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Abstract

This paper investigates the potentials of Large
Language Models (LLMs) as adaptive tutors
in the context of second-language learning. In
particular, we evaluate whether system prompt-
ing can reliably constrain LLMs to generate
only text appropriate to the student’s compe-
tence level. We simulate full teacher-student
dialogues in Spanish using instruction-tuned,
open-source LLMs ranging in size from 7B
to 12B parameters. Dialogues are generated
by having an LLM alternate between tutor and
student roles with separate chat histories. The
output from the tutor model is then used to eval-
uate the effectiveness of CEFR-based prompt-
ing to control text difficulty across three profi-
ciency levels (A1, B1, C1). Our findings sug-
gest that while system prompting can be used
to constrain model outputs, prompting alone is
too brittle for sustained, long-term interactional
contexts - a phenomenon we term alignment
drift. Our results provide insights into the fea-
sibility of LLMs for personalized, proficiency-
aligned adaptive tutors and provide a scalable
method for low-cost evaluation of model per-
formance without human participants.

1 Introduction

The popularization of large language models
(LLMs), particularly through the emergence of
user-friendly interfaces such as ChatGPT, has led
many stakeholders across society to consider how
to use such technology effectively and safely to
facilitate access to knowledge and education (Yan
et al., 2024). Language education has not been im-
mune to this hype, and with seemingly good cause,
since LLMs show potential across a range of areas
where they might enhance language learning.

One such area is their inherent interactivity. In-
teractive feedback is widely regarded as an im-
portant factor in second-language (L2) learning
(Loewen and Sato, 2018). For L2 learners far re-
moved from their target language community, op-

portunities for such interaction can be rare. With
LLMs, though, learners appear to now have the
opportunity to engage with a "speaker" of the tar-
get language freely and at their own pace (Kohnke
et al., 2023). Other potential benefits include per-
sonalized teaching (Klimova et al., 2024) and re-
duced L2 anxiety (Hayashi and Sato, 2024).

These ideas build on decades of research on in-
telligent tutoring systems and computer-assisted
learning (Psotka et al., 1992; Slavuj et al., 2015). In
contrast to earlier rule-based approaches (D’Mello
and Graesser, 2023), appropriately implemented
LLMs may offer a more adaptable and effective
solution. However, current use of LLMs in lan-
guage learning mostly relies on general-purpose
tools like ChatGPT, where learners are encouraged
to acquire "prompt-engineering" skills to get the
most out of their AI language tutor (Hwang et al.,
2024). It remains unclear exactly how effective and
appropriate this approach is for creating successful
language tutoring technology.

This paper takes steps to address this problem by
examining whether, and to what extent, the com-
plexity of LLM outputs can be constrained through
prompting based on the Common European Frame-
work of Reference for Languages (CEFR). We find
that, while prompting may initially constrain LLM
outputs in Spanish, these effects diminish over time.
We refer to this as alignment drift, arguing that
system prompting may prove to be too unstable for
sustained, longer interactions.

2 Related Work

2.1 Exploring the Use of LLMs as Language
Tutors

While a growing body of work considers LLMs
as interactive language tutors (Kohnke et al., 2023;
Lin, 2024; Kostka and Toncelli, 2023), empirical re-
search is limited, and many questions remain unan-
swered (Han, 2024). Nevertheless, the few stud-
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ies that have been conducted so far offer promis-
ing results on the benefits of using LLMs as lan-
guage tutors, particularly in L2 English learning
(Tyen et al., 2022, 2024; Zhang and Huang, 2024).
Among other findings, Tyen et al. (2024) reported
that users enjoyed interacting with LLMs more
than plain reading and responded well to adaptive
difficulty in interactions. Adaptive cognitive tutors
hence have the potential to contribute positively to
motivation, a psychological process increasingly
viewed as crucial to L2 learning outcomes (Dornyei
and Ryan, 2015).

2.2 Assessing L2 Proficiency with CEFR
Defining what it means to be "proficient" in an
additional language is not a trivial task, with nu-
merous definitions proposed (Park et al., 2022). Of
these, the CEFR is particularly well known. Since
its introduction in 2001, the framework has been
highly influential in assessing L2 proficiency. Un-
like previous approaches with a strong focus on
grammatical competency, the CEFR emphasizes
social and communicative competences (Leclercq
and Edmonds, 2014).

The CEFR comprises a six-level scale (A1, A2,
B1, B2, C1, C2) with A1 as the beginner level
and C2 as the most advanced. Several official
ways have been developed to represent these profi-
ciency levels, each with language-agnostic descrip-
tions (Council of Europe, 2025a). For instance,
the CEFR Global scale offers a concise, three- to
four-sentence summary of each level, designed as a
holistic overview to facilitate communication with
non-specialist users. However, its creators acknowl-
edge that it is "desirable" to present the CEFR
levels in "different ways for different purposes."
(Council of Europe, 2025b). The Self-assessment
grid, which provides separate definitions for skills
like speaking and writing at each level, has little
to no focus on grammatical content (Council of
Europe, 2025d).

2.3 Adapting Text Difficulty with LLMs
The potential for LLMs to produce simpler text
for improved accessibility has not gone unnoticed
(Freyer et al., 2024). Indeed, the CEFR framework
has been used alongside LLMs to simplify learn-
ing materials in French (Jamet et al., 2024); and
for a range of purposes in English, such as general
writing (Uchida, 2025) and simplifying or writ-
ing stories (Malik et al., 2024; Imperial and Tay-
yar Madabushi, 2023). Alfter (2024) also attempted

to generate CEFR-aligned vocabulary lists using
LLMs across five languages, including Spanish and
French, but found performance issues outside of
English.

Common to these studies is the use of prompt-
ing. Notably, Malik et al. (2024) demonstrated
that GPT-4 made fewer errors generating stories
at the desired proficiency level as the detail about
CEFR increased in the prompts. In contrast, Alfter
(2024) found that using numeric levels from 0 to 4
was more effective than explicitly mentioning the
CEFR, although the prompts had no description of
the levels.

Beyond prompting, other approaches include
fine-tuning (Malik et al., 2024) or experimentation
with decoding strategies. For example, Tyen et al.
(2022) experimented with different decoding strate-
gies for constraining LLM text difficulty to CEFR
levels, using a classifier fine-tuned on Cambridge
English exam sentences (Xia et al., 2016), to select
the best LLM-generated sentence for the user. A
similar approach was used by Glandorf and Meur-
ers (2024), focusing on grammatical constructs for
different CEFR levels in English.

We identify some gaps in the literature. Firstly,
most studies focus on English, with only a few
exceptions (Jamet et al., 2024; Alfter, 2024). More-
over, aside from Tyen et al. (2022, 2024), all stud-
ies focus on single generations rather than longer
chats. This paper thus contributes to the literature
by addressing chat-based scenarios in an additional
language, Spanish.

2.4 Simulating Dialogues with LLMs
One challenge when evaluating LLM performance
in chat-based scenarios is the cost of human par-
ticipants, particularly during initial testing. Tyen
et al. (2022) addressed this by using "self-chatting",
where the model interacts with itself, although no
further specification was provided. More broadly,
dialogue simulation using LLMs have emerged
with the purpose of refining chatbots with the
generated data (Sekulic et al., 2024; Tamoyan
et al., 2024). Specific teacher-student dialogue
simulation remains under-explored, although some
work exists such as simulating Q/A scenarios (Ab-
basiantaeb et al., 2024).

In this paper, we therefore simulate teacher-
student interactions using LLMs in order to de-
termine the robustness of CEFR-based prompting
for constraining text difficulty in Spanish. To our
knowledge, this study is the first to simulate both

71



Figure 1: System prompt provided to each tutor LLM for level A1. Level-specific words are underlined in red and
replaced for B1 and C1 (see Appendix A.3). The list in curly brackets is from the CEFR Global Scale (Council of
Europe, 2025b).

the teacher and student perspectives through sys-
tem prompts in the context of language learning.

3 Experimental Design

Data generation (Section 3) and analysis (Sections
4 & 5) were carried out in Python (v3.12.3), with
the exception of running linear mixed effects mod-
els in R (v4.4.3). All code and the dataset is avail-
able on the GitHub repositories:

• Generation: INTERACT-LLM/Interact-LLM
(Version tag: v1.0.3-alignment-drift)

• Dataset & Analysis:
INTERACT-LLM/alignment-drift-llms

3.1 Model Selection and Implementation
We choose to focus on smaller, state-of-the-art
open-source LLMs in the range 7B to 12B. With
the exception of Mistral, their official reports
mention multilingual capabilities. All models are
instruction-tuned for chatting:

• Llama-3.1-8B-Instruct by Meta (Grattafiori
et al., 2024)

• Gemma-3-12B-IT by Google (Gemma Team
et al., 2025)

• Mistral-7B-v0.3-Instruct by Mistral AI
(Jiang et al., 2024)

• Qwen-2.5-7B-Instruct by Alibaba Cloud
(Qwen Team et al., 2025)

For convenience, we refer to the models simply
as Llama, Gemma, Mistral, and Qwen. For details
about the inference, including the hyperparameters,
see Appendix A.1.

3.2 Teacher-Student Dialogue Simulation

We simulated a language tutoring scenario by de-
ploying an LLM with separate chat histories as
both the "tutor" and "student". Current LLM sys-
tems are stateless (Yu et al., 2025), with the entire
chat history being processed by the model during
each interaction. This allowed us to instantiate a
single LLM object, and then interchange the chat
history, maintaining one history for the student and
another for the tutor (see the graphical overview in
Appendix A.2).

We ran simulations for three different system
prompts, designed to instruct the LLM to match
its responses to the proficiency level of a begin-
ner (A1), intermediate (B1), and advanced (C1)
Spanish language learner.1 Across the three lev-
els, the dialogue began with a fixed initial message,
"Hola",2 sent by the "student". By standardizing
the initial message, we eliminated variability in the
student LLM responses which could influence the
tutor LLM’s output. This enabled a direct compari-
son of how the system prompt impacted the tutor
LLM’s first message across levels.

1See Section 3.3 for details on how the system prompts
were defined.

2Tyen et al. (2022) also begin all chats with a "Hello".
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Despite being instructed to "keep everything in
Spanish" (Figure 1), a number of models generated
non-Spanish text.3 For instance, Gemma and Llama
tended to include English content. This happened
primarily for the A1 level, where they sometimes
provided English translations in parentheses along-
side their Spanish sentences. Also, Qwen occasion-
ally switched mid-generation to Mandarin Chinese.
To avoid confounding our analysis, we applied a
simple language detection algorithm to the tutor
LLM’s outputs using the Python library lingua.4 If
English or Mandarin was detected in any sentence,
we re-generated the tutor LLM’s response before
continuing the dialogue.

A total of 30 dialogues were simulated for each
of the three system prompts per LLM, resulting in
90 dialogues for each LLM and 360 overall. Each
dialogue consisted of nine turns.

3.3 System Prompts
We created custom system prompts in English for
the tutor LLM. These prompts differed only in key,
level-specific phrasing. Along with terms such
as "beginner," "intermediate," and "advanced," an
additional description of a learner’s abilities at the
particular level was provided, taken from the CEFR
Global scale (see Section 2.2). Figure 1 shows
the system prompt for A1 with the level-specific
wording highlighted (prompts for B1 and C1 can
be viewed in Appendix A.3).

The system prompt for the student LLM was
kept relatively simple as it was beyond the scope
of this study to optimize it:

You are a student learning Spanish, re-
sponding to a teacher who is facilitating
a natural dialogue with you.

4 Metrics

We extracted various metrics to examine the in-
fluence of different system prompts on the tutor
LLM’s outputs.

4.1 Traditional Readability Metrics
We computed three readability metrics for Span-
ish using Textstat.5 Recent applications of these
metrics primarily focus on healthcare (Rao et al.,
2024) or the financial sector (Moreno and Casasola,
2016; Losada, 2022), but their English counterparts

3We also discuss this in a subsection of the Limitations.
4https://github.com/pemistahl/lingua-py
5https://textstat.org/

have traditionally been used to assess L2 reading
complexity (Greenfield, 2004). We therefore draw
on these studies to justify our use of Spanish read-
ability metrics in this context.

Fernández Huerta (Fernández Huerta, 1959)
and Szigriszt-Pazos (Szigriszt Pazos, 2001) are
Spanish adaptations of the Flesch Reading Ease
(Flesch, 1948) score, measuring readability based
on syllables per word and words per sentence, with
Spanish-specific weightings.6 Unsurprisingly, the
two metrics are highly correlated (Melón-Izco et al.,
2021), but there are conflicting claims about which
one is most widely used (Moreno and Casasola,
2016; San Norberto et al., 2014). Both are com-
monly reported together, as is the case in this paper.

Gutiérrez de Polini is a metric specifically cre-
ated for Spanish (Gutiérrez de Polini, 1972). Un-
like the previous two metrics, it does not rely on
syllables, but instead considers the number of char-
acters per word and words per sentence (Vásquez-
Rodríguez et al., 2022).

All three metrics produce lower scores for more
difficult texts and higher scores for easier texts. For
detailed tables showing the interpretation of the
scores, see Appendix A.4.

4.2 Structural Complexity

We computed additional structural features using
the TextDescriptives Python library (Hansen et al.,
2023), applied with the Spanish spaCy (Honnibal
et al., 2020) model es_core_news_md.7

The Mean Dependency Distance (MDD) is a
measure of syntactical complexity commonly used
to capture language processing difficulty in both L1
and L2 research (Gao and Sun, 2024). It represents
a sentence-level average of dependency distance,
which measures the linear distance between a word
and its syntactic head. TextDescriptives follows the
definition by Oya (2011) to compute the MDD.8

We extract Text Length of each message, oper-
ationalized as the token count, as it is included in
the definition of the C1 level in the CEFR Global
scale (i.e., the student can understand "a wide range
of demanding, longer texts" (Council of Europe,

6Note that the formula for Fernández Huerta is said to
be reported incorrectly on many websites (Fernández, 2017).
Losada (2022) reports the correct one which is implemented
by Textstat.

7https://github.com/explosion/spacy-
models/releases/tag/es_core_news_md-3.8.0

8More information can be found in the documentation for
the TextDescriptives package: https://hlasse.github.io/
TextDescriptives/dependencydistance.html
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Figure 2: Average readability metrics over the total number of messages sent by the tutor LLM for each model,
grouped by CEFR level (A1, B1, C1). The higher the score, the easier the message is to read. The shaded area
around each curve represents a 95% confidence interval.

2025b)). A small study on ChatGPT also showed
that the model tended to generate longer texts for
higher levels of CEFR (Ramadhani et al., 2023).
Moreover, in machine classification studies of texts
across languages, text length was considered an
important predictor of CEFR level (Bestgen, 2020;
Yekrangi, 2022).

4.3 LLM-based Surprisal Scores

Following Cong (2025), we extract LLM surprisal
scores, defined as the negative log-probability of a
word sequence computed by an LLM. Cong (2025)
describes it as a "naturalness" measure that cap-
tures both "syntactical grammaticality" and "se-
mantic plausibility", with more natural sentences
corresponding to lower surprisal scores. They ar-
gue that it can be used to examine L2 proficiency,
demonstrating that BERT-based surprisal scores
decrease as L2 proficiency increases. The use of
LLM surprisal extends beyond this study, serving
as a predictor for human language processing, in-
cluding brain activity (Michaelov et al., 2024) and
reading times (Wilcox et al., 2023).

We use the minicons Python library (Misra,
2022) to extract sentence-level surprisal in chat
messages, normalized by token count. We then
compute the mean surprisal score for each chat
message, referred to as Message Surprisal in this

paper. However, we use EuroBERT (210m), a newer
BERT model designed for longer sequences and
further optimized for European languages, includ-
ing Spanish (Boizard et al., 2025).

5 Results

We focus solely on analyzing the tutor LLM’s re-
sponses. Aside from restricting English and Man-
darin generations during the simulations, the only
preprocessing applied was the removal of emojis
from Gemma’s outputs.

In addition to graphically assessing the effect of
system prompts on LLM generations, we perform
a simple statistical analysis, running linear mixed
effects models separately for each LLM for each
metric:

metricmodel ∼ level + (1|chatid)

Where the dependent variables is one of the six
extracted metrics (Section 4) with level (A1/B1/C1)
as the fixed effect. Chatid is used as a random ef-
fect to account for any individual variation in the
simulated chats. To address the issue of multiple
comparisons due to the large number of linear mod-
els, we Bonferroni adjust the p-values. Refer to
Appendix A.5 for all model outputs.
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Figure 3: Readability metrics as separate density plots for each CEFR level (A1, B1, C1).

5.1 Readability Metrics

The average readability scores over time are shown
for all models and CEFR levels in Figure 2. Across
LLMs, scores from all three readability metrics de-
crease as proficiency increases, with A1 having the
highest scores (easier to read) and C1 the lowest
scores (harder to read).9 However, despite starting
from different baselines, all curves slowly decrease
in readability over time, reducing the differences
between CEFR levels as well. A notable excep-
tion is Gemma, which has a sudden spike around
the last messages in B1 for the Fernández Huerta
and Szigriszt-Pazos scores. The same behavior is
present but less pronounced for the Gutiérrez de
Polini scores.

Despite differences in average scores, the con-
fidence intervals reveal some overlap between the
levels. These differ across LLMs with a model
such as Qwen having a much greater overlap be-
tween levels B1 and C1 than Llama. Both these
models also begin with generally higher Fernán-
dez Huerta and Szigriszt-Pazos scores across levels
than Gemma and Mistral.

When examining the full distribution of scores as
density plots (Figure 3), the overlap between levels

9As expected (Section 4.1), there is a clear resemblance in
scores from Fernández Huerta and Szigriszt-Pazos, but it is
worth noting that the scores are not identical.

across all models is more evident. The distributions
also reveal that a small, but not insignificant, por-
tion of Fernández Huerta/Szigriszt-Pazos scores
reaches around 50 for C1 for Llama and Gemma.
This is well below the average scores, and indi-
cates that the LLMs are capable of producing quite
complex text, even if they often do not.

Despite the overlapping scores, all mixed effects
models revealed that B1 and C1 (p < 0.001) had
significantly lower readability scores than the base-
line A1 (β0). Across LLMs, the estimates (β) for
Fernández Huerta ranged between -4 and -9 for B1
and -12 and -17 for C110 (See Appendix A.5.1).

5.2 Structural Features

Figure 4 shows the text length and MDD. From
the averages over time, general trends are that C1
has the highest text lengths, followed by B1 and
then A1. However, like the readability metrics, the
values converge across levels over time, although
by increasing in this case.

The same pattern occurs for the MDD scores for
Llama and Qwen, although with closely intersecting
curves for C1 and B1. The results are even more
muddled for Gemma and Mistral. These results

10Given the nature of mixed effects models, no direct con-
clusion can be drawn about the significance of the difference
between levels B1 and C1, as the tests only evaluate the differ-
ence relative to the baseline, A1.
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Figure 4: Text Length (token count) and Mean Dependency Distance (MDD). Top: Average metrics over time (95%
CI). Bottom: Density plots of the full distributions. Note that the x-axis for the Text Length distributions shows
different scales.

are reflected in the full distributions. Qwen is an
outlier when it comes to text length with a much
greater uncertainty in average lengths, having a
few generations that reach above 2000 tokens as
seen on the density plot, which is far above the
other LLMs whose highest generations are around
800-1000 tokens.

Although the distributions align more closely
for the structural metrics than the ones for read-
ability, the average values for B1 and C1, aside
from a few exceptions, still remain significantly
higher than A1 in the mixed effects models (mostly
p < 0.001). However, the estimates for text length
reveal a much greater difference between levels,
when compared to differences in the estimates for
MDD, relative to their baseline (Appendix A.5.2).

5.3 Message Surprisal Scores

Although the differences between levels in surprisal
scores are much smaller across LLMs, we still see

the average surprisal curves being "sandwiched" in
the same way as the other metrics with A1 in the
top, B1 in the middle, and C1 at the bottom (Figure
5). This trend is clearer for Llama, whereas Qwen’s
curves continuously intersect each other. Surprisal
scores are generally quite low with the density plots
in Figure 5, revealing right-skewed distributions for
all LLMs, centered around 1 or 1.5. The estimates
are therefore also quite small in the mixed effects
models, though significantly different from A1 for
all LLMs, except for Qwen (Appendix A.5.2).

6 Discussion

Our results demonstrate that system prompting
based on CEFR levels influences the tutor LLM
outputs, with all metrics exhibiting differences in
the intended order (from A1 to B1 to C1), as can
be clearly observed in the plots over time. Addi-
tional statistical significance of the differences can
be seen in the linear mixed effects models.
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Figure 5: Message Surprisal (mean sentence surprisal) for each LLM. Top: Average Message Surprisal over time
(95% CI). Bottom: Density plots of the full distributions.

However, the differences between system
prompts consistently diminished over time, leading
to largely overlapping distributions. We adopt the
term alignment drift to describe the tendency of
LLMs to revert to unconstrained behavior over time.
While prompting may thus be useful for constrain-
ing LLM outputs, its influence appears brittle for
longer conversations. This raises concerns about
the viability of prompting alone for developing
level-specific LLM language tutors in chat-based
environments. Nonetheless, further evaluation with
a broader range of system prompts is needed before
drawing definitive conclusions.

Moreover, the effect of system prompts was not
consistent across metrics. Notwithstanding over-
laps in how these metrics are calculated, our results
suggests that all models demonstrate greater vari-
ability in terms of readability, and less variability
with regards to syntactic complexity. The surprisal
scores were even more inconsistent, although they
displayed expected tendencies, at least for some
LLMs. The low surprisal scores might be an effect
of an LLM evaluating other LLMs, which likely
have more similar probability distributions than
humans (Holtzman et al., 2019).

Nevertheless, even when evaluating the readabil-
ity metrics, it remains debatable whether the differ-
ences between levels are large enough to accurately
reflect the intended proficiency levels. With av-
erage values ranging between 110 and 70 for the
Fernández Huerta scores, the readability is equiva-
lent to Spanish school children, even at an average
of 70 (see Appendix A.4). While it is unclear how
this translates to L2 learners of Spanish, it could

suggest that the LLMs have not managed generate
text appropriate for the proficiency levels, at least
for the C1 level. Refer to the Limitations for other
considerations of the metrics.

An additional concern is that the observed align-
ment drift could have been driven by a possible drift
in the student LLM (i.e., the tutor adapting to the
student and vice versa). As we neither optimized
nor examined the student LLM, it remains unclear
how this influenced the outcome or how this would
differ with human users. However, LLMs have
also shown difficulty in following system prompts
over the course of multi-turn dialogue in other
domains with real user messages (Qiu and Yang,
2024). Hence, we do not expect a substantial dif-
ference between using human or LLM students
given our current framework. We leave it to future
research to investigate the exact influence of the
student LLM on the tutor LLM’s alignment drift,
potentially including human students as a point of
comparison.

As a final remark, we note that the LLMs did
not perform equally, which could help inform the
choice of a suitable LLM to serve as an language
tutor in Spanish, at least for initial development. A
model like Llama is relevant to highlight as a well-
performing model although its license might be too
restrictive for some applications (Meta, 2024).

7 Conclusion

This study presented a novel method for evaluating
the performance of LLMs in a language learning
context through simulated teacher-student interac-
tions. The purpose of these experiments was to
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test whether system prompting alone is enough to
constrain the complexity of LLM generated output
in a way which is suitable for language learners at
different stages.

While we see clear value in carefully designed
prompting, it is also evident from our results that
this solution is potentially too brittle for extended
interactions due to a consistent alignment drift
across interactions. This suggests that prompt en-
gineering in and of itself may not be enough to
fully constrain LLM behavior, although more ex-
perimentation with system prompting is required
before this can be confirmed. We encourage further
research in this direction, particularly measuring
alignment drift of LLMs in contexts other than L2
English learning.

Ethical Considerations

We wish to stress the importance of additional
considerations and evaluation of LLMs before
their real-world deployment in educational con-
texts. Firstly, we recognize that the models may re-
flect cultural biases that could be inappropriate for
the target student population. Therefore, cultural
alignment may be necessary before their implemen-
tation (Tao et al., 2024; Li et al., 2024). Moreover,
some of the models may not be properly instruction-
tuned to align with human principles (e.g., the re-
moval of toxic content). For instance, Mistral,
designed for demonstration purposes, lacks "mod-
eration mechanisms" according to the Mistral AI
team (Jiang et al., 2024). Such a model would re-
quire further development before being suitable for
real-world applications.

These ethical concerns are increasingly urgent
when considering the impact that generative AI
may have on language learners. For example, L2
learners might over-rely on ChatGPT (Yang and
Li, 2024) such as using it to write complete assign-
ments rather than as a supplementary tool (Yan,
2023). More broadly, the ELIZA effect (Weizen-
baum, 1966), describing our tendency to attribute
human-like qualities such as "understanding" to
machines (Mitchell and Krakauer, 2023), may con-
tribute problematically to the overtrust of AI chat-
bots (Reinecke et al., 2025). We urge developers to
prioritize the responsible implementation of LLM
systems for education and believe that our research
contributes to work in this direction.

Limitations

Imperfect Metrics
Despite covering a range of metrics to capture text
difficulty, there are many dimensions to what con-
stitutes a text as readable or complex in the context
of L2 learning. This study offers an initial attempt
at automated scoring of LLMs in Spanish in this
context, but further deliberation is warranted.

Additionally, while the Spanish readability met-
rics used in this study are widely applied across
domains, their intended use is generally unknown
(Aponte et al., 2024). As such, it is uncertain
whether they are entirely suitable for measuring
the content of shorter dialogue. At least, their En-
glish counterparts such as the Flesch Reading Ease
were developed for longer formats, making their
robustness for shorter text questionable (Rooein
et al., 2024).

For the purpose of this study, the metrics were
deemed sufficient to provide simple, interpretable
measures of the impact of system prompts on LLM
generations. Nevertheless, further work is required
to explore metrics and to develop more precise
methods to measure LLM adaptation.

System Prompts
This study only tested a single set of system
prompts as the focus of the paper was to examine
whether LLMs could be influenced by them, rather
than the extent of that influence. However, future
work may find that the system prompts could be
optimized on a variety of parameters. We discuss a
few possibilities in the sections below.

English System Prompts & Generations
Outside Spanish
Despite the target language being Spanish, we de-
fined the system prompt in English. This might
explain why the American multilingual models,
Gemma and Llama, were prone to producing English
content. However, this does not account for why
Qwen occasionally generated Mandarin Chinese de-
spite the absence of Mandarin in the system prompt.
This unintended behavior may instead reflect the
composition of the training data, with Qwen likely
containing more Chinese-language data11 than the
American models, where English likely dominates.

11Qwen 2.5’s predecessor, Qwen 7B, has a technical memo
stating that most of its training data is "in English and Chi-
nese." (Qwen Team, 2023). However, Qwen 2.5’s technical
report does not explicitly mention this, aside from including
evaluation on these two languages (Qwen Team et al., 2025).
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Future work could experiment with monolingual
models and/or explore the use of system prompts
in the target language. For most official languages
in Europe, the current framework can easily ac-
commodate the modification of system prompts
as the Council of Europe (2025c) provides official
translations of their scale in these languages.

LLM knowledge of CEFR
Although LLM generations varied across levels A1
to C1 in our study, it remains uncertain whether
it was effective to use the CEFR framework with
descriptions such as "A1" as opposed to relying
solely on terms like "beginner". It depends on
whether the state-of-the-art LLMs in our study have
acquired knowledge about the CEFR framework
from their training data.

Benedetto et al. (2025) seems to suggest oth-
erwise, reporting that several smaller 7B models
struggled to generate CEFR-aligned text, consist-
ing with findings by Malik et al. (2024). However,
as their 7B models are slightly older than those
used in this study, it is unclear how directly their
findings apply here. Similarly, the 7B models in
Malik et al. (2024) showed improvements when
provided with details about CEFR, while this was
not the case in Benedetto et al. (2025).

Further research is needed to consider the sta-
bility and usability of CEFR knowledge in LLMs,
such as through the creation of robustness bench-
marks.
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A Appendix

A.1 Technical Details about Inference
All LLM inference was run using the Hugging
Face transformers package (Wolf et al., 2020) on
a cloud-based interactive HPC platform (Python
v3.12.3, Ubuntu v24.04). Llama, Mistral, and
Qwen were run on a single NVIDIA L40 GPU (48
GB), with 96 GB of system memory and 8 vCPUs,
while Gemma was run on a system utilizing two
NVIDIA L40 GPUs. Due to the higher resource
demands of Gemma, we chose to run it with a
lower precision (bfloat16). This minor difference
in precision from the other models was not
considered impactful for the model comparisons.

We used standard hyperparameters for all
generations: temperature = 1, top_p = 1.0,
min_p = 0.05, top_k = 50, and repetition
penalty = 1.1. Hyperparameter-tuning was left
for future work.
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A.2 Illustration of Simulation Framework

Graphical overview of the simulation framework. The actual simulations consisted of nine rounds, not two. The
example text (abbreviated) is taken from a simulated conversation by Mistral in A1. For the implementation in code,
refer to the file on GitHub: INTERACT-LLM/Interact-LLM/src/scripts/alignment_drift/simulate.py.
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A.3 System Prompts for B1 and C1
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A.4 Interpretation of Readability Scales
Due to slight differences in reporting, we provide
two variations of the interpretation tables for Fer-
nández Huerta and Szigriszt-Pazos. While such
tables are commonly reported for the two metrics,
interpretations of Gutiérrez de Polini were diffi-
cult to find beyond the version proposed by Scott
(2024b).

Fernández Huerta Szigriszt-Pazos Level

90–100 86–100 Very easy
80–90 76–85 Easy
70–80 66–75 Somewhat easy
60–70 51–65 Normal
50–60 36–50 Somewhat difficult
30–50 16–35 Difficult
0–30 0–15 Very difficult

Table modified from Checa-Moreno et al. (2021)

Fernández Huerta Level Spanish Grade Level US Grade Level Age Group

101 - Extremely Easy 1º - 3º Primaria 1st - 3rd Grade 6-8 year olds
90 - 100 Very Easy 4º Primaria 4th Grade 9-10 year olds
80 - 89 Easy 5º Primaria 5th Grade 10-11 year olds
70 - 79 Somewhat Easy 6º Primaria 6th Grade 11-12 year olds
60 - 69 Average 1º - 2º ESO 7th-8th Grade 12-14 year olds
50 - 59 Slightly Difficult 3º - 4º ESO 9th-10th Grade 14-16 year olds
30 - 49 Difficult 1º - 2º Bachillerato 11th-12th Grade 16-18 year olds
Less than 30 Extremely Difficult Universidad College 18+ year olds

Table modified from Scott (2024a)

Szigriszt-Pazos Level Spanish Grade Level US Grade Level Age Group

> 85 Very Easy 1º – 2º Primaria 1st – 2nd Grade 6–7 year olds
76 – 85 Easy 3º – 4º Primaria 3rd – 4th Grade 8–9 year olds
66 – 75 Slightly Easy 5º – 6º Primaria 5th – 6th Grade 10–11 year olds
51 – 65 Average 1º – 2º ESO 7th – 8th Grade 12–14 year olds
36 – 50 Slightly Difficult 3º – 4º ESO 9th – 10th Grade 14–16 year olds
16 – 35 Difficult Bachillerato 11th – 12th Grade 16–18 year olds
≤ 15 Very Difficult Universidad College and Above 19+ year olds

Table modified from Scott (2024c)

Gutiérrez de Polini Level Spanish Grade Level English Grade Level Age Group

> 70 Very Easy 1º - 2º Primaria 1st - 2nd Grade 6-7 year olds
≤ 70 Easy 3º - 4º Primaria 3rd - 4th Grade 8-9 year olds
≤ 60 Slightly Easy 5º - 6º Primaria 5th - 6th Grade 10-11 year olds
≤ 50 Average 1º - 2º ESO 7th - 8th Grade 12-14 year olds
≤ 40 Slightly Difficult 3º - 4º ESO 9th - 10th Grade 14-16 year olds
≤ 33 Difficult 1º - 2º Bachillerato 11th - 12th Grade 16-18 year olds
≤ 20 Very Difficult Universidad y superior College and Above 19+ year olds

Table modified from (Scott, 2024b)

86



A.5 Linear Mixed Effects Models
The reported p-values were Bonferroni adjusted to
mitigate the problem of multiple comparisons.

Significance levels:
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

A.5.1 Readability Metrics

Term Est. SE t p (Adj.) Sig.

Fernández Huerta

Llama 3.1 8B Instruct (Intercept) 95.7719 0.8474 113.0244 0.0000 ***
levelB1 -7.6024 1.1983 -6.3441 0.0000 ***
levelC1 -15.5678 1.1983 -12.9911 0.0000 ***

Gemma 3 12B IT (Intercept) 97.2703 0.7435 130.8189 0.0000 ***
levelB1 -4.3123 1.0515 -4.1010 0.0072 **
levelC1 -16.7604 1.0515 -15.9389 0.0000 ***

Mistral 7B Instruct v0.3 (Intercept) 92.1334 0.6449 142.8548 0.0000 ***
levelB1 -5.5725 0.9121 -6.1096 0.0000 ***
levelC1 -12.9711 0.9121 -14.2213 0.0000 ***

Qwen 2.5 7B Instruct (Intercept) 100.5074 0.7862 127.8371 0.0000 ***
levelB1 -8.7210 1.1119 -7.8435 0.0000 ***
levelC1 -12.3339 1.1119 -11.0928 0.0000 ***

Szigriszt-Pazos

Llama 3.1 8B Instruct (Intercept) 92.2449 0.8384 110.0213 0.0000 ***
levelB1 -7.7317 1.1857 -6.5207 0.0000 ***
levelC1 -15.7243 1.1857 -13.2614 0.0000 ***

Gemma 3 12B IT (Intercept) 93.8222 0.7454 125.8662 0.0000 ***
levelB1 -4.5200 1.0542 -4.2877 0.0000 ***
levelC1 -17.2403 1.0542 -16.3543 0.0000 ***

Mistral 7B Instruct v0.3 (Intercept) 88.3932 0.6472 136.5679 0.0000 ***
levelB1 -5.4730 0.9153 -5.9792 0.0000 ***
levelC1 -12.9145 0.9153 -14.1088 0.0000 ***

Qwen 2.5 7B Instruct (Intercept) 96.7888 0.7979 121.2972 0.0000 ***
levelB1 -8.6988 1.1285 -7.7085 0.0000 ***
levelC1 -12.4825 1.1285 -11.0615 0.0000 ***

Gutierrez de Polini

Llama 3.1 8B Instruct (Intercept) 46.1233 0.3910 117.9475 0.0000 ***
levelB1 -3.3663 0.5530 -6.0871 0.0000 ***
levelC1 -7.0727 0.5530 -12.7891 0.0000 ***

Gemma 3 12B IT (Intercept) 45.7901 0.3059 149.7104 0.0000 ***
levelB1 -2.8591 0.4325 -6.6100 0.0000 ***
levelC1 -8.1961 0.4325 -18.9483 0.0000 ***

Mistral 7B Instruct v0.3 (Intercept) 43.1317 0.2913 148.0795 0.0000 ***
levelB1 -1.9720 0.4119 -4.7874 0.0000 ***
levelC1 -5.3057 0.4119 -12.8804 0.0000 ***

Qwen 2.5 7B Instruct (Intercept) 46.9324 0.3823 122.7674 0.0000 ***
levelB1 -3.2680 0.5406 -6.0447 0.0000 ***
levelC1 -5.7047 0.5406 -10.5519 0.0000 ***
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A.5.2 Structural Features and Surprisal

Term Est. SE t p (Adj.) Sig.

Text Length

Llama 3.1 8B Instruct (Intercept) 115.3815 9.6949 11.9012 0.0000 ***
levelB1 76.9000 13.7107 5.6088 0.0000 ***
levelC1 122.5185 13.7107 8.9360 0.0000 ***

Gemma 3 12B IT (Intercept) 92.8037 7.4934 12.3847 0.0000 ***
levelB1 82.4185 10.5973 7.7773 0.0000 ***
levelC1 162.6963 10.5973 15.3527 0.0000 ***

Mistral 7B Instruct v0.3 (Intercept) 162.7148 7.2390 22.4776 0.0000 ***
levelB1 55.7667 10.2375 5.4473 0.0000 ***
levelC1 88.3074 10.2375 8.6259 0.0000 ***

Qwen 2.5 7B Instruct (Intercept) 100.1481 25.5238 3.9237 0.0144 *
levelB1 110.4185 36.0961 3.0590 0.2160
levelC1 166.1407 36.0961 4.6027 0.0000 ***

Mean Dependency Distance

Llama 3.1 8B Instruct (Intercept) 2.2618 0.0294 76.9691 0.0000 ***
levelB1 0.3063 0.0416 7.3711 0.0000 ***
levelC1 0.3763 0.0416 9.0548 0.0000 ***

Gemma 3 12B IT (Intercept) 2.3462 0.0314 74.6559 0.0000 ***
levelB1 0.1491 0.0444 3.3543 0.0864
levelC1 0.1758 0.0444 3.9555 0.0144 *

Mistral 7B Instruct v0.3 (Intercept) 2.6218 0.0230 114.2368 0.0000 ***
levelB1 0.0866 0.0325 2.6682 0.6552
levelC1 0.1845 0.0325 5.6831 0.0000 ***

Qwen 2.5 7B Instruct (Intercept) 2.1601 0.0333 64.9271 0.0000 ***
levelB1 0.2777 0.0471 5.9023 0.0000 ***
levelC1 0.3498 0.0471 7.4337 0.0000 ***

Message Surprisal

Llama 3.1 8B Instruct (Intercept) 1.3636 0.0564 24.1764 0.0000 ***
levelB1 -0.2940 0.0798 -3.6855 0.0288 *
levelC1 -0.5212 0.0798 -6.5340 0.0000 ***

Gemma 3 12B IT (Intercept) 1.8314 0.0350 52.3230 0.0000 ***
levelB1 -0.2618 0.0495 -5.2897 0.0000 ***
levelC1 -0.5552 0.0495 -11.2155 0.0000 ***

Mistral 7B Instruct v0.3 (Intercept) 1.1499 0.0292 39.3876 0.0000 ***
levelB1 -0.2128 0.0413 -5.1553 0.0000 ***
levelC1 -0.3331 0.0413 -8.0668 0.0000 ***

Qwen 2.5 7B Instruct (Intercept) 1.4898 0.0491 30.3121 0.0000 ***
levelB1 -0.1237 0.0695 -1.7793 1.0000
levelC1 -0.1338 0.0695 -1.9247 1.0000
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