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Abstract

We present a method for labeling spans of
text with large language models (LLMs) and
apply it to the task of identifying shell lan-
guage, language which plays a structural or
connective role without constituting the main
content of a text. We compare several re-
cent LLMs by evaluating their "annotations"
against a small human-curated test set, and
train a smaller supervised model on thousands
of LLM-annotated examples. The described
method enables workflows that can learn com-
plex or nuanced linguistic phenomena without
tedious, large-scale hand-annotations of train-
ing data or specialized feature engineering.

1 Introduction

Madnani et al. (2012) show that writers or speak-
ers engaging in argumentative discourse do not
simply enumerate their claims and evidence, but
rather structure them in some manner for their argu-
ment to be convincing. Such discourse, therefore,
might contain not only language expressing the
core claims and evidence (the “meat” of the argu-
ment), but also language used to organize or sup-
port them (the ‘shell”). The authors also propose
approaches to automatically detect shell language
in real-world examples of argumentative discourse,
such as test-taker responses and political debates.

To illustrate the difference between “meat” and
“shell”, we provide a hypothetical test-taker re-
sponse below discussing whether people learn bet-
ter by being told what to do or shown what to
do. Spans representing shell language are shown
in bold while the core content of the argument is
shown as plain text.

This is a very interesting
topic for a debate. I would
advocate the argument that being
shown what to do is the better
option because people are visual

learners. They learn better
by watching than by just being
listening to what someone else
tells them. While this may
not apply to everyone, I think
that it certainly applies to the
average joe. For this reason,
it is therefore clear that being
shown what to do is better.

In this paper, we build on the work of Madnani
et al. (2012) by focusing more deeply on how shell
language is used in responses written by test-takers
for the Duolingo English Test (DET), a high-stakes
English language proficiency test. Our goal is to
build a finer-grained, accurate, and scalable shell
detection pipeline for this use case, leveraging mod-
ern transformer-based approaches to power each
stage.

We first detail our motivations for applying
shell detection to test-taker responses (§2). Next,
we discuss our annotation rubric for identifying
shell language (§3) and our small-scale use of hu-
man annotation to validate and refine this rubric.
We experiment with automatic annotation of test-
taker responses using both non-reasoning & rea-
soning foundation models (§4), resulting in strong
machine-human agreement rates. Then, we attempt
to distill our annotations into a BERT model that
would be cheaper & faster to deploy for operational
use (§5), and provide additional discussion of our
approach and error analysis (§6). Finally, we con-
clude with a comparison to related work (§7) and
possible directions for future work (§8).

2 Motivation

English language assessments typically contain
prompts asking test-takers to write open-ended re-
sponses as a demonstration of their writing profi-
ciency. These prompts generally require arguing
for/against a position with appropriate supporting
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evidence, or relating a past event matching a high
level-description (e.g. “talk about a time when...”).
Given the nature of the writing tasks, these re-
sponses are likely to contain some amount of shell
language, as illustrated by the sample response in
the previous section.

A certain amount of shell is useful – neces-
sary, in fact – to scaffold one’s arguments and
produce a comprehensible and convincing argu-
ment. However, we have observed that many test-
takers overuse such language to artificially inflate
response length and vocabulary sophistication –
both of which can impact the accuracy of auto-
mated essay scoring systems.

In this paper, we want to reliably identify (and
categorize) spans of shell language in test-taker re-
sponses, independently of whether it is used appro-
priately to connect and organize the text or misused
to pad it out with formulaic phrases. Some possi-
ble applications of reliable shell detection would
include:

• Detecting the use of memorized response tem-
plates and other bad-faith patterns that rely on
shell language overuse,

• Developing an independent measure of con-
tent development (the “meat”), and

• Gaining insights into stylistic variance that
may arise even in the absence of shell overuse

Achieving these goals would allow us not only
to improve the robustness of automated assessment
to a common strategy employed by test-takers to
fool automated scoring systems but also to improve
measurement of content and coherence.

3 Annotation Rubric

The starting point of our pipeline, and the founda-
tion of our approach, is an annotation rubric which
defines & categorizes shell text. We use this rubric
for manual annotation as well as to bootstrap au-
tomatic annotations using large language models.
Since Madnani et al. (2012) do not share any anno-
tation guidelines, we construct our own rubric for
identifying shell language in test-taker responses.

We relied on multiple rounds of human anno-
tation to start with an initial draft of our shell an-
notation rubric1 and refine it into its final form.

1To create the initial draft rubric, we employed few-shot
prompting, supplying ChatGPT with a general description of
shell language from (Madnani et al., 2012) along with 100
actual test-taker responses containing a range of shell language
spans.

Specifically, the authors first collaboratively anno-
tated 11 test-taker responses using the draft rubric
and made major revisions based on the ensuing
discussions. Next, the authors independently anno-
tated 50 additional responses based on the revised
rubric to determine any remaining discrepancies
which were then resolved in a curation session. No
changes were made to the rubric after this point.
Annotation, review and curation were performed
using INCEpTION (Klie et al., 2018).

Given that our goal is to enable finer-grained
analyses of shell language, our final rubric defines
multiple shell categories, as described in the sub-
sections below.

3.1 Category A: Discourse Markers/Linking
Expressions

The shell language spans in this category are de-
fined to be words and phrases that are either serv-
ing an organizational or discursive purpose. For
example, ones that link sentences or paragraphs
with the goal of progressing between ideas. How-
ever, single-word coordinating conjunctions like
“because”, “but”, “and”, etc. within sentences are
not annotated as shell language. Examples of cat-
egory A spans observed in test-taker responses in-
clude but are not limited to:

• To begin with . . .
• In conclusion . . .
• Firstly . . .
• Secondly . . .
• In addition . . .
• There are three examples of . . .
• For example, . . .
• That is because . . .
• Expanding on the previous discussion
. . .

• This is another reason
• . . . in addition to the previous
discussion

As the examples show, this category is mainly
defined by short phrases and expressions, not en-
tire sentences. A complete sentence of shell-like
material is more likely to be category B, which we
describe next.

3.2 Category B: General/Vague Statements
This category consists of phrases or statements that
are formal and/or impersonal in nature and add em-
phasis, reflection, or consideration of the prompt
or topic under consideration but without any real
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content. Spans of this extremely productive cate-
gory are often employed as padding in bad-faith
responses. A very small subset of observed exam-
ples is shown below.

• It is imperative to recognize that
. . .

• . . . would be very significant for us
• In today’s age . . .
• Today in society, there is a heated
on-going discussion on the topic of
. . .

• If you ask me I would say that the
statement has both pros and cons.

• In this burgeoning epoch of science
and technology, we are dwelling in
the 21st century.

• There is a widespread worry that this
will lead to a myriad of concern in
the world.

3.3 Category C: Prompt/Topic Restatement
This category contains sentences or chunks that
simply restate the prompt or initial argument with-
out any further development. We have observed
that when a large part of the prompt is restated,
the surrounding phrases are often from categories
A or B. A few real-world examples are shown be-
low with the corresponding prompt in parentheses.
Note that only the category C spans are shown in
bold; spans of any other categories are not shown.

• Today in the society,there is a heated
on-going on discussion on the topic
that due to the invention of cell
phones, people can communicate via
text messages.
(Due to the invention of cell phones, people
can communicate via text messages. Describe
the ways texting has changed how we commu-
nicate.)

• One of the most important trends in
today’s world is the sudden upsurge
in the statement that Acquiring new
knowledge and skills doesn’t always
happen quickly.
(Acquiring new knowledge and skills doesn’t
always happen quickly. Do you think that pa-
tience is key when it comes to learning, or do
you think it is possible to learn things quickly
if you are motivated? Support your opinion
with your personal experience and observa-
tion.)

It must also be noted that not all mentions of the
prompt should automatically be marked as shell.
Specifically, we do not mark such a mention as
shell if the response:

1. sufficiently restructures or paraphrases it (es-
pecially to use it as a topic claim) instead of
just quoting or restating it, or

2. simply refers to to entities or noun phrases
from the prompt in context.

As an example consider the span . . . being
focused on a single thing is more likely
to lead to higher productivity in a response
to the prompt Are you more productive when you
are doing a few things at the same time, or are
you more productive when you have only a single
thing to focus on? What do you think helps you to
be more productive? We would not mark this as a
category C shell span because the prompt topic has
been paraphrased sufficiently to serve as a topic
claim/thesis statement. This distinction is some-
what subjective, and while we achieved good inter-
annotator agreement on this category, this point
was likely a source of ambiguity for models.

3.4 Category D: Appeal to Authority
This category includes mentions of reports or stud-
ies that imply external validation or evidence. Ex-
amples include:

• A report from University of Maryland
shows that . . .

• Oxford University conducted a study
that confirmed . . .

• For example, a report published by
The New York Times reveals that . . .

3.5 Category E: Stance-taking
This category contains phrases or statements used
to convey the writer’s stance or position, whether
in the first-person or third. Observed examples
include:

• I feel/believe/think (that) . . .
• From my point of view . . .
• In my opinion . . .
• Yes, I agree with the statement that
. . .

The exception for this category are phrases that
are used to convey the writer’s personal preference
and do not serve a stance-taking role. For example,
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consider the sentence I like good environment
for touring because i loved with nature.
Here, the phrase I like is used to convey the
writer’s personal preference for a specific type of
environment rather than their argumentative stance.

3.6 Rubric usage

Although our final rubric delineates five different
categories of shell text, many shell language spans
usually serve multiple purposes (e.g., the phrase
More and more people believe that . . . can
be said to convey both general emphasis (category
B) and the writer’s position (category E). In such
cases, our practice is to consistently choose the cat-
egory that seems more relevant in the context of
the full response. For purposes of evaluation and
error analysis, we also sometimes refer to a sixth
category “O” consisting of all spans not labeled
as shell (the “meat” of the response). We do not
separately label this category manually or ask mod-
els to directly annotate O spans; it’s defined by the
absence of annotations for other classes.

Once the final rubric was created, the authors
independently annotated 92 additional responses
followed by curation, for a final dataset of 142
responses with individual and curated shell anno-
tations. Note that the first 11 annotated responses
(used to make major revisions to the initial rubric)
are not part of this final set, as their annotations
do not reflect the final rubric. We then split this
dataset into a "training set" of 40 responses, from
which few-shot examples are drawn (see §4), and a
test set of 102 responses.

4 Scaling Annotation with LLMs

Shell annotation is a complex task and traditional
supervised approaches would require a much larger
number of annotated examples to train, but human
span annotation is time-intensive and tedious. In
this section we evaluate the accuracy of annotations
elicited with few-shot learning.

4.1 Method

For LLM-based annotation, we compare five mod-
els: DeepSeek-V3 (Chandra et al., 1981) GPT-4o
(Hurst et al., 2024), DeepSeek-R1 (Liu et al., 2024),
o1 (Jaech et al., 2024), and o3-mini (OpenAI,
2025). Note that the first two are non-reasoning
models, while the latter three use self-prompting
or reasoning techniques recently popularized by o1
and DeepSeek-R1.

<shell category="B"> In this modern
world </shell>, artificial intelligence <shell
category="B"> is so well known in the
world </shell>, which is a kind of intelli-
gence. <shell category="A"> Futhermore
</shell>, <shell category="E"> I firmly
agree with this given notion that </shell>
intelligence has distinct types.

Figure 1: Markup format for LLM annotations.

Model Success
rate

Format
errs

Generation
errs

DeepSeek-R1 0.75 3 22
DeepSeek-V3 0.95 4 1

gpt-4o 0.93 7 0
o1 0.98 0 2

o3-mini 0.99 0 1

Table 1: Success rate of generating a valid annotation on
the first try, by model (using 5 examples). Error counts
are out of 102 responses. Note that DeepSeek-R1 had
high rates of prematurely truncated responses seemingly
unrelated to the task.

For each model, we use the same prompt contain-
ing the entire rubric, along with either 5 or 10 ex-
ample responses annotated in an XML-like format
with the shell category as an attribute (see Figure
1). We use this prompt to elicit span annotations on
our eval set of 102 instances; the model is provided
with the writing prompt and unannotated test-taker
response, and responds with the annotated text in
the same format as the examples. We chose this
format based on its expressivity and convenience
and did not experiment with any additional formats
for now (see §7 for more discussion).

We validate the annotations by trying to auto-
matically parse the XML, checking that there are
no nested tags or task-unrelated tags, and that the
text is unaltered from the original. The rate of
validation failure varies by model. Furthermore,
this failure rate is not necessarily constant for a
given model; responses where annotation failed
on the first round were more likely to also fail
on a second try, suggesting that some examples
are inherently hard to produce valid annotations
for. The most common causes of error were incor-
rectly formatted XML (unclosed tags, nested tags
or non-task-related tags) and missing sentences or
phrases. Notably, we found almost no cases where
the generated annotated text included unwanted
“corrections” of grammatical or typographical er-
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(a) Multiclass shell labeling.
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(b) Binary shell labeling.
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(c) Multiclass shell labeling (B and C categories excluded).

Figure 2: Token-level F1 for three shell annotation tasks.
Reasoning models outperform non-reasoning models,
and the ensembles improve slightly over the best individ-
ual models. Exclusion of B and C categories improves
micro-averaged F1 for all models.

rors in the original test-taker response, with the
exception of whitespace errors such as replacing
multiple spaces with a single space or inserting a
missing space after sentence-final punctuation. For
purposes of evaluation, we automatically resolved
these whitespace errors by editing all annotated
versions of a text to match the original (to ensure

A B C D E F O
Predicted

A
B

C
D

E
F

O
Tr

ue

372 139 9 5 31 0 41

15 1166 19 0 0 0 214

6 8 379 0 0 0 372

0 23 0 19 0 0 9

12 71 12 0 528 0 32

0 2 0 0 0 0 17

37 310 60 5 51 0 5559

0

101

102

103

Figure 3: Confusion matrix for all-ensemble.

tokenization was compatible) before comparing an-
notations. For our provider of DeepSeek-R1, a
significant fraction of long responses were cut off
prematurely, increasing the error rate beyond what
was attributable to formatting errors. Table 1 com-
pares the LLMs by the fraction of responses that
passed validation with a single request.

4.2 Results

Next, we compute token-level metrics for the LLM
annotations using the curated human labels as the
gold standard, and compare to the inter-annotator
agreement for the human annotators. Figure 2
shows results for binary (shell vs non-shell) and
multiclass evaluation.

We present the confusion matrix for the all-
model ensemble in Figure 3 as a relatively rep-
resentative example of the errors made by all mod-
els. The counts represent individual token counts.
The confusion matrix provides insight into specific
pairs of categories often confused; for example, we
see that categories D and E have few false positives,
i.e. they are rarely predicted when the true label is
another category. We also observe that B and C are
the categories with the most errors (both because
they have high true token counts and because they
require the most subjective decisions). For this rea-
son, we also include F1 results considering only a
subset of shell category labels (all except B and C)
in Figure 2.
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Model Prompt tokens Completion Tokens Total cost
DeepSeek-R1 431,316 127.414 $2.19
DeepSeek-V3 431,737 15,566 $0.56

GPT-4o 430,290 15,859 $1.06
o1 425,061 257,592 $20.28

o3-mini 431,234 492,148 $2.54

Table 2: Comparing prompt tokens, completion tokens, and total cost when annotating our curated evaluation set of
102 responses using various LLMs.

4.3 Costs

Our method of shell annotation with large language
models requires a lengthy rubric and several exam-
ple texts to be provided in the prompt for every
instance. This is a relatively costly approach. In
addition, our use of reasoning models leads to high
completion token counts.

In order to provide a useful comparison of model
costs, Table 2 shows prompt/completion token
counts and costs when annotating our curated eval-
uation set of 102 responses using the same set of
LLMs we used in §4. Note that we do not retry any
incorrectly formatted annotations for this specific
set, so the error rates reported in Table 1 should
also be considered when comparing these costs.

In addition, one would expect to incur significant
upfront costs iterating and validating the annotation
scheme and rubrics. In our case, we spent a total
of $3,665.45 across all experiments.

5 Supervised Learning to Detect Shell

In this section, we attempt to distill a large number
of LLM-based annotations into a BERT variant,
ModernBERT (Warner et al., 2024). There are sev-
eral advantages to this approach: BERT models are
cheaper, can be run locally (avoiding dependence
on external APIs) and can directly produce per-
token labels rather than generating the annotated
text, removing a potential source of errors.

Based on the results in §4, we choose OpenAI’s
o1 model as the best single model for the task. Us-
ing the same approach as previously described, we
prompt o1 to annotate 7100 additional test-taker
responses, and split the resulting dataset into a train-
ing set (6500 responses) and a validation set (600
responses). We then convert the annotations into
BIO format (Ramshaw and Marcus, 1999) and fine-
tune ModernBERT on three training samples with
different sizes: 500, 1000, and the full 6500. For
all finetuning runs, we set the batch size to 12 and
learning rate to 7e−05 and train for 10 epochs with
early stopping based on the performance on the
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Figure 4: ModernBERT F1 for each task on the human-
labeled test set (102 examples). Notably, multiclass
labeling performance is actually higher than binary la-
beling performance on equal data sizes.
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Figure 5: ModernBERT F1 for each task on the o1-
labeled dev set (600 examples). Performance is signif-
icantly higher than on the human-labeled test set, sug-
gesting that the BERT model has learned o1-generated
patterns that are misaligned to human raters.

validation set.2

We finetune and evaluate ModernBERT on three
tasks: binary shell labeling, binary shell labeling
with B and C categories excluded, and multiclass
labeling (see Figure 4). ModernBERT substan-
tially under-performs the LLM used to train it (o1
with 5 examples) on the human-labeled test set,
never surpassing 0.6 F1 even for the easiest task.
However, on the o1-labeled validation set, Modern-
BERT trained on 6500 examples surpasses 0.75 F1
for multiclass labeling (Figure 5).

2Learning rate was chosen based on a search over the
validation set when training on 500 responses.
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6 Discussion

6.1 o1 error analysis

Shell labeling is a difficult and to some extent sub-
jective task. In this section, we present a qualita-
tive analysis of the differences between the best-
performing single LLM (o1) and curated human
annotations, along with examples. To improve
readability, we use <X>. . . </X> as a shorthand for
<shell category="X">. . . </shell>.

The most common error categories in the con-
fusion matrix in Figure 3 are missing tokens of
categories B (general statements) and C (topic re-
statement), and various non-B tokens labeled as
B. We observe a similar pattern when looking at
whole-span errors3. The most common cases of
whole-span errors are B-spans applied to O and A
text. O spans applied to C text (i.e. missed C labels)
are also common. This is perhaps to be expected
given the rubric; B and C are the most contextual
and nuanced categories, requiring consideration of
what is specific to the prompt vs generic and what
is restatement vs original.

In the following example, the model identified
most of the sentence as B, possibly due to the posi-
tive emphasis ("outstanding", "wide knowledge")
which is often seen in B spans.

Curated O vs. LLM B
<A>First of all</A> <E>it is true
that</E> college and university can
serve as an outstanding place to gaing
wide knowledge and contact as you can
meet with like minded individuals
<A>First of all</A> <E>it is true
that</E> <B>college and university can
serve as an outstanding place to gaing
wide knowledge and contact as you can
meet with like minded individuals</B>

In another case, a partial reference to the prompt
(“the second part of the statement”) was mistakenly
treated as a restatement of the prompt, as shown
below. This may be a case where o1 talked itself
into an otherwise unlikely error.

3Whole-span errors occur when a predicted span has no
overlap with a human-annotated span of the same category.
Boundary errors, by contrast, involve partial overlap but incor-
rect span length.

Curated O vs. LLM C
<E>I storngly prefer</E> the second
part of the statement <A>for many
reasons</A>.
<E>I storngly prefer</E> <C>the second
part of the statement</C> <A>for many
reasons</A>.

Below we considered this declaration of "heated
debate" to be an instance of B, but o1 did not:

Curated B vs. LLM O
<C>intercultural communication can be
a valuable learning experience</C>
<B>has sparked a heated debate.</B>
<C>intercultural communication can be
a valuable learning experience</C> has
sparked a heated debate.

A common boundary error involved commas.
During manual annotation, we settled on a
convention of excluding trailing commas from
shell spans but did not explicitly specify this in the
rubric. O1 frequently took the opposite approach
as shown below, causing a 1-token error.

Curated vs. LLM
<A>To sum up</A>, . . .
<A>To sum up,</A> . . .

<A>For my experience</A>, ...
<A>For my experience,</A> ...

Finally, we excluded mentions of topics or entities
from the prompt from annotations in sentences
that were otherwise B. This was attested in a few
examples, but not made explicit in the rubric, and
o1 tended to include them, leading to boundary
errors, as the example shows.

Curated vs. LLM
<B>A serious amount of worldwide
attention has been drawn to</B> the
intercultural communication. <B>Beacuse
of the existence of evidencen in favour
of as well as against the approval
of</B> intercultural communication.
<B>A serious amount of worldwide
attention has been drawn to the
intercultural communication.</B>
<B>Beacuse of the existence of
evidencen in favour of as well as
against the approval of intercultural
communication.</B>
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6.2 Interpretation

Many error types above are consistent and system-
atic, which is a promising sign for improving the
accuracy of automatic shell annotation. In a few
cases, o1’s annotations were arguably more consis-
tent with the intent of the rubric than the curated
human annotations. For example, some spans of
A and E were missed by human annotators, cat-
egories which were fairly reliably marked by o1.
In other cases, o1 marked statements that broadly
paraphrased statements from the prompt as C when
human annotators judged the paraphrase as original
in form, though not content.

As expected, the two step training procedure in
§5 results in a model that suffers from two sources
of errors: errors between o1 and human annotators,
and errors between ModernBERT and o1. In fact, it
seems that ModernBERT does not learn to correct
any significant portion of o1’s errors, as the total
error rate is not much better than if the two sources
of error were entirely independent: we observe
0.559F1 for the largest ModernBERT model for
multiclass labeling, vs. 0.531 expected (0.7 o1 F1

× 0.752 ModernBERT F1 on o1’s labels). This is
consistent with LLMs consistently diverging from
human annotations; ModernBERT is learning to
imitate systematic error, rather than guessing in
response to random noise.

7 Related work

The work most closely related to ours and the one
we build upon is that of Madnani et al. (2012).
However, there are also salient differences between
our work and theirs. They rely on a small set of
human annotations to train a binary, feature-based,
discriminative classifier for shell language whereas
we use a small, curated set of human annotations to
bootstrap LLM-generated annotations at scale, and
then distill them into an end-to-end transformer
model used for finer-grained, multi-class, shell
span classification. Additionally, while they do
not share any information about their annotation
process, we share a detailed rubric along with ex-
amples for each shell category. Bejar et al. (2013)
apply the shell model developed by Madnani et al.
(2012) to GRE essays to evaluate whether it agrees
with expert raters’ judgments and whether the pres-
ence of shell language has an effect on the essay
scores. Du et al. (2014) devise an unsupervised

HMM-LDA topic model for shell language and ap-
ply it to posts from online debate forums. Similarly,
Ó Séaghdha and Teufel (2014) use a topic model to
capture words & constructs used to express rhetori-
cal function in scientific papers.

LLMs have been extensively used for a wide
range of linguistic analysis tasks. Some of these
tasks are fairly straightforward. For example, Hao
et al. (2024) use ChatGPT to annotate conversation
chat turns in a collaborative problem solving set-
ting with a pre-defined set of labels. However, the
decoder-only framework for text generation makes
it difficult to represent more complex linguistic
structures such as spans or dependency relations
and their relationships to the annotated text, and, to
our knowledge, there has been no consensus on the
format to use for span annotation with LLMs (re-
gardless of the particular application). Blevins et al.
(2022) experimented with LLMs for sequence tag-
ging tasks, including multi-token spans for chunk-
ing and NER. They framed the task as BIO tag-
ging at the word level, regenerating the text with
labels following each word. Since our spans are
frequently even longer than syntactic chunks, and
rarely as short as single words, we opt for a format
that abstracts away from individual word labels.

More recently, Kasner et al. (2025) experimented
with span annotation for evaluation of generated
text by using structured decoding to get a list of
spans with category labels in JSON format. This
has the advantage of not requiring re-generation
of the full input text. However, our application
does not require full category names for individual
annotations (only a single-character label) and we
expect to label relatively densely (such that a sig-
nificant fraction of the text would have to be copied
in the output anyway). Future work should directly
compare these output formats on a single task (or
multiple tasks) and investigate the effects of output
format on overall performance and error types.

8 Conclusions and Next Steps

We have shown that LLMs can be used for scalable
span annotation and that reasoning models have
a distinct advantage at the task of labeling shell
text. However, both the original LLM annotation
process and training a smaller model to imitate
an LLM’s annotations remain error-prone. Based
on the consistency of certain error types (§6), we
believe that refinements to the annotation rubric
could significantly improve the accuracy of LLM
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annotation. For example, the distinction between a
clear restatement of the prompt and its paraphrase
is a bit subtle and can be made clearer to ensure a
more consistent interpretation. Other directions for
future work include:

• a more thorough hyperparameter search to
improve supervised learning,

• finetuning a reasoning LLM either directly on
the curated human data or a combination of
human and LLM-annotated data (given the
small size of the human data), and

• experimenting with other output formats from
related work such as structured decoding for
greater consistency.

While our supervised shell detection results cer-
tainly leave room for improvement, we hope that
the work done in this paper can still serve as a
source of useful information to other researchers
working on shell language detection and, more
broadly, LLM-based span annotation. We believe
that the workflow proposed in this paper can be
applied to other types of non-overlapping span-
labeling tasks, assuming a rubric with clearly de-
fined categories and reliable human-human agree-
ment.
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Limitations

There are several limitations of this work. Most
significantly, while the two-step annotation pro-
cedure we describe yields promising results, the
resulting error rate of the final ModernBERT model
may limit its application without additional refine-
ments to the rubric and/or the training procedure
(including improved hyperparameter tuning). For
our LLM experiments, we compared several dif-
ferent models in §4 and found that an ensemble
of multiple models performed best. However, our
budget and time constraints limited the number of
compared models, and, in the end, we had to pick
the best single model (o1) to produce training data
for ModernBERT instead of the ensemble. Due to
limited space, our error analysis only covers errors
made by o1, and does not show the extent to which
the same patterns may be shared by other LLMs or

ModernBERT. Finally, our results are limited to the
specific choice of span annotation format that we
chose. As mentioned in §7, other formats may have
different tradeoffs, which we hope future work will
explore.
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