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Abstract

This paper presents EduCSW, a novel
pipeline for generating Mandarin-English code-
switched text to support Al-powered educa-
tional tools that adapt computer science in-
struction to learners’ language proficiency
through mixed-language delivery. To address
the scarcity of code-mixed datasets, we pro-
pose an encoder-decoder architecture that gen-
erates natural code-switched text using only
minimal existing code-mixed examples and par-
allel corpora. Evaluated on a corpus curated for
computer science education, human annotators
rated 60—-64% of our model’s outputs as natu-
ral, significantly outperforming both a baseline
fine-tuned neural machine translation (NMT)
model (22-24%) and the DeepSeek-R1 model
(34-44%). The generated text achieves a Code-
Mixing Index (CMI) of 25.28%, aligning with
patterns observed in spontaneous Mandarin-
English code-switching. Designed to be gen-
eralizable across language pairs and domains,
this pipeline lays the groundwork for generat-
ing training data to support the development of
educational tools with dynamic code-switching
capabilities.

1 Introduction

Code-switching (CSW), the practice of alternating
between two or more languages within an utter-
ance or conversation, is prevalent across diverse
settings and multilingual communities (Gardner-
Chloros, 2009; Poplack, 2001). Prior research has
shown that CSW enables language learners to ex-
press their perspectives, convey culturally specific
ideas, and build social relationships (Bhatia and
Ritchie, 2006). In educational contexts, CSW has
been found to enhance student engagement and
help teachers clarify complex concepts, making
it a valuable pedagogical strategy in multilingual
classrooms (Sakaria and Priyana, 2018).
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Despite its demonstrated benefits, support for
code-mixing in educational tools remains limited
(Yong et al., 2023). This gap is particularly pro-
nounced in computer science education, where
much of the terminology originates in English
(Foote, 2023). For English-as-a-second-language
learners, especially Chinese students pursuing stud-
ies abroad, this creates a dual challenge: mastering
both general English and domain-specific vocabu-
lary needed to comprehend technical content and
participate in academic discourse.

Recent advances in large language models
(LLMs) and speech recognition have shown po-
tential in addressing challenges in CSW research
(Giattino et al., 2023). While efforts have been
made in speech translation for code-switched recog-
nition (Alastruey et al., 2023; Wang and Li, 2023)
and decoding code-mixed text (Sterner and Teufel,
2023), progress remains hindered by several is-
sues. Studies reveal that even advanced multi-
lingual LLMs struggle to produce natural code-
switched text, often defaulting to full translation
instead of authentically mixing languages (Kaji and
Shah, 2023). This limitation stems from training
predominantly on monolingual datasets, rather than
natural code-switched corpora (Zhang et al., 2023).
Moreover, challenges such as limited availability of
code-mixed textual data, grammatical complexity,
and domain mismatch further restrict development
(Hussein et al., 2023). In particular, the lack of
publicly available Mandarin-English code-mixed
datasets impedes the creation of LLM-powered ed-
ucational tools that support CSW.

To address these challenges, our work makes two
primary contributions to CSW research. First, we
introduce a generalizable pipeline for code-mixed
data generation that can be adapted to various lan-
guage pairs and subject domains. Second, we
demonstrate its effectiveness by curating a domain-
specific dataset for computer science education,
focused on Chinese students studying at English-
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medium universities. This implementation lays the
foundation for developing Al-powered tutoring sys-
tems that dynamically incorporate code-switching
to support learners’ acquisition of English technical
language.

2 Related Work

2.1 Code-switching Background

CSW research has a relatively long history, dat-
ing back to the early 1900s (Winata et al., 2023).
As the field evolved, advancements in machine
learning, particularly deep learning (Gupta et al.,
2020), have enabled more effective methods for
both curating CSW datasets and managing various
CSW tasks (Yong et al., 2023). However, the field
faces considerable challenges, notably the scarcity
of publicly available CSW datasets (Pratapa et al.,
2018; Winata et al., 2023). Additionally, formal
records of CSW texts are limited, and a significant
portion of existing data is private or restricted, mak-
ing it difficult to evaluate models and expand CSW
research into new languages and contexts. These
limitations hinder the diversification of CSW tasks
and slow progress in generating comprehensive
multilingual datasets.

Studies have attempted to identify key linguis-
tic features in CSW with the goal of generating
synthetic CSW data to address various challenges.
Prior research has highlighted the Equivalence
Constraint theory, which suggests that CSW oc-
curs when the grammatical rules of all involved
languages are maintained in a given sentence
(Winata et al., 2023; Deuchar, 2020). Other works
have identified the Matrix Language Frame (MLF)
model (Myers-Scotton, 2001), which posits the ex-
istence of a dominant “matrix” language provid-
ing the grammatical structure, while the “embed-
ded” language contributes additional content. This
model has been proven successful in preserving
syntactic features and grammatical structures from
the matrix language (Callahan, 2002; Deuchar,
2006; Rahimi and Dabaghi, 2013).

2.2 Code-switching in Education

Most of the research has focused on the use of
CSW in bilingual-classroom settings, suggesting its
potential in enhancing instruction across subjects
and improving classroom engagement. Sakaria
and Priyana have identified that the use of code-
switched instructional language can increase the
efficiency in delivering lesson objectives and pro-

vide a theoretical framework (Sakaria and Priyana,
2018). Meanwhile, Milroy et al. also proposed
that the use of code-switching can help teachers
shape classroom culture, fostering different teacher-
student relationships in the classroom environment
(Milroy and Muysken, 1995). For instance, when
teachers use the students’ first language in instruc-
tion, it creates a playful and less formal environ-
ment. When the teachers switch back to the lan-
guage the students are learning in that session, they
reassert their authority and thus redefine the situa-
tion to be more formal.

These studies reveal the multifaceted benefits of
code-switching, providing greater motivation for
us to empower education by addressing the data
scarcity issues in this field.

2.3 Algorithmic Solutions to Generating
Code-mixed Data

Prior studies have adopted various linguistic theo-
ries and advanced language models to address the
challenges in generating code-mixed texts, each
reflecting distinct emphases.

For instance, Pratapa et al. (Pratapa et al., 2018)
employed equivalence constraint theory, focusing
on syntactic compatibility at switch points where
language structures coincide. They used projec-
tions of parallel monolingual sentences to gen-
erate grammatically valid code-mixed sentences.
Gupta et al. (Gupta et al., 2020) applied the Ma-
trix Language Frame (MLF) theory, emphasizing
the role of a dominant language in structuring
code-mixed sentences. Tarunesh et al. (Tarunesh
et al., 2021) utilized the Embedded Matrix The-
ory (EMT), a variation of MLF, applying clause
substitution methods to create code-mixed text that
satisfies Hindi-English grammatical structures.

For code-mixed data evaluation, prior scholars
have proved the efficiency in various methods when
assessing the naturalness of code-mixed data. Prat-
apa et al. (Pratapa et al., 2018) primarily assessed
perplexity reductions on real code-mixed test sets
using their RNN language model, which was
trained on various combinations of monolingual,
synthetic, and real code-mixed data. In contrast,
Gupta et al. (Gupta et al., 2020) employed more
direct metrics such as BiLingual Evaluation Under-
study (BLEU) (Papineni et al., 2001), ROUGE (Lin
and Hovy, 2002), and METEOR (Lavie and Agar-
wal, 2007), along with human evaluation to assess
the syntactic and semantic correctness, and natural-
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ness of the generated code-mixed sentences. These
diverse approaches guided our team in developing
appropriate validation methods for our generated
synthetic texts.

3 Method

This section outlines the data source utilized for this
project and then presents the generalizable code-
switched generation pipeline (see Appendix A.1 for
more details). The repository is publicly available!.

3.1 Data

A representative Mandarin-English code-mixed
dataset for computer science education must pos-
sess two essential characteristics.

First, the dataset should accurately represent in-
structional language and encompass educational
materials in computer science. This provides a
domain-specific context that can shape the gen-
erated code-mixed corpus to offer effective and
specific support for computer science instruction.

Second, the corpus should align with how bilin-
gual users naturally develop and use code-mixed
content in educational and daily contexts. This
naturalness is critical as it ensures the code-mixed
text authentically reflects the language patterns ob-
served in real-world bilingual educational settings.

Accordingly, we utilize two datasets that satisfy
the above criteria in our project: a Mandarin dataset
capturing domain-specific computer science in-
structional content, and a second dataset reflect-
ing spontaneous code-mixing patterns in Mandarin-
English speakers’ daily communication.

3.1.1 Computer Science Instruction Dataset

This study incorporates the Hugging Face dataset
2imi9/l1lama2_7B_data_10G, which contains ten
gigabytes of bilingual text data sourced from
Hugging Face and the Chinese Software Devel-
oper Network (CSDN), covering technical instruc-
tions in computer science. The dataset was care-
fully curated to support the development of Al-
powered educational tools for personalized learn-
ing in Shenzhen University’s University Computer
course. It includes a column of conceptual ques-
tions (“Instruction”) and serves as the primary in-
put for generating code-mixed representations in
this study. Due to computational constraints, we
used a subset of this dataset containing 744 tech-
nical instructions for computer science (file name:

"https://github.com/RuishiCh-git/EduCSW/tree/
main

data_alpaca_standardized_data), which cap-
tures common questions and explanations of key
computer science terminology.

Instruction

ft 2B

(what is computer?)

T AR TR BEAE AN R A0 (AT ~ &Rl - %
B) HIRH B A R AR

(How to explain the application of artificial in-
telligence in various fields (such as healthcare,
finance, education) and the impacts it brings?)

Table 1: Sample Data Entries (The parentheses contain
translations, not part of the data.)

3.1.2 Spontaneous Mandarin-English
Code-Mixed Dataset

To train our model on real CSW data, we incorpo-
rated the speech transcription dataset CAiRE/AS-
CEND (Lovenia et al., 2022)? into our pipeline. We
filtered the original training dataset to retain only
code-mixed text, resulting in 2,739 code-mixed ut-
terances used in this study. This subset provides a
Mandarin-English code-switching corpus that re-
flects authentic code-switched language patterns
in bilingual speakers’ habits. Sample code-mixed
transcriptions from this dataset are shown in Ta-
ble 2.

Code-mixed Data in ASCEND

PREREHR R T M ] BE 5015 3F H stress IE Fnervous
(It’s getting close to the final exam. He might
feel very stressed and nervous.)

ﬁﬁ(?’fEU‘TﬁJ:E‘Jfocus on the script but not the action but
not the $F5%

(Focus on the script rather than the action or the
special effects.)

Table 2: Sample Mandarin-English code-mixed data
(The parentheses contain translations, not part of the
data.)

3.2 Pipeline

Overall, the code-mixed text generation included
three key stages: the Preparation stage, the Code-
mixed generation stage, and the Evaluation stage.

2ASCEND (A Spontaneous Chinese-English Dataset) is a

spontaneous multi-turn conversational dialogue recorded in
Hong Kong.
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3.2.1 Preparation Stage

The preparation stage includes three major steps:
parallel corpus preparation, language alignment,
and hard-coded code-mixed data generation.

Firstly, the machine translation model Helsinki-
NLP/opus-mt-zh-en (Tiedemann and Thottingal,
2020)° was used to obtain the corresponding En-
glish corpus for the Mandarin computer science
instruction dataset.

Secondly, the word aligner awesome-align (Dou
and Neubig, 2021) was employed to create an align-
ment matrix for the parallel corpus. The input con-
sists of parallel sentences separated by “llI”, and
the output is in the i-j Pharaoh format. A pair i-j
indicates that the i-th word (zero-indexed) of the
source sentence (Mandarin) is aligned to the j-th
word of the target sentence (English). An example
is shown in Appendix A.2.

Thirdly, a BERT-based Named Entity model and
the jieba module were used to tokenize and ex-
tract linguistic features and tags from English and
Mandarin corpus. The Matrix Language Frame
(MLF)* was followed to generate code-switched
text (Myers-Scotton, 2002). In this study, Man-
darin serves as the matrix language dominating
the sentence, while English is the embedded lan-
guage inserted into the sentence. Named entities
(NE), noun phrases (NP), and adjectives (ADJ) in
the English sentence were identified as candidate
words/phrases for insertion into the Chinese sen-
tence.

For each candidate word/phrase, the language
switch-point was determined based on the POS tag
and position in the sentence. Insertion probabilities
were set to 20% - 30% to achieve an observed
code-mixing index (CMI) consistent with natural
code-mixed utterances, based on prior literature (Li
et al., 2012). If a switch was decided, the English
word/phrase was inserted into the corresponding
position in the Mandarin sentence. The resulting
dataset was used as the first round of “hard-coded”
CSW data.

3This model was developed by the Language Technology
Research Group at the University of Helsinki and is designed
to translate from Chinese (source language) to English (target
language).

“MLF, proposed by Myers-Scotton, introduced the “asym-
metry principle,” where the language providing the mor-
phosyntactic structure is the “matrix language,” while the
“embedded language” contributes elements that switch into the
matrix language (Myers-Scotton, 2002)

3.2.2 Code-Mixed Generation Model

We experimented with three approaches for code-
mixed data generation. The first approach extends
a neural machine translation (NMT) model, serving
as a baseline for comparison. The second uses the
DeepSeek-R1 model to establish a benchmark per-
formance. The third, and our primary contribution,
is a custom encoder-decoder architecture designed
specifically for generating natural code-switched
text.

Approach 1: Fine-tuning NMT For the Neural
Machine Translation (NMT) fine-tuning approach,
we used the Helsinki-NLP/opus-mt-zh-en
model’, originally designed for Chinese-to-English
translation. This model served as our baseline
for generating code-switched text. It consists of
approximately 77 million parameters and features
an architecture with 6 encoder layers and 6 decoder
layers, offering a robust foundation for capturing
the complexities of both Chinese and English, as
well as the nuances of code-switching patterns.

To adapt the model to our specific task, we
used two primary sources of training data: the first
round of “hard-coded” CSW data and code-mixed
transcriptions from the ASCEND dataset (Lovenia
et al., 2022). This combination was selected to bal-
ance domain-specific accuracy with the naturalness
of authentic code-switching.

The model was fine-tuned over 3 epochs, using
a learning rate of 2e-5 and a batch size of 16 per
device. These parameters were chosen to ensure ad-
equate adaptation to the code-switching task while
minimizing the risk of overfitting. The fine-tuning
concluded with a final training loss of 0.709, in-
dicating a solid trade-off between specialization
and generalization. The resulting model is publicly
available®.

Approach 2: DeepSeek-R1 Benchmark To
benchmark our code-mixed text generation pipeline
against a strong pre-trained baseline, we utilized
Distilled DeepSeek-R1 7B, based on Qwen—a
large language model trained on both Chinese and
English corpora (DeepSeek-Al, 2025). DeepSeek
has demonstrated remarkable performance across
arange of Chinese natural language understanding
and generation tasks, making it a valuable refer-
ence point for evaluating code-switching capabili-
Shttps://huggingface.co/Helsinki-NLP/
opus-mt-zh-en

https://huggingface.co/y131/
code-mixed-cs-edu-model
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ties. Although DeepSeek is not explicitly trained
for code-switching, it offers insight into how well
general-purpose, state-of-the-art language models
can handle code-mixing in the absence of domain-
specific supervision. As such, this benchmark
serves as a reasonable point of comparison for our
customized generation pipeline.

We adopted a few-shot prompting strategy
to guide DeepSeek toward producing Mandarin-
English code-switched output. Each prompt in-
cluded two illustrative examples demonstrating
how to naturally integrate English computer sci-
ence terminology into Mandarin instructional sen-
tences. These examples showcased both noun
phrase-level and verb-level switches—patterns
commonly observed in bilingual academic dis-
course. The complete prompt is provided in Ap-
pendix A.5. This prompt was applied to all 744
Mandarin instructional sentences in our dataset.
Model outputs were collected without any post-
processing to preserve their authenticity for subse-
quent evaluation.

Approach 3: Encoder-Decoder Architecture
For the encoder-decoder architecture model, the
rationale is to use the encoder to provide context
while the decoder generates target sequences with
a copy mechanism, improving model performance
through a combination of translation and copying
from input text.

We first leverage transfer learning to initi-
ate our code-mixed generation model. This ap-
proach aims to reduce the required training data
for code-mixed generation while ensuring high-
quality bilingual representations essential for nat-
ural code-switching data generation. Specifically,
we fine-tune the neural machine translation model
Helsinki-NLP/opus-mt-zh-en on our curated par-
allel corpus of computer science educational con-
tent and dialogue. The fine-tuning process enables
the model to capture language-specific features, in-
cluding domain-specific terminology and language
patterns unique to computer science education in
both Mandarin and English, as well as cross-lingual
mappings, such as semantic equivalences and con-
textual relationships between the language pairs.

The weights learned during this fine-tuning
phase provide monolingual understanding and cap-
ture cross-lingual feature characteristics. The next
step is to use an encoder-decoder architecture
that builds on the fine-tuned weights to integrate
additional components extracted from the prelimi-

nary code-mixed dataset to build the code-mixed
text generation model.

The encoder, built on the transformer layers of
the MarianMTModel, processes the sequences of
tokens in Chinese texts to produce hidden states
that capture sequential dependencies and generate
contextual representations for the sentences. These
representations are then received by the attention
mechanism in the decoder, allowing the model to
have more focused access to relevant source in-
formation. This enables the preservation of both
language-specific features and cross-lingual rela-
tionships.

Subsequently, the decoder uses a processing
mechanism to adopt a standard decoder path for
translation logits and a dedicated gate mechanism
for copy probability calculation. With the attention
mechanism, the encoder’s representations are pro-
cessed to produce hidden states, which inform both
generation and copying decisions. When copying
from the input texts is decided, the model com-
putes copy probabilities for the input tokens. Sub-
sequently, the model expands input tokens to align
with the target sequence length and then maps the
tokens into the known vocabulary space using scat-
ter operations, locating the vocabulary tokens in
the input text. Such a mechanism is important to
preserve technical terminology for conversational
corpus related to Computer Science, where many
words tend to co-occur for domain-specific mean-
ings. For example, with the term ’neural network,’
the model can directly copy these tokens rather
than regenerate words for "network" or "neural" to
maintain precise technical accuracy.

With the encoder-decoder architecture built, we
optimize our operation with a specialized loss func-
tion that combines loss with a mixing ratio penalty.
In particular, we incorporate a Code-Mixing Loss
function to calculate the ratio of Chinese to English
tokens and penalize the outputs that deviate from a
ratio of 0.5 (set for a minimal mixing ratio). This
approach preserves semantic accuracy within the
code-mixed dataset while encouraging the model
to learn from the trained dataset and generate bal-
anced code-mixing data.

During training, the model processes both the
hard-coded CSW data and the transcriptions from
the ASCEND dataset (Lovenia et al., 2022). The
training setup uses parallel data: the original Man-
darin text serves as input, while the correspond-
ing code-mixed versions (both hard-coded and AS-
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CEND transcripts) serve as the target outputs. The
generation strategy employs beam search with a
beam width of 5, meaning it maintains the top 5
most probable sequences at each decoding step.
Then, the model uses a 2-gram prevention strategy
to prevent two consecutive tokens from appearing
more than once in the generated sequence. These
parameters were chosen to maintain output diver-
sity and technical accuracy while preventing com-
mon generation issues like repetitive text.

4 Results and Evaluation

4.1 Description of Generated CSW Data

The 744 Mandarin text entries from the
2imi9/llama2_7B_data_10G  dataset = were
used as input for all three of our code-mixed
generation models: the fine-tuned NMT approach,
DeepSeek-R1, and the encoder-decoder archi-
tecture. This parallel processing enabled the
generation of three distinct sets of code-switched
(CSW) data, facilitating a comparative analysis
across methods.

The generated CSW text preserves the educa-
tional content and structure of the original Man-
darin entries while incorporating English elements
in a way that reflects natural code-switching pat-
terns commonly observed in bilingual educational
contexts.

4.2 Evaluation

4.2.1 Code-Mixing Index

The Code-Mixing Index (CMI) (Das and Gam-
bick, 2014) is a widely used metric for measuring
the complexity of code-mixed text (Srivastava and
Singh, 2021). It quantifies the fraction of tokens or
words that differ from the matrix language’. In our
study, we calculated the sentence-level CMI ® by
dividing the number of English tokens by the total
word count in each CSW sentence.

The overall CMI for each generated CSW dataset
was computed as the average of all sentence-level
CMIs within that dataset. As presented in Table 3,
the CMI for the hard-coded first round of gener-
ated CSW data is 26.98%. The CMIs for the NMT
fine-tuning, DeepSeek-R1, and encoder-decoder
approaches are 23.05%, 9.95%, and 25.28%, re-
spectively.

Notably, the CMIs for most of our generated
CSW datasets fall within the 20% to 30% range,

7https ://tech.skit.ai/Code-Mixing-Metrics/
8See Appendix A.4 for CMI formula.

Method Matrix CMI
Lang.

Hard Code / 26.89%

NMT Fine-tuning | Chinese 23.05%

Deepseek R1 Chinese 9.95%

Encoder/Decoder Chinese 25.28%

Table 3: CMIs for Different Methods

which aligns with values observed in spontaneous
Chinese-English code-switching utterances from
prior studies (see Appendix A.3). This suggests
that our generated CSW data—excluding the out-
put from DeepSeek-R1—closely mirrors natural
code-mixing patterns, reinforcing the credibility
and authenticity of the synthetic text. The substan-
tially lower CMI of DeepSeek-R1 (9.95%) indi-
cates limited code-switching behavior, which may
reduce its effectiveness for simulating natural bilin-
gual communication.

4.2.2 Human Labeling

To comprehensively evaluate the quality of the
generated data, we recruited two bilingual anno-
tators to label the CSW outputs from the NMT
model, DeepSeek-R1, and the encoder-decoder
framework. Both annotators were proficient in
Mandarin-English code-mixing and had familiarity
with domain-specific computer science terminol-
ogy. They were instructed to rate the naturalness of
each sentence using a standardized 3-point Likert
scale (Joshi et al., 2015): unnatural (1), acceptable
(2), and natural (3). If a sentence contained nonsen-
sical segments that severely disrupted its meaning,
annotators could label it as “wrong,” in which case
it was excluded from the naturalness evaluation.

Each annotator labeled 50 entries from each of
the three models. These entries were derived from
50 randomly sampled Chinese input sentences. To
assess annotation consistency, we calculated inter-
rater reliability using Cohen’s kappa coefficient
(Blackman and Koval, 2000). The resulting x val-
ues were 0.6739 for the fine-tuned NMT model,
0.6793 for the encoder-decoder model, and 0.7622
for DeepSeek-R1—indicating moderate to strong
agreement between annotators.

We then compared the performance of the three
models in generating natural CSW outputs. Table 4
presents the percentage of outputs rated as natural.
The encoder-decoder approach significantly outper-
formed both the fine-tuned NMT and DeepSeek-R1
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models. Annotators consistently rated a higher pro-
portion of encoder-decoder outputs as natural (64%
and 60%) compared to those from the NMT model
(22% and 24%) and DeepSeek-R1 (34% and 44%).

Labeler | Fine-tuned | DeepSeek | Encoder
NMT R1-Distill | Decoder

1 22% 44% 64%

2 24% 34% 60%

Table 4: Comparison of Natural Output Percentages by
Annotators

Sentences annotated as natural typically demon-
strated preservation of the grammatical rules of the
matrix language (Mandarin) and exhibited switches
at technical terms and language-sensitive words
(words more commonly used in English). For in-
stance, in the example shown in Table 5, the techni-
cal terms “ HIR1E S AL FE” and “Hl23%2>]” in the
input Mandarin sentence were switched to English
expressions “language processing” and “machine
learning” respectively, and the resulting sentence
was labeled as natural.

Conversely, sentences labeled as unnatural often
disobeyed Mandarin grammar and displayed issues
such as incomplete semantic segments, mistransla-
tions, or unbalanced proportions of Mandarin and
English segments. Examples of such cases are also
provided in Table 5.

4.2.3 Qualitative Evaluation

To further assess the quality of the generated code-
switched text, we conducted a qualitative evalua-
tion of outputs from the fine-tuned NMT approach,
DeepSeek-R1, and the encoder-decoder framework.
This analysis revealed clear differences in code-
switching quality among the three methods.

The encoder-decoder framework demonstrated
a superior ability to generate natural and coherent
code-switched text. As shown in Appendix A.6,
its outputs exhibit several favorable characteristics.
The code-switched segments primarily consist of
noun phrases and computer science-related terms
in English, reflecting authentic bilingual speech
patterns. Language switch points appear more nat-
ural and intuitive, and grammatical structures in
both languages are better preserved, resulting in
higher overall linguistic quality.

In contrast, the fine-tuned NMT model showed
notable limitations. As illustrated in Appendix A.6,
its outputs often exhibit grammatical inconsisten-
cies when transitioning between English and Chi-

Input

Output and Label

fElanguage process-
ing(nlp), 4l {7 Fl
Fmachine learningif
fTemotional analysis?
iH A H 37 Fand

applicationiZ .

£ EHRIES L Natural
FHNLP)F', 40 | In NLP, how can

AT R FAHLES 2% | machine learning be

SI#ATE RS | utilized for emotional

M2 IR E | analysis? Please de-

I FEFR Y | scribe the process and

= application scenarios.)

(In NLP, how to | fElanguage process-

utilize machine | ing(nlp)9, an AdT

learning for sen- | Fimachine learn-

timent analysis? | ingi#fanalysis? please

Please describe | deplecation of 1

the process | Fiprocessing and

and application | application processing.
scenarios.) Unnatural

(In NLP, how can we
use machine learning
for analysis? Please
clarify the meanings
of “processing” and
“application processing”
in “depletion of™.)

Table 5: Comparison of Natural and Unnatural Labels
(The parentheses contain translations, not part of the
data.)

nese. Additionally, it occasionally produces non-
sensical or incoherent English terms (e.g., “con-
verence,” “protology,” “diploration”), leading to
awkward transitions and a lower degree of natural-

ness compared to the encoder-decoder output.

DeepSeek-R1, a large language model trained
on Chinese text, also displayed weaknesses in gen-
erating natural code-switching. Many outputs de-
faulted to full English translations rather than pro-
ducing genuine code-switched language, result-
ing in a low Code-Mixing Index (CMI) and lim-
ited alignment with real-world bilingual discourse.
While DeepSeek-R1 occasionally produced natural-
sounding examples, its performance was incon-
sistent, and it was outperformed overall by the
encoder-decoder framework.

In summary, the qualitative evaluation shows
that the encoder-decoder model consistently gener-
ates more natural, coherent, and contextually appro-
priate code-switched text than both the fine-tuned
NMT and DeepSeek-R1 approaches. Its outputs
closely mimic authentic bilingual communication,
particularly in technical domains, and exhibit a
balanced and grammatically sound integration of
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English terminology.

5 Discussion & Conclusion

In this study, we developed a comprehensive, effec-
tive, and reusable pipeline for generating synthetic
code-mixed data, with the goal of supporting the
training of human-centered tutoring large language
models (LLMs) and chatbots that communicate us-
ing a code-mixed approach. This work is motivated
by the pedagogical value of code-mixed instruction
for bilingual learners adapting to second-language
environments. At the same time, existing publicly
available LLMs show limited proficiency in han-
dling code-switching, often focusing narrowly on
topic-related nouns (Yong et al., 2023). In addi-
tion to proposing a general pipeline, we apply it
to create a Mandarin-English code-mixed dataset
specifically curated for computer science educa-
tion.

We accomplished two key objectives:

First, we successfully developed a generalizable
pipeline for generating code-mixed data across lan-
guage pairs (with English as one of the languages).
The pipeline consists of three main steps: (1) gener-
ating preliminary synthetic code-switched data us-
ing the Matrix Language Frame (MLF) theory and
BERT-based Named Entity Recognition to prepare
the non-English monolingual data; (2) passing the
text through an encoder-decoder architecture initial-
ized with weights from an NMT model fine-tuned
on a parallel corpus, and training it using both the
synthetically generated and real code-mixed data;
and (3) iteratively annotating and retraining to en-
hance the naturalness of the generated outputs.

To adapt the pipeline for other language pairs,
users only need to modify two components: (1) the
Matrix Language Frame to match the grammatical
structure of the target language, and (2) the code-
switched speech transcription dataset, which is of-
ten more readily available than textual resources.
With these changes, users can input their own
monolingual data and generate suitable code-mixed
datasets for downstream tasks.

Second, we successfully curated a domain-
specific code-mixed dataset for computer science
education that can support downstream training
of LLMs or chatbots. This dataset was vali-
dated through three evaluation methods: the Code-
Mixing Index (CMI), human ratings, and qualita-
tive analysis. Across all measures, our encoder-
decoder architecture outperformed both the state-

of-the-art DeepSeek LLM and a traditional fine-
tuned neural machine translation model in generat-
ing natural code-switched text.

We offer two suggestions based on our findings.
First, given the success of our pipeline in the com-
puter science domain, we recommend applying this
approach in other STEM fields where technical vo-
cabulary creates challenges for bilingual learners
(Bhatia and Ritchie, 2006). Second, we encourage
the development of interactive tutoring systems and
LLM-powered chatbots using our curated dataset
and pipeline, with the capacity to dynamically ad-
just the degree of code-mixing based on learners’
language proficiency. As supported by prior work
(Milroy and Muysken, 1995), flexible language use
in educational settings can greatly enhance learner
engagement and comprehension.

5.1 Limitation and Future Work

We identify two limitations in this study.

First, although we use transcriptions from a code-
mixed audio dataset to fine-tune the naturalness of
our model’s outputs, the ASCEND training dataset
occasionally contains spelling errors, incomplete
sentences, and casual conversational utterances.
These issues may affect the quality of the gen-
erated code-mixed text. Future researchers may
improve results by further cleaning and curating a
high-quality subset of the transcription data or by
sourcing data from more professional or domain-
relevant contexts.

Second, due to the nature of the fine-tuned NMT
model being primarily designed for translation
tasks, it occasionally produces fully translated En-
glish output. This indicates that the model’s con-
trol over the language mixing ratio is not yet op-
timal. Future work could explore increasing the
number of training iterations and implementing a
feedback loop to monitor and dynamically adjust
the language balance during generation, thereby
enhancing the consistency and naturalness of code-
switching.

6 Ethical Consideration

Our primary data source, the Mandarin instruc-
tional dataset for computer science learning, is
open-sourced on Hugging Face and explicitly de-
signed to improve Al model performance in edu-
cational settings. Our use aligns with this stated
purpose, and we have properly cited the source.
Similarly, the ASCEND dataset, used for code-
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mixing patterns, is open-sourced and appropriately
cited. For annotation, we engaged voluntary partic-
ipants, ensuring ethical practices in data labeling.

The primary application of our work is develop-
ing Al-powered tutoring chat bots for personalized
computer science learning, bridging the gap for
bilingual learners transitioning from Mandarin to
English-language education. We acknowledge the
need to preserve language integrity, respect cul-
tural nuances, and avoid exacerbating educational
disparities.
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A Appendix

A.1 Pipeline Flowchart

Note: The pipeline flowchart shown on the next
page ( Appendix: 1) illustrates our overall ap-
proach.

A.2 Example of input and output for word
alignment using awesome-align

Type Content

o FWZHER (zh) I
Input .

I like to eat apples (en)
Output  0-0 1-1 2-3 2-4

A.3 Reference CMI values from literature

Reference Matrix Language | CMI
(Lietal., 2012) Chinese 21.15%
(Lyu et al., 2010) Chinese 25%

A4 CMI Formula

The CMI is calculated using the following formula:

max(w;)

C’MI:IOO*(l ) itn>u (1)

n—u

where w; is the number of words in language ¢
(English), n is the total number of words, and u is
the number of language-independent words.
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Parallel Corpus
(Mandarin-English Sentence Pairs)

Matrix Language Frame
Mandarin
BERT-NER
Feature Extraction

Synthetic Data Generation I Pre-tra'm l‘ﬁ\’gT Mode;
* Named Entities rain on parallel corpus for

* Adjectives &  CMI Prior . I’l:ranslatlon patterns
: ) * Language understanding
Noun Phrases * Cross-lingual mapping

—_— ==

Code-Mixed Generation Model
* Initative with NMT weights (transfer learning)
* MarianMT based Encoder + Attention-based Decoder

Iterative process

Evaluation
* Code-Mixing Index (CMI)
* Human Evaluation (Likert scale)
* Error (Qualitative Analysis

Appendix A.1: Overall Pipeline. This flowchart shows the steps involved in the code-mixed generation model.

A.5 DeepSeek Prompt Template

<system>

You are a helpful assistant. Your job is to
convert Mandarin computer science ques-
tions into Mandarin-English code-switched
sentences that sound natural to bilingual
learners.

Only output the sentence. Do not explain or
comment.

<user>

Input: FEREETH, WMIIZREIA M
22 LE?

Output: 7Edeep learning™, %[ fftrain con-
volutional neural network?

Input: f+ 24 2T EALMLE RIS ?
Output: "2 s&computer network [ topol-
ogy Z514?

Now process the following:

Input: {text}

Output:
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A.6 Comparison of Encoder-Decoder and
NMT Generated Outputs (The
parentheses contain translations, not part
of the data.)

Output Label
Encoder-Decoder Generated

112, 7 data consistence? (Whatis | Natural
data consistence?)
% Elearning Hcurly network | Natural
(cnn) Y0fATSE Flimage 43 ZKand
R W2 VE FE A R
Hworking principles and tech-
nologies. (How does the curly net-

work (CNN) in deep learning achieve im-
age classification and object detection?
Please elaborate on its working princi-
ples and technologies.)
Fine-tuned NMT Generated

2, s&data converence? (Whatis | Wrong
data converence?)
IR B %2 >] H fblough network | Acceptable
(CNN) 10 17] 5E Himage diaga-
tion and operation processing?
please process processing work
chrinkings and key processings.
(How does the blough network (CNN)

in deep learning achieve image diffusion

and operation processing? please pro-
cess processing work chrinkings and key

processings.)

DeepSeek-R1-Distill
2 5 data consistency? (Whatis | Natural
data consistency?)
How to train a deep learning | Wrong
model to recognize cats and dogs
in images?
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