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Abstract

This paper presents the approach and findings
of Averroes Team in the BEA 2025 Shared Task
Track 1: Mistake Identification. Our system
uses the multilingual understanding capabili-
ties of general text embedding models. Our ap-
proach involves full-model fine-tuning, where
both the pre-trained language model and the
classification head are optimized to detect tutor
recognition of student mistakes in educational
dialogues. This end-to-end training enables the
model to better capture subtle pedagogical cues,
leading to improved contextual understanding.
Evaluated on the official test set, our system
achieved an exact macro-F} score of 0.7155
and an accuracy of 0.8675, securing third place
among the participating teams. These results
underline the effectiveness of task-specific op-
timization in enhancing model sensitivity to er-
ror recognition within interactive learning con-
texts.

1 Introduction

Tutoring has long been recognized as one of the
most effective educational interventions, signifi-
cantly enhancing student learning outcomes. No-
tably, the 2 sigma problem Bloom (1984) illustrates
that students receiving one-on-one tutoring perform
two standard deviations better than those in conven-
tional classroom settings, highlighting the profound
impact of personalized instruction. However, the
scalability of such individualized tutoring remains
a challenge due to resource constraints.
Advancements in deep learning Lin et al. (2023)
and the emergence of large language models
(LLMs) Lieb and Goel (2024); Park et al. (2024)
have paved the way for Al-powered tutors capa-
ble of delivering personalized, on-demand educa-
tional support. These intelligent tutoring systems
leverage natural language processing and machine
learning techniques to adapt to individual learner
needs, providing real-time feedback and tailored

instruction. Al-powered tutors can make quality
education available to more people by offering the
same benefits as one-on-one tutoring, but for many
students at once.

Despite these advancements, evaluating the ped-
agogical effectiveness of Al tutors remains a sig-
nificant problem. Traditional evaluation metrics,
often adapted from domains like machine trans-
lation and summarization, fail to capture the nu-
anced educational interactions between Al tutors
and students. Moreover, while human evaluations
are considered the gold standard, they are time-
consuming, costly, and lack scalability. This high-
light the urgent need for automated, reliable, and
pedagogically-informed evaluation frameworks.

Addressing this gap, the BEA 2025 Shared Task
Kochmar et al. (2025) focuses on the Pedagogical
Ability Assessment of Al-powered Tutors, aiming
to develop standardized evaluation methods for Al
tutor responses. The task includes four main tracks:
Mistake Identification, determining whether the Al
tutor correctly identifies student errors; Mistake
Localization, pinpointing the exact location or na-
ture of the student’s mistake; Guidance Provision,
offering constructive feedback or hints to guide the
student; and Actionability, ensuring the response
leads to a clear next step for the student. These
tracks are intended to measure the tutor’s effective-
ness in supporting student learning and correcting
misunderstandings.

This paper describes our contribution to the BEA
2025 Shared Task, in which we leverage large lan-
guage models (LLMs) to create an automated eval-
uation method for Al tutors, primarily focusing
on the mistake identification track. We investigate
multiple strategies, assess their performance, and
present a comprehensive ablation study, deliver-
ing a scalable, education-focused evaluation frame-
work designed to enhance personalized learning.
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2 Related Work

2.1 AI Tutoring Systems

Early Intelligent Tutoring Systems (ITS), devel-
oped in the late 1970s and 1980s Guo et al. (2021),
employed explicit cognitive or knowledge-tracing
models to monitor learners’ progress and simu-
late personalized instruction . Pioneering systems
like Anderson and Corbett’s Cognitive Tutors An-
derson et al. (1995) utilized model-tracing algo-
rithms to instantly detect deviations from expert
problem-solving pathways, allowing immediate
corrective feedback and error-specific hints. This
approach significantly boosted students’ learning
speed and post-test performance in experimental
settings. However, studies of human expert tu-
tors, such as Hume et al. (1996), suggest a more
effective approach, using indirect prompts such
as Socratic questions or reflective hints to help
students independently identify and correct errors.
This approach encourages deeper learning and self-
reflection, showing a limitation of early ITS.

2.2 Advances in Large Language Models for
Educational Dialogue

Recent advancements in large language models
(LLMs) have significantly improved their capabil-
ities, especially within educational contexts Lieb
and Goel (2024); Kasneci et al. (2023); Nye et al.
(2023). Modern LLMs facilitate personalized, in-
teractive tutoring experiences, creating customized
content such as quizzes and lesson plans tailored
to specific curricula and student proficiency. Fur-
thermore, these models support educators by au-
tomating administrative responsibilities, enabling
teachers to devote more time to direct instruction
and student engagement.

2.3 Evaluation Methods for AI Tutoring
Systems

Evaluating Al tutors in education primarily relies
on human judgment that score responses on dimen-
sions like mistake identification, clarity, and tone.
While expert annotation remains the gold standard,
it suffers from inconsistency and lacks a unified pro-
tocol, prompting studies such as Tack & Piech Tack
and Piech (2022), and Maurya et al.Maurya et al.
(2025) propose standardized taxonomies. Pairwise
comparisons simplify evaluation by focusing on
relative pedagogical effectiveness. However, auto-
matic metrics remain limited: Traditional nautural
language generation metrics such as BLEU Pap-

Figure 1: Model Architecture

ineni et al. (2002) or ROUGE Lin (2004) poorly
reflect pedagogical quality. Recent advances use
reference-free approaches such as trained scorers
(e.g., DialogRPT Gao et al. (2020)) and LLMs like
GPT-4 ! to evaluate tutor responses, though their
reliability depends heavily on prompt design. Hy-
brid evaluation methods that combine LLMs and
correctness checks are emerging to improve consis-
tency and scalability.

3 System Overview

This section presents the complete methodology
adopted for the task. We first formalize the prob-
lem, then detail the shared backbone architecture,
followed by dedicated subsections describing each
experimental variant. Finally, we present our quan-
titative analysis and comparison between different
approaches in 4.3.

3.1 Problem Definition

We address the task of assessing whether an Al tu-
tor’s feedback in a dialogue setting correctly iden-
tifies a student’s mistake. Given a multi-turn con-
versation between a student and an Al tutor, along
with the tutor’s final response, the objective is to
classify that response as correctly identifying the
mistake, to some extent identifying, or failing to do
so. This is formulated as a sequence classification
problem, where a contextual understanding of the
conversation is required for an accurate prediction.

3.2 System Backbone

We employ, as shown in Figure 1, a sequence clas-
sification approach. To effectively capture the con-
textual dependencies in the dialogue, we prepend a
task-specific system prompt to the conversation his-
tory and the tutor’s final turn. The system prompt
is defined as:

"https://openai.com/index/gpt-4
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System Prompt

You are tasked with evaluating a multi-turn
conversation between a math teacher and a
student. The conversation is about a math-
ematical problem and in the form of a dia-
logue aimed at helping the student arrive at
the correct solution.

The student initially provides an incorrect
answer. The teacher then engages in follow-
up exchanges to help the student uncover
and understand the mistake.

You will be given:

- The full conversation up to the stu-
dent’s most recent turn, enclosed within
‘<CONV>‘ tags.

- The math teacher’s immediate next re-
sponse, enclosed within ‘<RESP>‘ tags.
**Your task**:

- Determine whether the teacher’s response
in ‘<RESP>° effectively contributes to iden-
tifying or addressing the student’s mistake.
- Explain your reasoning clearly and con-
cisely based on the content of the teacher’s
response and how it relates to the mistake
and the original question. Then, provide
your final judgment.

A teacher’s response is considered a **mis-
take identifier®* if it includes:

- A follow-up question, explanation, or
prompt that targets the student’s misunder-
standing or errors in reasoning,

- Or if it guides the student toward re-
evaluating key steps relevant to solving the
original math problem.

You must output one of the following judg-
ments based on the above criteria:

- **A** — If the teacher’s response is
clearly focused on the student’s mistake and
relates directly to the solution steps.

- *%B** — If the response is unrelated to
the mistake, irrelevant to the solution steps,
or potentially confusing/misleading.

- #¥C** — If the response is only par-
tially relevant or offers indirect guidance
that might help the student reflect on the
mistake.

**Put Your Output In The Following For-
mat:** <think>The complete reasoning pro-
cess</think><answer>Your final judgment
from the choices (A, B, or C)</answer>

This input is passed through a decoder, where
the last hidden-state representation is extracted. A
lightweight classification head, implemented as a
feed-forward linear layer, is then applied to predict
how the tutor response identifies the mistake among
three classes (Yes, No, To some extent). This de-
sign leverages the model’s pretrained contextual
embeddings, enhancing its capacity to discern nu-
anced dialogue interactions.

3.3 GTE-based Sequence Classification
Models

We investigate three variants that use the General
Text Embedding (GTE) family to obtain sentence-
level representations, followed by lightweight feed-
forward (FF) classification heads:

1. GTE-MODERNBERT-BASE ? Zhang et al.
(2024): the gte-modernbert-base encoder
feeds into a single FF layer with a softmax
output for prediction.

2. GTE-QWEN2-1.5B-1FF Li
et al. (2023): embeddings from
gte-qwen2-1.5B-instruct 3 are passed
through one FF layer identical to (1).

3. GTE-QWEN2-1.5B-2FF: the same as in (2)
but followed by a two-layer FF head before
the final softmax output.

Unless otherwise stated, these models are fine-
tuned with the optimization settings described
in §4.2.

3.4 Qwen2.5-based Sequence Classification
Models

We benchmark five instruction-tuned Qwen2.5 lan-
guage models, varying both model size and the
depth of the feed-forward (FF) classification head
that replaces the original causal-LM head:

1. QWEN2.5-7B-1FF Team (2024): 7B param-
eters variant of Qwen2.5 “; a single FF layer
with software output. Fine-tuned via LoRA
adapters Hu et al. (2022) with rank 16 on all
attention and MLP projection layers.

Zhttps://huggingface.co/Alibaba-NLP/gte-modernbert-
base

3https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-
instruct

“https://huggingface.co/Qwen/Qwen2.5-7B
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Figure 2: Class Distribution of the dataset.

2. QWEN2.5-1.5B-2FF: 1.5B parameters °; a
two-layer FF head preceding the final softmax
layer; full-parameter fine-tuning.

3. QWEN2.5-MATH-1.5B-1FF: math special-
ized 1.5B variant °; one FF layer; full-
parameter fine-tuning.

4. QWEN2.5-0.5B-1FF: 0.5B parameters; one
FF layer; full-parameter fine-tuning.

5. QWEN2.5-0.5B-2FF: same 0.5B backbone
as (4) but with a two-layer FF head as in (2).

Unless otherwise stated, optimization hyper-
parameters follow the settings in §4.2.

4 Experiments

4.1 Dataset and Metrics

We conduct our experiments on MRBench, an an-
notated collection of 192 multi-turn student-Al
tutor dialogues (1596 tutor responses) released
by Maurya et al. (2025). Each tutor’s response
is labeled to indicate whether the feedback cor-
rectly identifies the student’s error. Figure 2
shows the class distribution in the provided dataset.
For model development, we divide the official
development data into training and validation
splits, retaining 15% of the dataset for valida-
tion during fine-tuning while maintaining the same
class distribution of the train split. We follow
the shared-task protocol and report strict macro-
averaged F and strict accuracy over the MISTAKE-
IDENTIFICATION labels of the official test set.

Shttps://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
®https://huggingface.co/Qwen/Qwen2.5-Math-1.5B-
Instruct

4.2 Training Setup

Each model was fine-tuned for no more than ten
epochs using AdamW with a linearly decaying
learning-rate schedule, reaching a maximum of
1 x 1075, We trained with an effective batch size
of 64 in bf16 mixed precision on a single NVIDIA
RTX-A6000 GPU.

4.3 Results and Analysis

Model Accuracy (%) Macro-Fy (%)

GTE-MODERNBERT-BASE 88.17 66.48
GTE-QWEN2-1.5B-1FF 89.78 74.15
GTE-QWEN2-1.5B-2FF 89.25 7251
QWEN2.5-7B-1FF 85.48 64.06
QWEN2.5-1.5B-2FF 88.44 71.69
QWEN?2.5-MATH-1.5B-1FF 88.44 67.95
QWEN2.5-0.5B-1FF 89.25 72.96
QWEN2.5-0.5B-2FF 88.44 71.15

Table 1: Accuracy and Macro-F} on our validation split.

4.3.1 Full fine-tuning wins

Training the entire decoder-only model
GTE-QWEN2-1.5B with a single feed-forward
head (1FF) achieves the best results on our
validation split at 74.15 macro-F1.

4.3.2 Small-but-efficient models keep pace

The smaller fully fine-tuned QWEN2.5-0.5B-1FF
achieved our second best results at 72.96 macro-F}
with only 1.2 points difference from our best model
while cutting memory and latency.

4.3.3 More head depth is not always better

Adding a second feed-forward layer (2FF) to the
backbone reduces performance.

4.3.4 Domain pre-training helps but not
enough

The math-specialized QWEN2.5-MATH-1.5B-1FF
outperforms the larger variant QWEN2.5-7B- 1FF
by 3.89 Iy with only 20% of its parameter
size.  However, increasing parameter count
of non-specialized models surpasses the bene-
fit of domain-specific training. In our case,
QWEN2.5-0.5B-1FF outperforms the trained model
by 5.01, QWEN2.5-1.5B-2FF by 4.74, and
GTE-QWEN2-1.5B-1FF by 6.2.

4.3.5 Size alone isn’t enough

The PEFT-tuned 7B QWEN2. 5-7B-1FF achieves 6"
place at 64.06 macro-F7, showing that the tuning
was not effective.
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5 Conclusion

This work benchmarked eight GTE- and Qwen?2.5-
based sequence-classification models on the
MISTAKE-IDENTIFICATION task in Al-tutor dia-
logues. Full fine-tuning of a medium-sized decoder-
only backbone (GTE-QWEN2-1.5B-1FF) achieved
the strongest development performance at 74.1
macro-Fy, highlighting that carefully tuned 1.5 B
models can outperform much larger 7B LoRA base-
lines.

These findings indicate that compact instruction-
tuned LLMs can rival, or even surpass, their larger
counterparts in pedagogical mistake detection, of-
fering a resource-efficient pathway toward scalable
Al tutors. Future work should expand the dialogue
corpus, diversify subject matter and languages, in-
corporate richer pedagogical labels, and pair auto-
matic metrics with human and learning outcome
evaluations to approach genuinely effective educa-
tional dialogue systems.

Limitations

Our study is constrained by several factors that
temper the generality of its findings. First, the
evaluation corpus, MRBench, comprises only 1596
labelled tutor responses drawn from a single En-
glish, mathematics-focused dataset. Such limited
scale and topical focus may bias the models toward
the annotation style and error distribution specific
to this domain, leaving their behavior untested in
other subjects, proficiency levels, or languages.

Second, the present metrics provide only a par-
tial view of the educational effectiveness. More-
over, we rely exclusively on automatic accuracy
and macro-F1; the absence of human judgments or
learning-gain measurements means that the impact
in real-world scenarios remains uncertain.
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