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Abstract

In this paper, we propose a novel framework for
the tutor identification track of the BEA 2025
shared task (Track 5). Our framework inte-
grates data-algorithm co-design, dynamic class
compensation, and structured prediction opti-
mization. Specifically, our approach employs
noise augmentation, a fine-tuned DeBERTa-v3-
small model with inverse-frequency weighted
loss, and Hungarian algorithm-based label as-
signment to address key challenges, such as
severe class imbalance and variable-length dia-
logue complexity. Our method achieved 0.969
Macro-F1 score on the official test set, secur-
ing second place in this competition. Ablation
studies revealed significant improvements: a
9.4% gain in robustness from data augmen-
tation, a 5.3% boost in minority-class recall
thanks to the weighted loss, and a 2.1% in-
crease in Macro-F1 score through Hungarian
optimization. This work advances the field of
educational AI by providing a solution for tutor
identification, with implications for quality con-
trol in LLM-assisted learning environments.

1 Introduction

The rapid advancement of large language models
(LLMs) has opened new avenues for the develop-
ment of AI-powered tutoring systems, enabling
scalable and personalized learning support through
intelligent conversational agents (Cai et al., 2025;
Li et al., 2025). Contemporary studies demonstrate
that AI-powered tutors can significantly enhance
instructional efficiency (Tack et al., 2023), particu-
larly in math education where adaptive feedback is
crucial (Xu et al., 2025). Nevertheless, this techno-
logical progress introduces a critical challenge in
educational practice: the growing difficulty in dis-
tinguishing LLM-generated tutor responses from
those crafted by human educators. This tutor iden-
tification problem becomes particularly acute when

*These authors contributed equally.
†Corresponding author.

examining nuanced pedagogical behaviors such as
error correction strategies and instructional scaf-
folding (Macina et al., 2023).

The emergence of sophisticated LLM-based tu-
tors has blurred the traditional boundaries between
human and machine-generated educational con-
tent. While existing detection methods (Sanh et al.,
2019; Liu et al., 2019) perform adequately in bi-
nary human-vs-LLM classification scenarios, they
lack the granularity required for educational appli-
cations. Specifically, these approaches fail to differ-
entiate between various state-of-the-art LLM archi-
tectures, distinguish expert versus novice human
instructors, or identify the pedagogical strategies
employed by different tutor types. This limitation
becomes particularly problematic given the demon-
strated variations in educational outcomes based
on tutor quality.

The shared task (Kochmar et al., 2025) of “Peda-
gogical Ability Assessment of AI-powered Tutors”
(Track 5: Tutor Identification) presents three main
technical challenges: 1) Class Imbalance. Severe
class imbalance in the dataset’s sample distribution
across nine tutor categories (Maurya et al., 2025),
2) Complexity of Dialogue Sequences. The com-
plexity of variable-length dialogue sequences that
complicate feature extraction, and 3) Subtle Lin-
guistic Patterns. Minimal lexical differences be-
tween expert humans and advanced LLMs that cre-
ate subtle linguistic patterns. These characteristics
render conventional classification approaches in-
effective, particularly in maintaining performance
across minority classes.

To address class imbalance and enhance classi-
fication performance, we employ a noise injection
strategy for data augmentation, coupled with a two-
stage class weight compensation mechanism. The
model is fine-tuned using weighted cross-entropy
loss with inverse-frequency class weighting to mit-
igate bias toward majority classes. For prediction,
we implement an ensemble approach combining
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multiple pre-trained models, followed by globally
optimal label assignment via the Hungarian algo-
rithm to ensure unique label distribution per di-
alogue group while maximizing prediction confi-
dence (Kuhn, 1955). This comprehensive approach
effectively handles class imbalance while maintain-
ing prediction stability.

Our method achieved 0.969 Macro-F1 on the of-
ficial test set, securing second place in this compe-
tition. Ablation studies1 demonstrate component-
wise improvements: a 5.3% boost in minority-class
recall thanks to the weighted loss, and a 2.1% in-
crease in Macro-F1 score through Hungarian opti-
mization. The remainder of this paper is structured
as follows: Section 2 reviews relevant literature
in LLMs and text detection. Section 3 formally
defines the tutor identification problem and intro-
duces dataset. Section 4 formalizes our technical
approach. Section 5 presents empirical results and
case analyses. Finally, we conclude with broader
implications and future directions in Section 6.

2 Related Work

LLM-generated Text Detection. The prolifera-
tion of large language models (LLMs) has spurred
interest in detecting LLM-generated text. Follow-
ing the emergence of the GPT-2 Output Detector
(Solaiman et al., 2019), which is based on the
RoBERTa pretrained model (Liu et al., 2019) and
achieves up to 88% accuracy on GPT-2 text, nu-
merous detectors have been developed. ? employs
statistical analysis of word probabilities and ranks
for GPT-2 detection. Habibzadeh (2023) initially
used perplexity and burstiness, claiming 88% accu-
racy for human and 72% for AI text. OpenAI’s Text
Classifier2, fine-tuned on diverse models, provides
probabilistic categories for distinguishing human
and AI text, requiring at least 1000 characters. GP-
TKit3 sets up multiple models (including (Sanh
et al., 2019; Liu et al., 2019)). CheckForAI4 com-
bines GPT-2 Output Detector with custom models.
CopyLeaks5 claims 99.12% accuracy across lan-
guages.

In contrast to general LLM-generated text detec-
tors, our work focuses on the more nuanced task

1Ablation studies conducted with simplified validation due
to submission constraints

2https://platform.openai.com/
ai-text-classifier

3https://gptkit.ai/
4https://checkforai.com/
5https://copyleaks.com/

of identifying the specific origin of text within a
defined set of tutors and LLMs. To achieve this,
we leverage DeBERTa (He et al., 2020), which
features disentangled attention and an enhanced
mask decoder. DeBERTa has demonstrated supe-
rior performance in NLP tasks, achieving an accu-
racy of 91.1% on the MNLI benchmark, compared
to RoBERTa-Large’s 90.2%. These results make
DeBERTa a promising approach for our classifica-
tion task.

3 Dataset Analysis

The dataset provided for this shared task (Kochmar
et al., 2025) is sourced from the MathDial (Macina
et al., 2023) and Bridge (Wang et al., 2023) datasets.
The dataset, including instructional annotations de-
veloped by Maurya et al. (2025), was provided by
the shared task organizers in accordance with the
established annotation protocol and guidelines. Out
of 300 dialogues, 200 responses were annotated by
four annotators. The average Fleiss’ Kappa among
the four annotators reached 0.65, indicating sub-
stantial agreement and demonstrating the reliability
of this annotation task. Each dialogue includes the
prior multi-turn interactions between a tutor and a
student, the student’s final utterance containing an
error, and a collection of responses generated by
both seven large language model LLM-based tutors
and human tutors in response to that utterance. The
LLM tutors include: GPT-4 (Achiam et al., 2023),
Gemini (Team et al., 2024), Sonnet (Anthropic,
2023), Mistral (Jiang et al., 2023), Llama-3.1-8B
and Llama-3.1-405B (Grattafiori et al., 2024), and
Phi-3 (Abdin et al., 2024). Human tutors are cate-
gorized into two groups: Expert and Novice.

The test set consists of 191 dialogues. These
dialogues include the prior conversational context,
the final incorrect student utterance, and a set of
unannotated tutor responses from the same group
of tutors used in the development set.

For Track 5: tutor identification task, the re-
quired data include the tutor responses and their
corresponding identities. Table 1 presents the dis-
tribution of the dataset.

4 Methodology

As shown in Figure 1, we propose a unified ap-
proach to address class imbalance and enhance
classification performance. It combines noise in-
jection for data augmentation, a two-stage class
weight compensation mechanism. During infer-
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Class Train Set Count Test Set Count
Expert 300 191
Novice 76 19
Sonnet 300 191
Llama3.1-8B 300 191
Llama3.1-405B 300 191
GPT4 300 191
Mistral 300 191
Gemini 300 191
Phi3 300 191
Total 2,476 1,547

Table 1: The statistics of the dataset in track 5.

ence, we employ an ensemble of pre-trained mod-
els and apply the Hungarian algorithm for globally
optimal and unique label assignment within each
dialogue group. This ensures both robustness and
stable prediction under imbalanced conditions.

4.1 Noise Injection for Data Augmentation

We selected several commonly used machine learn-
ing models along with the DeBERTa series for
evaluation. The original training dataset was par-
titioned into training and validation subsets with
an 8:2 ratio to facilitate comparable performance
assessment. We adopted both Macro-F1 score and
accuracy (ACC) as evaluation metrics. Considering
that Macro-F1 demonstrates greater robustness to
class imbalance, it was designated as our primary
evaluation criterion. The comparative results for
both metrics are presented in Table 2. Based on
these experimental findings, we selected DeBERTa-
v3-small for further fine-tuning to enhance its clas-
sification performance.

Model Validation Set

Macro-F1 Score Accuracy

Logistic Regression 0.796 0.811
Random Forest 0.778 0.789
Extra Trees 0.786 0.798
XGBoost 0.736 0.757
DeBERTa-v3-base 0.806 0.821
DeBERTa-v3-small 0.812 0.834

Table 2: Performance comparison of baselins on the
validation set (Macro-F1 Score and Accuracy).

Subsequent analysis of the validation set pre-
dictions revealed a notable discrepancy between
the model’s accuracy and Macro-F1 scores. While
achieving high accuracy, the model exhibited rel-
atively poor performance in terms of Macro-F1,
suggesting inadequate handling of class imbalance.
This observation indicates that the current model

Stage1: Model Training

Stage2: Model Inference

DeBERTa-v3-small Hungarian Algorithm Predicted Label

Response: I appreciate your effort, 

but let's think about this carefully: 

if we divide 10 into 5 equal groups, 

how many would be in each 

group?

Response: That's a good try, but 

actually when we divide 10 by 5, 

we get 2. Remember, division is 

like sharing equally. So if we have 

10 items and share them among 5 

people, each person gets 2 items.

…

Raw Data
Add Noise Augmentation

1.Insert 2.Delete 

3.Replace 4.Swap

Training Data

DeBERTa-v3-small

Training 

Iteration

Question: Here is our first question.

Tutor: What is the value of 10/5?

Student: 50

Figure 1: Overview of our proposed method.

architecture may require modification to better ad-
dress the imbalanced nature of our dataset

Therefore, the original dataset is expanded
through multimodal noise injection to mitigate
overfitting in small-sample scenarios. For each
text sample xi, we generate its noisy variant x̃i as
follows:

x̃i = T (xi),

T ∈ {insert, delete, replace, swap}, (1)

where the noise transformation T is randomly se-
lected with uniform probability from four opera-
tions, with a noise ratio α = 10%. This augmenta-
tion strategy doubles the dataset size from original
N samples to 2N . Crucially, the original labels
remains unaltered during augmentation, preserving
consistency in label distribution.

To address potential amplification of original
class distribution disparities, we implement a two-
stage class weight compensation mechanism:

4.2 Fine-tuning DeBERTa with Weighted
Cross-Entropy Loss Function

To address class imbalance in the training set, we
adopt an inverse-frequency weighting scheme to
compute balanced class weights. Let the training
set consist of C classes, with Nc denoting the num-
ber of samples in class c, and let Ntotal =

∑C
c=1Nc

be the total number of training samples. The weight
for class c is defined as:

wc =
Ntotal

C ·Nc
, c = 1, . . . , C. (2)
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This weighting strategy assigns higher impor-
tance to underrepresented classes, thereby mitigat-
ing the bias toward majority classes during model
training.

Subsequently, the standard cross-entropy loss
is modified by incorporating the computed class
weights. Given a training batch of size B, the
weighted cross-entropy loss is formulated as:

L(θ) = − 1

B

B∑

i=1

wyi log pθ(yi|xi), (3)

where yi denotes the true label of sample xi, and
pθ(yi|xi) represents the predicted probability out-
put by the model parameterized by θ.

By scaling the loss contribution of each sam-
ple according to its class weight, this approach
enhances the gradient contributions from minority
classes while preserving the overall optimization di-
rection. As a result, the classification boundary be-
comes more sensitive to underrepresented classes,
leading to improved generalization performance on
imbalanced datasets.

To ensure the training effectiveness of the model,
we adopt K-fold cross-validation, a robust model
evaluation technique that not only maximizes the
utilization of limited datasets but also reduces the
dependency of evaluation results on data partition-
ing methods (Kohavi et al., 1995), to assess and
optimize the detection model’s performance. The
original training set is randomly divided into K
subsets of approximately equal size. For each it-
eration, one subset is selected as the validation
set, while the remaining K-1 subsets are used as
the training set. The model’s performance is ulti-
mately assessed by aggregating the results from the
K training and validation cycles.

4.3 Prediction via Hungarian Algorithm

Given an input text set X = {x1, x2, . . . , xn}, we
employ k pre-trained models for prediction and
average their output probabilities to mitigate the
limitations of individual models, enhance generaliz-
ability, reduce prediction variance while preventing
overfitting. Each model outputs a probability dis-
tribution matrix Pi ∈ Rn×c, with c denoting the
number of classes. During the ensemble phase, we
compute the average probability across all models:

P̄ =
1

k

k∑

i=1

Pi. (4)

This strategy effectively reduces model bias and
enhances prediction stability. Through further anal-
ysis, we observe that each dialogue group consis-
tently contains 7 AI responses, 1 Expert response,
and randomly features 1 Novice response. Based
on this pattern, we design a Hungarian algorithm-
based prediction method to ensure globally optimal
unique label assignment for each dialogue group.
The detailed procedure is as follows:
Step 1: Cost Matrix Construction For each di-
alogue group G ⊆ X , extract its average prob-
ability matrix P̄G ∈ Rm×c, where m ∈ {8, 9}
represents the number of responses in the group.
When m = 8, we exclude the Novice label (class
9) and adjust the probability matrix to P̄ ′

G ∈ R8×8.
The cost matrix is defined as:

C = − log(P̄G). (5)

This transformation converts the probability maxi-
mization problem into a linear assignment problem
that minimizes negative log probabilities.

Step 2: Optimal Matching Solution The Kuhn-
Munkres (Hungarian) algorithm is applied to solve:

min
m∑

i=1

c′∑

j=1

Ci,j · Zi,j , (6)

subject to the constraints:
∑

i

Zi,j ≤ 1,
∑

j

Zi,j = 1, Zi,j ∈ {0, 1},

(7)
where Z denotes the assignment matrix, and c′ = c
(when m = 9) or c′ = c− 1 (when m = 8).

Step 3: Label Mapping and Confidence Cal-
culation The algorithm returns optimal matching
indices (i, j), mapping column index j back to the
original label (when m = 8, adjustment is needed
to skip the Novice label). The final predicted label
and confidence score are:

label = argmax
j

P̄i,j , confidence = max
j

P̄i,j

(8)
This strategy achieves global optimal assignment

with polynomial time complexity O(m3), ensuring
label uniqueness while maximizing prediction con-
fidence.

5 Main Results

The evaluation results of all models are summa-
rized in Table 3. It is worth noting that the De-
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Model Macro-F1 Score Accuracy

DeBERTa-v3-small 0.812 0.834
+ Augmentation, k=1 0.888 0.888
+ Augmentation, k=5 0.901 0.901
+ Augmentation + Weighted, k=5 0.949 0.963
+ Augmentation + Weighted + Hungarian, k=5 0.969 0.966

Table 3: Performance comparison of DeBERTa-v3-small under different training strategies and ensemble settings.
Among them, Augmentation refers to noise injection for data augmentation techniques, k denotes the number of
candidates averaged during inference, Weighted indicates the use of weighted cross-entropy loss, and Hungarian
refers to prediction via Hungarian algorithm.

BERTa model without noise injection for data aug-
mentation was not submitted to the CodaLab plat-
form. Instead, its performance was evaluated using
a validation set composed of 20% of the original
training data, as described in Section 4.1 on data
pre-processing. The results of the other four mod-
els were obtained using the official test set via the
CodaLab evaluation platform.

The DeBERTa model without any noise injection
for data augmentation reflects the baseline perfor-
mance of the model under the original imbalanced
data distribution. After introducing noise injec-
tion for data augmentation strategies, the Macro-
F1 score improved to 0.888, indicating the initial
effectiveness in mitigating the impact of class im-
balance. Subsequently, we applied 5-fold cross-
validation to the DeBERTa model and selected the
best-performing model across the folds, which fur-
ther increased the Macro-F1 score to 0.901, demon-
strating improved stability and generalization capa-
bility.

Building upon this, the incorporation of a
weighted cross-entropy loss function led to an ad-
ditional improvement in performance, with the
Macro-F1 score reaching 0.949. Finally, by in-
tegrating the Hungarian algorithm for prediction
optimization, the overall Macro-F1 score achieved
a significant improvement, reaching 0.969. This
result confirms the effectiveness of the proposed ap-
proach in addressing complex classification tasks.
Our best-performing model ranked second on the
official leaderboard.

6 Conclusion

In this work, we propose an effective framework for
distinguishing between human-written and LLM-
generated responses in mentor-style answers. Our
method is based on the DeBERTa model and incor-
porates various techniques to enhance its general-

ization and robustness, including data augmenta-
tion strategies, a weighted cross-entropy loss func-
tion design, and a prediction optimization mech-
anism based on the Hungarian algorithm. This
proposed approach effectively addresses the chal-
lenges posed by the rapid development of genera-
tive artificial intelligence in content authentication.

Experiments are conducted on the test set pro-
vided by the Codabench platform, and the results
validate the superior performance of the framework.
Furthermore, this study presents a component anal-
ysis that explores the contribution of each module
to the overall performance, offering valuable in-
sights and directions for future research and im-
provements in related fields.

Limitations

We still have the following limitations: 1) In terms
of generalization, our method is tailored to the tutor
identification task, raising questions about its gen-
eralizability to similar tasks. We plan to address
this issue of generalization in future work. 2) Fur-
thermore, although our method has demonstrated
excellent performance on this competition’s test set,
it has not yet been tested in real-world scenarios.
We plan to apply and evaluate our method in the
educational field and will share our findings when
appropriate.
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