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Abstract

Automatic evaluation of AI tutor responses
in educational dialogues is a challenging task,
requiring accurate identification of mistakes
and provision of pedagogically effective guid-
ance. In this paper, we propose a classifica-
tion model based on BERT, enhanced with a
cross-attention mechanism that explicitly mod-
els the interaction between the tutor’s response
and preceding dialogue turns. This design en-
ables better alignment between context and re-
sponse, supporting more accurate assessment
along the educational dimensions defined in
the BEA 2025 Shared Task. To address the
substantial class imbalance in the dataset, we
employ data augmentation techniques for mi-
nority classes. Our system consistently outper-
forms baseline models across all tracks. How-
ever, performance on underrepresented labels
remains limited, particularly when distinguish-
ing between semantically similar cases. This
suggests room for improvement in both model
expressiveness and data coverage, motivating
future work with stronger decoder-only model
and auxiliary information from systems like
GPT-4.1. Overall, our findings offer insights
into the potential and limitations of LLM-based
approaches for pedagogical feedback evalua-
tion.

1 Introduction

Recent progress in large language models (LLMs)
like GPT-4, Gemini(Team et al., 2023), and
LLaMA(Grattafiori et al., 2024) has rapidly im-
proved AI conversational agents, especially in ed-
ucation. AI tutors, for example, can now offer
students real-time, interactive feedback to boost en-
gagement and learning(Lin et al., 2023). However,
while these models generate fluent, human-like re-
sponses, evaluating the real educational value of
their feedback remains challenging(Ou et al., 2023).
Standard metrics such as BLEU and ROUGE fail
to capture important aspects of educational dia-

logue—like identifying student mistakes or provid-
ing helpful guidance—which highlights the need
for more fine-grained, pedagogically meaningful
evaluation frameworks.

To address this gap, the BEA 2025 Shared Task
goes a step further than previous tasks(Tack et al.,
2023) by shifting the focus from dialogue gener-
ation to evaluating how LLMs assess educational
dialogues. Evaluation is based on four key dimen-
sions(Maurya et al., 2025): (1) Mistake Identifi-
cation(Tack and Piech, 2022; Macina et al., 2023;
Daheim et al., 2024), (2) Mistake Location(Daheim
et al., 2024), (3) Providing Guidance(Tack and
Piech, 2022; Liu et al., 2023), and (4) Actionabil-
ity(Daheim et al., 2024). These dimensions capture
what truly matters in educational feedback, moving
beyond surface-level fluency. For more details on
the task and evaluation setup, please refer to the
official report(Kochmar et al., 2025).

In this paper, we present our submission to the
BEA 2025 Shared Task, focusing on three evalu-
ation tracks: Mistake Identification, Mistake Lo-
cation, and Providing Guidance. Our approach
enhances standard LLM classifiers with a cross-
attention layer to better capture the relationship be-
tween student-tutor dialogue context and the tutor’s
response. Experimental results demonstrate that
our method achieves strong performance across
all tracks, validating the effectiveness of cross-
attention for modeling educational feedback. Our
team, CU, ranked 25th out of 44 in Track 1, 17th
out of 31 in Track 2, and 20th out of 35 in Track 3.

2 Related Work

2.1 Early Work on Educational Feedback

Early research in educational psychology laid the
theoretical foundation for understanding effective
teaching practices. Hattie and Timperley (2007)
proposed a widely adopted model of feedback fo-
cused on learning goals, progress monitoring, and
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actionable guidance, demonstrating its critical role
in student achievement. The AutoTutor system
(Graesser et al., 2005) formalized key tutoring
strategies—such as identifying misconceptions and
prompting elaboration—within an intelligent tutor-
ing framework. Boyer et al. (2011) introduced a
data-driven approach by modeling dialogue struc-
tures using hidden Markov models to predict learn-
ing gains. Wolfe et al. (2013) and Rus et al. (2017)
analyzed tutor-student dialogues to assess the qual-
ity of instructional moves using semantic similarity
and discourse act classification.

2.2 LLMs for Educational Dialogue
Evaluation

Recent advances in LLMs have reshaped how we
engage with language and text—transforming not
only natural language processing(NLP) research
but also the evaluation of educational dialogues. A
growing body of research explores how LLMs can
be used to assess or enhance educational feedback.
For example, Balse et al. (2023) investigated the
ability of GPT-3.5 to explain logical programming
errors, finding that while explanations were often
imperfect, they reliably identified key issues. Lee
et al. (2024) improved LLM-based classification
accuracy by structuring prompts to encode error
relationships. Molina et al. (2024) showed that
LLM tutors improve accessibility for non-native
English speakers, while Xu et al. (2025) built a
virtual AI tutor capable of analyzing student drafts
and generating error-specific feedback. Reinforce-
ment learning approaches such as that of Scarlatos
et al. (2025) have further enhanced LLM tutors by
optimizing pedagogical reward functions. Kakarla
et al. (2024) demonstrated the potential of LLMs
in evaluating human tutor responses, highlighting
both strengths and limitations.

2.3 BERT for Dialogue and Tutoring Systems

Parallel to LLM advancements, BERT-based archi-
tectures have also proven effective for educational
dialogue modeling and intelligent tutoring systems
(ITS). In the domain of dialogue understanding,
DialogueBERT (Zhang et al., 2021) and DialBERT
(Li et al.) incorporate hierarchical context and
speaker-role awareness to improve performance on
tasks such as disentanglement, emotion recognition,
and intent detection. CS-BERT (Wang et al., 2021),
trained on domain-specific customer service dia-
logues, introduces masked speaker prediction and
turn-level segment embeddings, yielding robust re-

sults in low-resource scenarios. Within ITS appli-
cations, BERT has been adapted for various ped-
agogical tasks. LBKT (Li et al., 2024) combines
BERT and LSTM with Rasch-based embeddings
for long-sequence knowledge tracing, improving
interpretability and accuracy. Tutor-KD (Kim et al.,
2022) introduces tutor-guided difficulty adaptation
in knowledge distillation, enhancing BERT’s gener-
alization. Wang et al. (2024) compare BERT with
ChatGPT for dialogic pedagogy support and note
that, while BERT performs well in structured anal-
ysis, it lacks the interactive fluency teachers often
prefer.

3 Research Gap

Despite progress in educational theory and NLP,
evaluating the pedagogical quality of AI tutor re-
sponses remains difficult. Traditional methods
emphasize structured feedback but rely on man-
ual annotation and lack scalability, while LLMs
offer fluency yet often miss deeper educational
goals like mistake identification and guidance. Al-
though some work proposes education-driven met-
rics, most automated approaches fail to effectively
model dialogue context. BERT-based models show
potential in educational settings but are still un-
derused for evaluating tutor responses within full
dialogue history.

To address this, we introduce a BERT-based clas-
sifier with a cross-attention mechanism that explic-
itly models tutor–dialogue interactions, enabling
more accurate and context-aware evaluation across
multiple pedagogical dimensions.

4 Methodology

In this section, we present the model architecture,
including the data processing, BERT-based repre-
sentation generation, and the cross-attention and
classification layers. An overview of the model is
illustrated in Figure 1. First, The conversation his-
tory and tutor response are preprocessed separately,
with special tokens inserted at the beginning of
each utterance to indicate their order. These inputs
are then encoded using a pretrained BERT model
to obtain high-dimensional representation. They
are passed into a cross-attention layer, where the
response serves as the query and the conversation
history as the key and value. Finally, the cross-
attended representation is fed into a classification
layer that predicts one of three labels: Yes, No, or
To some extent.
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Figure 1: Overview of the proposed model architecture.

4.1 Data Preprocessing and Representation
Generation

Data Augmentation. By examining the label dis-
tribution of the shared task dataset, we observed
a significant imbalance between the Yes, No, and
To some extent labels (see Table 1). Also, the Yes
and To some extent labels are semantically simi-
lar, which may require the model to make finer
distinctions. To address this issue without substan-
tially altering the data distribution, we applied data
augmentation only to the training set. Specifically,
we used GPT-4.1 to rephrase all instances with mi-
nority labels once, thereby augmenting the dataset
across all three tracks. This results in a simple
2:1 ratio between augmented and original samples
for the minority classes. The ratio was determined
heuristically rather than through systematic tuning,
with the aim of increasing class diversity while
preserving the overall label distribution. This aug-
mentation strategy led to improved F1 scores in
our subsequent experiments. The prompt used for
rephrasing is provided in Appendix A.

Track 1 Label Before Aug After Aug
Yes 1932 1932
No 370 666
To some extent 174 313

Track 2 Label Before Aug After Aug
Yes 1543 1543
No 713 1283
To some extent 220 396

Track 3 Label Before Aug After Aug
Yes 1407 1932
No 566 1018
To some extent 503 905

Table 1: Comparison of label counts before and after
data augmentation across the three tracks.

Input Labeling. To preserve the contextual
meaning and sequential order of the conversation
history, we manually insert order indicators (e.g.,
[TURNx]) at the beginning of each utterance and
mark the tutor’s response with a [RESPONSE] to-
ken. Compared to the insertion of turn and role em-
beddings in DialogBERT (Zhang et al., 2021), this
simple modification is easier to implement while
still demonstrating effectiveness.

Representation Generation. Given BERT’s
strong performance and widespread success across
various NLP tasks (Devlin et al., 2019), we retain
its original architecture and use its encoder only as
a representation generator. Specifically, BERT first
generates three types of embeddings from the in-
put: token embeddings, segment embeddings, and
position embeddings. These embeddings are added
and then fed into the Transformer’s self-attention
layers(Vaswani et al., 2017), which consist of mul-
tiple attention heads and stacked layers that com-
pute contextualized representations for each token.
After processing through these layers, the BERT
encoder produces high-dimensional vectors as the
final hidden states for both the conversation history
and the tutor response. The input representation
process is illustrated in Figure 2.

4.2 Cross-Attention and Classification Layer
After obtaining token-level representations of the
tutor’s response and the conversation history using
a BERT encoder, we combine them using a cross-
attention mechanism to model the relationship be-
tween the two. Inspired by the decoder structure in
the Transformer architecture, we treat the response
as the query and the conversation history as the
key and value. This allows each token in the re-
sponse to selectively attend to relevant parts of the
dialogue history (Figure 3). Formally, let

• R ∈ Rl×d be the representation matrix of
the tutor’s response, where l is the number of
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Figure 2: Illustration of the input representation pro-
cess in BERT, including embedding generation and self-
attention encoding.

tokens in responses, and d is the hidden size;

• H ∈ Rn×d be the representation matrix of the
conversation history, where n is the number
of tokens in the history.

Weight = softmax(
R ·WQ(H ·WK)⊤√

d
) (1)

Attention(R,H,H) = Weight ·H ·WV (2)

where WQ,WK ,WV ∈ Rd×d are trainable pro-
jection matrices. Here, Weight ∈ Rl×n represents
the attention weights between each token in the
response (R) and each token in the conversation
history (H), where l and n are the number of to-
kens in the response and history, respectively. This
mechanism enables the response to selectively at-
tend to relevant segments of the dialogue context,
producing a contextualized representation that in-
forms the final classification.

After obtaining the cross-attended response rep-
resentations, we extract the hidden state corre-
sponding to the [CLS] token (the first token po-
sition) to serve as the aggregate representation of
the response. This vector is then passed through
a dropout layer for regularization, followed by a
linear classification layer that maps the hidden rep-
resentation to a logits vector of dimension Rd×m,
where d is the hidden size and m = 3 is the number
of classification labels used across all tasks. The
resulting logits are used to compute the weighted
cross-entropy loss during training.

Algorithm 1: Dialogue-level Split with La-
bel Distribution Balancing

Input: Training and validation dialogues
Output: Training and validation splits with

similar label distributions
1 Compute global label distribution ratio from

all dialogues
2 Split dialogues into initial training (80%)

and validation (20%) sets
3 Compute label distribution in both sets
4 for iteration = 1 to max_iters do
5 foreach train dialogue di (sampled

subset) do
6 foreach val dialogue dj (sampled

subset) do
7 Swap di and dj between training

and validation sets
8 Compute new label distributions
9 Compute ratio error in both sets

10 if new error < old error then
11 Accept the swap
12 Update label counts
13 break both loops
14 end
15 end
16 end
17 end

5 Experiments

5.1 Dataset

As the shared task required, we use a development
set and a test set from the MathDial(Macina et al.,
2023) and Bridge(Wang et al., 2023) datasets.

Development Set: Contains 300 dialogues
where students make mistakes or show confusion.
Each dialogue includes the student’s last question
and responses from multiple tutors (LLMs and hu-
mans), with over 2,480 responses labeled for peda-
gogical quality.

Test Set: Contains 200 similar dialogues. Tutor
responses are not labeled and tutor identities are
hidden. The set is intended only for official evalua-
tion and is not available for model development.

Given that all 2,480 responses are associated
with only 300 dialogues, we perform dialogue-level
splitting to ensure that no dialogue appears in both
training and validation sets. This prevents data
leakage and ensures a fair evaluation. Combined
with the label imbalance issue noted in Section 4,
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Figure 3: Overview of the cross attention mechanism and classification.

this requires careful design of the data split. First,
we perform an initial 80/20 split of the data into
training and validation sets. Then, to ensure that
the label distributions in both sets are similar, we
iteratively swap samples between them. The pseu-
docode is shown in Algorithm 1.

5.2 Experimental Setup

We fine-tuned all models using the BERT base un-
cased(110M) architecture. Inputs combined the
tutor’s response and dialogue context, with cross-
attention as described in Methodology. The [CLS]
token was used for classification, followed by
dropout and a linear layer. All inputs were tok-
enized using the BERT tokenizer with a maximum
sequence length of 512. Sequences longer than 512
tokens were truncated, and shorter sequences were
padded accordingly.

Training was conducted on a single NVIDIA
RTX 4060 Ti GPU. We used the AdamW optimizer
with a learning rate of 2e-5 and a batch size of 5.
Models were trained for up to 5 epochs with early
stopping based on Macro-F1 score on the validation
set. A cosine learning rate scheduler was used, and
a dropout rate of 0.1 was applied before the final
classification layer. To address class imbalance, we
adopted a log-weighted cross-entropy loss, where
the weight for each class i was computed as wi =

log
(

N
ni

)
, with N the total number of samples and

ni the number of samples in class i. The overall
training procedure is summarized in Algorithm 2.

5.3 Baselines

To provide a reference for zero-shot performance,
we included two LLM baselines: GPT-4.1 and
LLaMA 3.2 1B. For GPT-4.1, we used the Ope-
nAI API and designed a custom prompt to elicit
pedagogical labels (Yes, No, or To some extent) for
each tutor response, given the tutor’s response and

dialogue context. This model was not fine-tuned
on our dataset and operates purely in a zero-shot
setting. The full prompt example is included in
Appendix B. For LLaMA 3.2 1B, we used the open-
source model and ran it locally. Similar to GPT-4.1,
we applied a handcrafted prompt to guide the model
in classifying tutor responses. The LLaMA model
was also evaluated in a zero-shot. The prompt
used is provided in Appendix C. These baselines al-
low us to assess the effectiveness of our fine-tuned
BERT models against general-purpose LLMs with-
out task-specific adaptation.

5.4 Main Results

We now present the results of our fine-tuned BERT-
based models, comparing variants with and with-
out the proposed cross-attention mechanism(CA),
as well as the impact of data augmentation(Aug).
These models are evaluated on all three shared task
tracks and compared with the zero-shot baselines
(Section 5.3). Our team, CU, participated in three
tracks and ranked 25th/44 in Track 1, 17th/31 in
Track 2, and 20th/35 in Track 4. The results are
shown in Table 2.

5.5 Discussion

5.5.1 Improving Track 1 Performance with
Cross-Attention

As shown in Table 2 and Figure 4, incorporating the
cross-attention mechanism substantially improved
the model’s performance on Track 1. The Macro-
F1 score increased from 0.578 to 0.687, and ac-
curacy improved from 0.849 to 0.867. While the
baseline BERT model performed reasonably well
on the majority class Yes, it failed to identify any
instances of the minority class To some extent, as
shown by a complete absence of predictions for
that label in the confusion matrix. This resulted in
a biased classifier with high accuracy but limited
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Algorithm 2: Training procedure for BERT
with Cross-Attention

Input: Training set Dtrain, Validation set
Dval, number of epochs N , batch
size B

Output: Best model parameters θ∗

1 Initialize BERT-based model with
cross-attention, parameters θ ;

2 Initialize AdamW optimizer and cosine
learning rate scheduler ;

3 θ∗ ← θ, best_val_f1← 0;
4 for epoch = 1 to N do
5 for each batch (xdial, xresp, y) in Dtrain

do
6 Forward pass:

z ← Model(xdial, xresp) ;
7 Compute loss:

L← CrossEntropy(z, y) ;
8 Backward pass: update θ via

optimizer ;
9 Update learning rate scheduler ;

10 end
11 Evaluate model on Dval to obtain F1

score;
12 if F1 > best_val_f1 then
13 best_val_f1← F1;
14 θ∗ ← θ // Save best model

15 end
16 end
17 return θ∗

generalization.
In contrast, the BERT+Cross Attention model

significantly reduced this bias. It not only improved
the recall for the No class (from 47 to 55 true posi-
tives), but also successfully predicted 10 instances
of To some extent, a class that the baseline model
could not recognize at all. Although the number
of correct predictions for Yes slightly decreased
(from 413 to 374), this reflects a more balanced
and context-sensitive classification behavior. These
findings suggest that cross-attention enables the
model to better align the tutor’s response with sub-
tle errors in the student’s utterance, resulting in
more robust performance across all categories.

5.5.2 Benefits and Limitations of Data
Augmentation in Track 2 and 3

To quantitatively assess the effect of data aug-
mentation on class-wise performance for Track
2, we compare the classification reports of the

Model Acc. Macro-F1

zero-shot GPT-4.1 0.807 0.557
zero-shot LLaMA 3.2 1B 0.758 0.440
BERT (no CA) 0.849 0.578
BERT + CA 0.870 0.651

(a) Track 1: Mistake Identification

Model Acc. Macro-F1

zero-shot GPT-4.1 0.548 0.472
zero-shot LLaMA 3.2 1B 0.619 0.371
BERT base(no CA) 0.678 0.429
BERT base + CA 0.689 0.504
BERT base + CA + Aug 0.681 0.515

(b) Track 2: Mistake Location

Model Acc. Macro-F1

zero-shot GPT-4.1 0.549 0.403
zero-shot LLaMA 3.2 1B 0.591 0.363
BERT base(no CA) 0.587 0.476
BERT base + CA 0.589 0.484
BERT base + CA + Aug 0.585 0.493

(c) Track 3: Providing Guidance

Table 2: Model performance across three task tracks.

cross-attention model before and after augmen-
tation (see Table 3). Without augmentation, the
model achieves high performance on the majority
class Yes (F1 = 0.77), but almost entirely fails to
recognize the minority class To some extent (F1 =
0.00). With data augmentation, the model’s ability
to identify No and To some extent is significantly
improved, with F1-scores rising from 0.48 to 0.63
and from 0.00 to 0.20, respectively. Although the
recall for Yes decreases slightly (from 0.92 to 0.85),
the overall classification results become more bal-
anced, as indicated by the higher Macro-F1 score.
These results highlight the utility of data augmen-
tation in mitigating class imbalance and promoting
fairer evaluation across all categories.

A similar pattern is observed for Track 3: af-
ter applying data augmentation, overall accuracy
decreases slightly, while Macro-F1 improves only
marginally. This suggests that the benefit of aug-
mentation is consistent but limited when class im-
balance is severe.
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(a) BERT

(b) BERT+CA

Figure 4: Confusion matrix comparison on Track 1.

6 Conclusion

In this paper, we presented a system for evaluating
tutor responses in educational dialogues, with a par-
ticular focus on three pedagogical dimensions as
outlined in the BEA 2025 Shared Task. Leveraging
a BERT-based architecture augmented with a cross-
attention layer, our approach aimed to improve the
model’s ability to capture context and provide more
accurate multi-label classification. Experimental
results demonstrate that our system achieves strong
performance on Track 1, while also revealing chal-
lenges in distinguishing between semantically sim-
ilar categories, such as Yes and To some extent in
Track 2 and 3. Data augmentation techniques were
employed to mitigate class imbalance, resulting
in modest improvements, particularly in minority
classes. Despite these advances, our findings indi-
cate that substantial gaps remain before such sys-
tems can be reliably deployed in real-world educa-

Class Precision Recall F1

No 0.64 0.39 0.48
Yes 0.67 0.92 0.77
To some extent 0.00 0.00 0.00

(a) BERT+CA

Class Precision Recall F1

No 0.67 0.60 0.63
Yes 0.75 0.85 0.79
To some extent 0.27 0.15 0.20

(b) BERT+CA+Aug

Table 3: Class-wise precision, recall, and F1 score for
Track 2 before and after data augmentation. Each class
contains the same number of validation samples (No:
144, Yes: 301, To some extent: 59).

tional settings. Overall, our work contributes new
insights into the application of LLMs for pedagog-
ical evaluation and highlights key challenges for
future research.

7 Future Work

During the training process, we observed that the
number of cross-attention layers may influence
classification accuracy. In future work, we plan to
conduct further experiments with more advanced,
higher-capacity decoder-only models, and system-
atically explore the effect of varying the number
of cross-attention layers. In addition, the current
cross-attention layer still struggles to recognize mi-
nority classes in dialogue. To address this, we aim
to leverage state-of-the-art models as an auxiliary
information. For example, we could use GPT-4.1
to first estimate the probability that each utterance
in the conversation contains a mistake, and then
pass these probabilities as initial attention weights
to the cross-attention layer. This approach may
enable the model to more precisely identify errors
within the dialogue. Furthermore, GPT-4.1 could
be used to perform more sophisticated data prepro-
cessing, such as extracting all potential errors, so
that the classification model only needs to deter-
mine whether the tutor’s response correctly identi-
fies and addresses those errors.

Our current approach is inherently pedagogy-
specific: it is trained on dialogue data annotated
with educational dimensions, and designed to
model the relationship between student language
and tutor feedback. Both the training objective and
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model architecture reflect the goal of evaluating
responses in a pedagogically meaningful way. In
the future, further gains might be achieved by in-
corporating explicit pedagogical constructs, such
as known error types or feedback taxonomies, into
the modeling process. We see this as a promising
direction for enhancing both model performance
and educational relevance.

8 Limitations

Despite the promising results demonstrated by our
system, several limitations remain. First, while the
model achieves strong performance on Track 1, its
accuracy on Track 2 and Track 3 remains below
70%, with Macro-F1 scores falling short of 60%.
This gap suggests that the system is not yet robust
enough for real-world educational deployment. As
shown in Table 3, the model tends to favor the
majority class (Yes) and continues to struggle with
the No and To some extent categories. Notably, To
some extent is semantically close to Yes, and despite
our data augmentation efforts, its precision in Track
2 remains below 30%, indicating substantial room
for improvement in recognizing minority classes.

Second, although BERT has long been a strong
performer in NLP tasks, its encoder-decoder archi-
tecture is increasingly surpassed by newer, decoder-
only models such as LLaMA and Qwen(Yang et al.,
2025). These models are rapidly becoming the
mainstream in LLM research. However, their
substantially larger parameter sizes make them
less accessible for users with limited computa-
tional resources. Furthermore, the additional cross-
attention layer proposed in this work increases com-
putational demands even further. After the shared
task deadline, we experimented with LLaMA 3.2
1B augmented with our cross-attention mechanism
and conducted full fine-tuning. Compared to BERT,
LLaMA 3.2 1B has nearly ten times more parame-
ters, making local training on personal computers
nearly infeasible. This poses an even greater bar-
rier for educators or practitioners who may lack
expertise in machine learning or access to high-
performance hardware.
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A Prompt Used for Rephrasing

<task>
<instruction>

You are a helpful assistant for paraphrasing a target utterance in a dialogue.
Your goal is to rewrite the <target> utterance in a different way while preserving its

original meaning.
The paraphrased version must be natural, fluent, and semantically equivalent.
Make sure the paraphrase fits well within the conversation context, both before and after the

target.

Guidelines:
1. Do NOT simply repeat the original sentence.
2. Maintain the same intention, tone, and meaning.
3. Ensure coherence with <previous_context> and <post_context>.
4. Output only the paraphrased version of the <target>.

Avoid repeating the same phrasing or word order.
</instruction>

<previous_context>
{previous_context}

</previous_context>

<target>
{target}

</target>

<post_context>
{post_context}

</post_context>
</task>

Appendix 1: XML prompt used for paraphrasing minority-class responses

B GPT-4.1 Prompt

We queried GPT-4.1 via the OpenAI API using a two-part prompt. The system message defined the
instruction for each task, and the user message provided the specific conversation and tutor response to be
evaluated.

System Instruction For Track 1

You are given a conversation between a tutor and a student. The last utterance is from the student
and contains a mistake. The tutor then responds to it.

Your task is to evaluate whether the tutor's response recognizes the mistake in the student's
utterance.

Use the following guidelines:

- "Yes": The mistake is clearly identified or recognized in the tutor's response.
- "To some extent": The tutor implies there may be a mistake, but does not state it clearly or seems

uncertain.
- "No": The tutor does not acknowledge the mistake (e.g., simply answers the question without

referencing the error).

Respond with exactly one of the following labels:
Yes
To some extent
No

Do not include any explanation or extra text.

Appendix 2: Track 1 system instruction used with GPT-4.1.
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System Instruction For Track 2

You are given a conversation between a tutor and a student. The last utterance is from the student
and contains a mistake. The tutor then responds to it.

Your task is to evaluate whether the tutor's response clearly identifies the mistake and where it
occurs in the student's response.

Use the following guidelines:

- "Yes": The tutor clearly points to the exact location of a genuine mistake in the student's
response.

- "To some extent": The tutor shows some awareness of the mistake, but the reference is vague,
unclear, or easy to misunderstand.

- "No": The tutor does not provide any detail about the mistake or its location.

Respond with exactly one of the following labels:
Yes
To some extent
No

Do not include any explanation or extra text.

Appendix 3: Track 2 system instruction used with GPT-4.1.

System Instruction For Track 3

You are given a conversation between a tutor and a student. The last utterance is from the student
and contains a mistake. The tutor then responds to it.

Your task is to evaluate whether the tutor's response provides correct and relevant guidance in
response to the student's mistake.

Use the following guidelines:

- "Yes": The tutor provides guidance that is correct and directly relevant to the student's mistake (
e.g., explanation, elaboration, hint, or examples).

- "To some extent": Some guidance is given, but it is partially incorrect, incomplete, or somewhat
misleading.

- "No": No guidance is provided, or the guidance is irrelevant or factually incorrect.

Respond with exactly one of the following labels:
Yes
To some extent
No

Do not include any explanation or extra text.

Appendix 4: Track 3 system instruction used with GPT-4.1.

User Input Template

Conversation history:
{conversation}
Tutor Response:
{response}

Appendix 5: User input format for GPT-4.1 prompting.

C LLaMA 3.2 1B Prompt

We used a locally hosted version of LLaMA 3.2 1B in a zero-shot setting. The full prompt sent to the
model followed the expected chat-style format, including system, user, and assistant messages, as shown
below.
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System Instruction For Track 1

<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
Evaluate whether the tutor's response recognizes the student's mistake in the conversation.

Classification guidelines:
- "Yes": The tutor clearly identifies or acknowledges the mistake in the student's utterance.
- "To some extent": The tutor implies there may be a mistake, but the identification is vague or

uncertain.
- "No": The tutor does not recognize the mistake (e.g., simply answers the question without

acknowledging any error).
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
Dialogue transcript:
{all_history}
Final tutor response:
{response_text_full}

Does the final tutor response recognize the student's mistake?

Only respond with one of the following labels:
Yes
To some extent
No
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
Classification:

Appendix 6: Track 1 full prompt used with LLaMA 3.2 1B for zero-shot classification.

System Instruction For Track 2

<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
Evaluate whether the tutor's response clearly identifies a genuine mistake and its location in the

student's utterance.

Classification guidelines:
- "Yes": The tutor clearly points to the exact location of a genuine mistake in the student's

response.
- "To some extent": The response shows some awareness of the mistake, but the reference is vague,

unclear, or potentially confusing.
- "No": The response does not mention the mistake or provide any detail about it.
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
Dialogue transcript:
{all_history}
Final tutor response:
{response_text_full}

Does the tutor's response clearly identify the mistake and where it occurs?

Only respond with one of the following labels:
Yes
To some extent
No
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
Classification:

Appendix 7: Track 2 full prompt used with LLaMA 3.2 1B for zero-shot classification.
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System Instruction For Track 3

<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
Evaluate whether the tutor's response provides correct and relevant guidance in response to the

student's mistake.

Classification guidelines:
- "Yes": The tutor provides guidance that is correct and directly relevant to the student's mistake (

e.g., explanation, elaboration, hint, or example).
- "To some extent": Guidance is provided, but it is partially incorrect, incomplete, or somewhat

misleading.
- "No": The response lacks guidance, or the guidance is irrelevant or factually incorrect.
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
Dialogue transcript:
{all_history}
Final tutor response:
{response_text_full}

Does the tutor's response provide correct and relevant guidance?

Only respond with one of the following labels:
Yes
To some extent
No
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
Classification:

Appendix 8: Track 3 full prompt used with LLaMA 3.2 1B for zero-shot classification.
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