and “Conversation History”. Model-
specific tokenizers were used according to each
model’s pretraining, with padding and truncation
to 512 tokens.

In Track 1, Mistake Identification, the goal was
a 3-way classification problem determining if a tu-
tor’s response acknowledged a student’s mistake,

2https://huggingface.co/transformers
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with labels “Yes”, “To some extent”, and “No”. For
this track, we experimented with SciBERT, Edu-
BERT, RoBERTa-Large and DeBERTa-V3 base.
SciBERT, which was pretrained on a large cor-
pus of scientific literature, was selected because
it could be expected to perform well with the for-
mal and technical language of mathematics. Edu-
BERT was chosen because it was trained on educa-
tional data, which may enhance understanding in
teaching cases. RoBERTa-Large, a robustly opti-
mized model, served as a strong general-purpose
baseline, while DeBERTa-V3 base offered a more
recent architecture known for its efficiency and
strong performance. As highlighted, class imbal-
ance was tackled by fine-tuning SciBERT mod-
els with weighted CrossEntropy Loss, where the
greater class imbalance was compensated by in-
versely modifying class weights to their occurrence
within the training data, and also Focal Loss (Lin
et al., 2017) (with γ = 2.0 and α = 2.0 in some
configurations of SciBERT) that diminishes the
emphasis on well-classified examples. For estima-
tion smoothing SciBERT’s label smoothing was
set to 0.1 which was designed to counterbalance
overconfidence. EduBERT and RoBERTa-Large
models under this track predominantly applied
weighted CrossEntropy Loss while the DeBERTa-
V3 base model for this track used the standard
Cross Entropy Loss provided by the Hugging Face
sequence classification framework. These models
were trained with the goal of detecting nuanced in-
dications of mistake recognition in tutor responses.

Track 2, Mistake Location, was developed with
similar 3-way classification where response “Yes”,
“To some extent” and “No” were used to capture if a
tutor is precise to the location of the student’s error.
For this track, we primarily utilized the DeBERTa-
V3 base model. With disentangled attention and
the new pre-training objective (ELECTRA-style)
DeBERTa-V3 architecture enhances understand-
ing for relations between tokens and the context
which we believed could prove useful in determin-
ing whether certain parts of the student’s solution
were referred to. Cross Entropy Loss with weights
was implemented for fine-tuning for this track. This
was important considering that the label distribu-
tion for “Mistake Location” was often skewed, and
weighting is known to address underrepresented
classes effectively trying to achieve understanding
if the understanding was indeed accurate and crys-
tal clear.

For Track 3, Providing Guidance, the focus was

on assessing the tutor’s evaluation on whether the
answer provided to the student was useful, rele-
vant, correct, and helpful, once again using 3-class
schema (“Yes,” “To some extent,” “No”). In this
track, we experimented with DeBERTa-V3 base,
RoBERTa-Large, and EduBERT. The selection of
DeBERTa-V3 and RoBERTa-Large was driven by
their proficiency in NLU which is vital when evalu-
ating the guidance provided on whether it is correct
and relevant. EduBERT was included because his
domain-specific pre-training could help identify
pedagogically sound explanations, hints, or sup-
porting questions. As in the last tracks, all these
models were first fine-tuned using weighted Cross
Entropy Loss. This was important for illustrating
how the models adapted to differentiate effective
and partially effective guidance along with ineffec-
tual guidance, all distinct components of instruc-
tional prowess.

Track 4, Actionability, checked if the tutor’s
commentary offered unambiguous next steps by
employing the same 3-way classification labels.
For this track, we trained both DeBERTa-V3 ‘base‘
and ‘large‘ models. The justification for the ‘large‘
variant is to test if additional model size could cap-
ture the more acute interpretative reasoning neces-
sary to assess if a tutor’s remark was adequately
sharp and instructive to enable responsive move-
ment from the student. The larger model, with
more parameters, better at understanding implicit
suggestions or clues regarding the clarity of the an-
ticipated student answer. During training, we uni-
formly used a weighted Cross Entropy Loss for all
layers to constrain the label distribution along this
dimension, hoping that the models could reliably
distinguish non-constructive or minimal responses
for a given prompt from non-informative utterances
and conversational dead ends.

Finally, Track 5, Guess the Tutor Identity, posed
a challenge of 9 classes: who among the tutors
(Expert, Novice, or one of seven LLMs) gave the
response in the anonymized form. For this exer-
cise, we used DeBERTa-V3 base, DeBERTa-V3
large, and RoBERTa-Large. These techniques were
chosen because of their past performance in captur-
ing sophisticated stylistic differences, preferences,
and idiosyncratic features like distinct ‘fingerprints’
for human tutors and LLM systems. The problem
is complex at its core because varying forms or
expressions, such as style fusion, which exist in
different domains like various LLMs or between a
novice human and some LLMs, might deeply over-
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lap. Addressing the multi-class setup with nine
distinct tutor identities was particularly challeng-
ing due to the imbalance in the number of available
examples for each tutor. To mitigate this situation,
we relied heavily on weighted Cross Entropy Loss
which disproportionate class representation miti-
gates imbalance with a more prevailing class in
the data. In turn, this prevented the models from
specializing excessively to the most common types
of tutors.

Throughout all five tracks, there were sev-
eral components that the fine-tuning procedure
shared homogeneous components. We utilized the
AdamW optimizer (Loshchilov and Hutter, 2017),
which integrates weight decay more effectively
than traditional Adam, helping to prevent overfit-
ting. As well as a blended learning rate scheduler
which warms up for the first 10% of the total train-
ing steps. Doing so reinforces training stability
during the early epochs. For example, many SciB-
ERT and RoBERTa-L configurations achieve ef-
fective batch sizes of 16 with a device batch size
of 8 and 2 accumulation steps. This technique
of accumulation helps in training large models on
memory-restricted GPUs while also allowing for
smoother gradient estimates and enhanced model
performance. As shown in Table 2, training con-
tinued until reaching the set maximum number of
epochs. The model for each task was finalized
based on the validation set with the highest macro
F1 score for Tracks 1-4 and accuracy on Track
5. This selection process acts as an implicit early
stopping mechanism. The class weights for the
Cross Entropy Loss were determined by the label’s
corresponding training portion frequency across
the development set, meaning classes who were
less present in the dataset had a greater impact
on loss and as such received more focus from the
model. All experiments were carried out with a
fixed random seed (SEED = 42) in order to ensure
the reproducibility of our results.

5 Result Analysis

This section presents an analysis of the perfor-
mance of various Transformer-based models across
the five tracks of the BEA 2025 Shared Task. The
evaluation metrics, as defined by the shared task
organizers, include exact and lenient accuracy and
macro F1-score for Tracks 1-4, and exact macro
F1-score for Track 5. The performance of our sub-
mitted models is detailed in Table 3.

Model LR WD BS GA EP
Track 1: Mistake Identification

SciBERT 1e-5 0.01 8 2 12
EduBERT 1.5e-5 0.01 8 2 12
RoBERTa-Large 1.5e-5 0.01 8 2 12
DeBERTa-V3-Base 2e-5 0.01 8 1 8

Track 2: Mistake Location
DeBERTa-V3-Base 1.5e-5 0.01 8 2 12

Track 3: Providing Guidance
DeBERTa-V3-Base 1.5e-5 0.01 8 2 12
RoBERTa-Large 1.5e-5 0.01 8 2 12
EduBERT 1.5e-5 0.01 8 2 12

Track 4: Actionability
DeBERTa-V3-Base 1.5e-5 0.01 2 2 12
DeBERTa-V3-Large 1.5e-5 0.01 2 2 12

Track 5: Tutor Identity
DeBERTa-V3-Base 2e-5 0.01 8 2 15
DeBERTa-V3-Large 1.8e-5 0.01 2 2 10
RoBERTa-Large 2e-5 0.01 8 2 15

Table 2: Hyperparameters used across the five tracks.
LR: Learning Rate, WD: Weight Decay, BS: Batch Size,
GA: Gradient Accumulation, EP: Epochs.

Model E-F1 E-Acc L-F1 L-Acc
Track 1: Mistake Identification

RoBERTa Large 0.6339 0.7938 0.8395 0.9043
SciBERT 0.6393 0.8500 0.8545 0.9121
EduBERT 0.6597 0.8429 0.8665 0.9205
DeBERTaV3 Base 0.6617 0.8397 0.8782 0.9315

Track 2: Mistake Location
DeBERTaV3 Base 0.4935 0.6057 0.7051 0.7401

Track 3: Providing Guidance
RoBERTa Large 0.4758 0.5863 0.6997 0.7750
EduBERT 0.4918 0.5785 0.6885 0.7395
DeBERTaV3 Base 0.4933 0.5695 0.6990 0.7608

Track 4: Actionability
DeBERTaV3 Base 0.6117 0.6781 0.8170 0.8500
DeBERTaV3 Large 0.6284 0.6955 0.8223 0.8565

Track 5: Tutor Identity
RoBERTa Large 0.8237 0.8151 - -
DeBERTaV3 Base 0.8618 0.8597 - -
DeBERTaV3 Large 0.8621 0.8621 - -

Table 3: Performance of all models across five tracks.
E-F1: Exact macro F1 score, E-Acc: Exact Accuracy, L-
F1: Lenient macro F1 score, L-Acc: Lenient Accuracy

For Track 1, Mistake Identification, DeBERTa-
V3 Base has achieved the best exact macro F1 score
of 0.6617 achieving the highest exact macro F1
score. This model also demonstrated strong per-
formance with a lenient macro F1 score of 0.8782
and lenient accuracy of 0.9315. EduBERT’s perfor-
mance on exact macro F1 score was just slightly
weaker at 0.6597 while SciBERT had the best ex-
act accuracy of 0.8500. The best exact macro F1
score with DeBERTa-V3 Base seems to suggest
that, even with a standard Cross Entropy Loss, there
are greater architectural advantages in the model
that allow it to grasp the intricacies of 3-way classi-
fication better than other models. The results from
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SciBERT and EduBERT indicate that the use of
weighted loss functions was beneficial in achieving
competitive exact scores and were likely instrumen-
tal in achieving class imbalance resolution.

For Track 2, Mistake Location, our sole entry
was the DeBERTa-V3 Base model which was tuned
with weighted Cross Entropy Loss and achieved
an exact macro F1 score of 0.4935, lenient macro
F1 score of 0.7051. There were no other entries.
Scores suggest that identifying the precise origins
of a mistake’s location is strictly harder than simply
identifying an error. The considerable gap between
the exact macro F1 score and lenient macro F1
scores highlights that while the model could often
recognize some level of mistake location awareness
("To some extent"), achieving definitive localiza-
tion ("Yes") was less frequent.

For Track 3, Providing Guidance, DeBERTa-V3
Base reached the highest exact macro F1 score of
0.4933. EduBERT was a strong contender with
exact macro F1 score of 0.4918, while RoBERTa-
Large scored 0.4758 in exact macro F1 score. The
lenient macro F1 scores were approximately 0.69
for all three models, with RoBERTa-Large and
DeBERTaV3-Base at 0.6997 and 0.6990 respec-
tively. The exact macro F1 scores, marginally sur-
passing 0.50, highlight the challenge posed in auto-
matically evaluating the correctness and relevance
of pedagogical guidance. The imbalances among
the “Yes”, “To some extent”, and “No” categories
for this particular dimension is what prompted the
use of weighted Cross Entropy Loss for this model
causing all of the categories to blend in with the
aim of unifying the discrepancies.

In Track 4, Actionability, DeBERTa-V3 Large
showed the best performance with an exact macro
F1 score of 0.6284 and exact Accuracy of 0.6955.
The DeBERTa-V3 Base model was slightly behind
with an exact macro F1 score of 0.6117. It seems
that the larger sized DeBERTa model boosts with
added features helped with classifying the action-
ability of tutor responses. Both models had em-
ployed Cross Entropy Loss that was helpful for the
other model in achieving such classifiers.

For Track 5, Guess the Tutor Identity, where
exact macro F1-score is the primary metric,
DeBERTa-V3 Large achieved the best exact macro
F1 score of 0.8621. The corresponding exact ac-
curacy for this model was also 0.8621. DeBERTa-
V3 Base also performed robustly with an exact
macro F1 score of 0.8618 and exact accuracy of
0.8597, followed by RoBERTa-Large at 0.8237 (ex-

act macro F1 score) and 0.8151 (exact accuracy).
The strong performance, particularly of the De-
BERTa architectures, indicates their capability to
discern subtle stylistic and content based patterns
distinguishing the nine different tutor identities.
This multi-class problem for which the weighted
Cross Entropy Loss was quite useful for dealing
with was clearly non-trivial.

To summarize, DeBERTa-V3 base and large ar-
chitectures achieved the best results considering the
most important evaluation metric is exact macro F1
score for most tracks. The large showed some ad-
vantages in Tracks 4 and 5 where increased model
complexity might be helpful. The low exact macro
F1 scores, especially for Tracks 2 and 3, suggest
difficulties automatically capturing the intricacies
of assessment within teaching highlight the intrica-
cies involved in evaluating pedagogical features.

6 Conclusion

This paper introduces a system developed for the
UNLP This paper detailed our participation in the
BEA 2025 Shared Task on Pedagogical Ability As-
sessment of AI-powered Tutors, presenting systems
built upon fine-tuned Transformer models. We eval-
uated multiple architectures including DeBERTa-
V3, RoBERTa-Large, SciBERT, and EduBERT for
the five distinct tracks of Mistake Identification,
Mistake Location, Providing Guidance, Actionabil-
ity, and Tutor Identity. Throughout the investiga-
tions, DeBERTa-V3 was the top performer across
all tracks based on the primary Exact macro F1
score metric. For Mistake Identification, DeBERTa-
V3 Base achieved the Exact macro F1 score of
0.6617, and for Providing Guidance, 0.4933. For
the other tracks of Actionability and Tutor Iden-
tity, DeBERTa-V3 Large excelled with 0.6284 and
0.8621 Exact macro F1 score respectively. For Mis-
take Location, DeBERTa-V3 Base scored an Exact
macro F1 score of 0.4935. These findings support
the assertion that sophisticated Transformer models
are capable of intricate pedagogical assessments.
The Exact macro F1 scores obtained for Providing
Guidance and Mistake Location depict the chal-
lenges associated with higher-degree classification,
demonstrating the inherent difficulty of the tasks.
Methodological choices, such as strategic hyperpa-
rameter tuning and the application of appropriate
loss functions (e.g., weighted Cross Entropy Loss
or Focal Loss) to manage class imbalances, were
important for optimizing performance. This work
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contributes to the ongoing efforts to develop robust
automated tools for assessing and improving AI
tutor effectiveness in educational dialogues.

Limitations

Our study, while demonstrating the effectiveness
of Transformer models for assessing pedagogical
abilities, has several limitations. First of all, the
performance, especially on exact macro F1-scores
for challenging tasks like Mistake Location and
Providing Guidance, indicates that current mod-
els still find it difficult to have the fine-grained
semantic knowledge needed for these demanding
tests. Second, our method depends on the partic-
ular annotations and definitions given in the MR-
bench dataset; model performance may change de-
pending on alternative educational taxonomies or
data from other fields outside mathematics. More-
over, although weighted loss functions helped us
to solve class imbalance, significant imbalances
for some labels or tutor identities could still in-
fluence generalization. Finally, the computational
resources needed for fine-tuning and experiment-
ing with several big Transformer models can be
significant, therefore perhaps restricting more gen-
eral architectural research or more comprehensive
hyperparameter searches.

Acknowledgments

This work was supported by Southeast University,
Bangladesh.

References

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Maria Blancas-Muñoz and 1 others. 2018. Hints vs
distractions in intelligent tutoring systems: Look-
ing for the proper type of help. arXiv preprint
arXiv:1806.07806.

Hao Chen and 1 others. 2024. Ai-driven virtual teacher
for enhanced educational efficiency: Leveraging
large pretrain models for autonomous error analysis
and correction. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence. AAAI Press.

Benjamin Clavié and Kobi Gal. 2019. Edubert: Pre-
trained deep language models for learning analytics.
arXiv preprint arXiv:1912.00690.

Nico Daheim, Jakub Macina, Manu Kapur, Iryna
Gurevych, and Mrinmaya Sachan. 2024. Stepwise
verification and remediation of student reasoning er-
rors with large language model tutors. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Xiang Gao, Yizhe Zhang, Michel Galley, Chris Brockett,
and Bill Dolan. 2020. Dialogue response ranking
training with large-scale human feedback data. arXiv
preprint arXiv:2009.06978.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Ekaterina Kochmar, Kaushal Kumar Maurya, Kseniia
Petukhova, KV Aditya Srivatsa, Anaïs Tack, and
Justin Vasselli. 2025. Findings of the BEA 2025
Shared Task on Pedagogical Ability Assessment of
AI-powered Tutors. In Proceedings of the 20th Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications.

Ekaterina Kochmar and 1 others. 2020. Automated
personalized feedback improves learning gains in
an intelligent tutoring system. arXiv preprint
arXiv:2005.02431.

Chen Li and 1 others. 2024. Applying natural language
processing adaptive dialogs to promote knowledge
integration during instruction. Education Sciences,
15(2):207.

Meng Liang. 2025. Leveraging natural language pro-
cessing for automated assessment and feedback pro-
duction in virtual education settings. Journal of Edu-
cational Computing Research.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. 2017. Focal loss for dense object
detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
Nlg evaluation using gpt-4 with better human align-
ment. arXiv preprint arXiv:2303.16634.

1133

https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://arxiv.org/abs/1806.07806
https://arxiv.org/abs/1806.07806
https://arxiv.org/abs/1806.07806
https://ojs.aaai.org/index.php/AAAI/article/view/35144
https://ojs.aaai.org/index.php/AAAI/article/view/35144
https://ojs.aaai.org/index.php/AAAI/article/view/35144
https://ojs.aaai.org/index.php/AAAI/article/view/35144
https://aclanthology.org/2024.emnlp-main.478/
https://aclanthology.org/2024.emnlp-main.478/
https://aclanthology.org/2024.emnlp-main.478/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2005.02431
https://arxiv.org/abs/2005.02431
https://arxiv.org/abs/2005.02431
https://doi.org/10.3390/educsci15020207
https://doi.org/10.3390/educsci15020207
https://doi.org/10.3390/educsci15020207
https://doi.org/10.1177/14727978251314556
https://doi.org/10.1177/14727978251314556
https://doi.org/10.1177/14727978251314556


Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zhengyuan Liu and 1 others. 2024. Scaffolding
language learning via multi-modal tutoring sys-
tems with pedagogical instructions. arXiv preprint
arXiv:2404.03429.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Jakub Macina, Nico Daheim, Sankalan Chowdhury, Tan-
may Sinha, Manu Kapur, Iryna Gurevych, and Mrin-
maya Sachan. 2023. Mathdial: A dialogue tutoring
dataset with rich pedagogical properties grounded
in math reasoning problems. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2023.

Jakub Macina, Nico Daheim, Ido Hakimi, Manu Kapur,
Iryna Gurevych, and Mrinmaya Sachan. 2024. Math-
tutorbench: A benchmark for measuring open-ended
pedagogical capabilities of llm tutors. arXiv preprint
arXiv:2405.12240.

Mehak Maniktala and 1 others. 2020. Avoiding help
avoidance: Using interface design changes to pro-
mote unsolicited hint usage in an intelligent tutor.
arXiv preprint arXiv:2009.13371.

Kaushal Kumar Maurya, Kv Aditya Srivatsa, Kseniia
Petukhova, and Ekaterina Kochmar. 2025. Unify-
ing AI tutor evaluation: An evaluation taxonomy for
pedagogical ability assessment of LLM-powered AI
tutors. In Proceedings of the 2025 Conference of the
Nations of the Americas Chapter of the Association
for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pages 1234–
1251, Albuquerque, New Mexico. Association for
Computational Linguistics.

Peter Phandi, Kian Ming A. Chai, and Hwee Tou Ng.
2015. Flexible domain adaptation for automated
essay scoring using correlated linear regression. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 431–
439, Lisbon, Portugal. Association for Computational
Linguistics.

Anaïs Tack, Ekaterina Kochmar, Zheng Yuan, Serge
Bibauw, and Chris Piech. 2023. The BEA 2023
shared task on generating AI teacher responses in
educational dialogues. In Proceedings of the 18th
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications (BEA 2023), pages 785–795,
Toronto, Canada. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Deliang Wang, Dapeng Shan, Ran Ju, Ben Kao, Chen-
wei Zhang, and Gaowei Chen. 2024. Investigating
dialogic interaction in k12 online one-on-one math-
ematics tutoring using ai and sequence mining tech-
niques. Education and Information Technologies,
pages 1–26.

Yibo Yan, Shen Wang, Jiahao Huo, Philip S. Yu, Xum-
ing Hu, and Qingsong Wen. 2024. Mathagent:
Leveraging a mixture-of-math-agent framework for
real-world multimodal mathematical error detection.
arXiv preprint arXiv:2405.12284.

1134

https://arxiv.org/abs/2404.03429
https://arxiv.org/abs/2404.03429
https://arxiv.org/abs/2404.03429
https://aclanthology.org/2023.findings-emnlp.372/
https://aclanthology.org/2023.findings-emnlp.372/
https://aclanthology.org/2023.findings-emnlp.372/
https://arxiv.org/abs/2405.12240
https://arxiv.org/abs/2405.12240
https://arxiv.org/abs/2405.12240
https://arxiv.org/abs/2009.13371
https://arxiv.org/abs/2009.13371
https://arxiv.org/abs/2009.13371
https://aclanthology.org/2025.naacl-long.57/
https://aclanthology.org/2025.naacl-long.57/
https://aclanthology.org/2025.naacl-long.57/
https://aclanthology.org/2025.naacl-long.57/
https://doi.org/10.18653/v1/D15-1049
https://doi.org/10.18653/v1/D15-1049
https://doi.org/10.18653/v1/2023.bea-1.64
https://doi.org/10.18653/v1/2023.bea-1.64
https://doi.org/10.18653/v1/2023.bea-1.64
https://arxiv.org/abs/2405.12284
https://arxiv.org/abs/2405.12284
https://arxiv.org/abs/2405.12284

