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Abstract

We present the framework Omethi, which is
aimed at scoring short text responses in a semi-
automatic fashion, particularly fit to interna-
tional large-scale assessments. We evaluate
its effectiveness for the massively multilingual
PISA tests. Responses are passed through a
conditional flow of hierarchically combined
scoring components to assign a score. Once
a score is assigned, hierarchically lower com-
ponents are discarded. Models implemented
in this study ranged from lexical matching of
normalized texts—with excellent accuracy but
weak generalizability—to fine-tuned large lan-
guage models—with lower accuracy but high
generalizability. If not scored by any automatic
component, responses are passed on to manual
scoring. The paper is the first to provide an
evaluation of automatic scoring on multilingual
PISA data in eleven languages (including Ara-
bic, Finnish, Hebrew, and Kazakh) from three
domains (n = 3.8 million responses). On aver-
age, results show a manual effort reduction of
71 percent alongside an agreement of κ = .957,
when including manual scoring, and κ = .804
for only the automatically scored responses.
The evaluation underscores the framework’s
effective adaptivity and operational feasibility
with its shares of used components varying sub-
stantially across domains and languages while
maintaining homogeneously high accuracy.

1 Introduction

A river adapts its flow to diverse exterior condi-
tions, by meandering, or alternating its velocity
and depth, to reach its target inevitably and natu-
rally. In this paper, we propose the hierarchical,
response-adaptive framework Omethi for automati-
cally scoring short text responses from assessments.
The proposed framework is named after the Ome-
thi River, for it is similarly responsive by com-
bining modern and baseline scoring methodology
adaptively at the response level, while contending

with diverse languages and multiple assessment do-
mains in an operational setting and distinct quality
requirements. Large-scale assessments, especially
international ones (e.g., PISA, the Programme for
International Student Assessment; OECD, 2023),
pose diverse conditions to automatic scoring (Zesch
et al., 2023), similar to the varied surroundings
a river is exposed to. In turn, automatic scoring
encompasses a range of approaches with partic-
ular strengths and weaknesses (see Galhardi and
Brancher, 2018; Gao et al., 2024).

Accordingly, the paper provides three major con-
tributions. First, we present a novel hierarchical
composition of models for automatically scoring
short text responses, particularly fit to the complex
settings present in large-scale assessments.

Second, for a first implementation of the frame-
work, we propose a hierarchical collection of
models, including a new rigorous method with
weak generalizability, called Fuzzy Lexical Match-
ing (FLM), alongside fine-tuned XLM-RoBERTa
(XLM-R; Conneau et al., 2020) and support vec-
tor machine classifiers (SVM; Cortes and Vapnik,
1995). Human raters, integral to assessment opera-
tions, serve as the final component in the sequence
of scoring methods presented here, turning the im-
plemented pipeline into a semi-automatic system.

Third, this is the first paper to evaluate automatic
scoring on massively multilingual data from PISA
tests including all three major domains (i.e., read-
ing, mathematics, and science; OECD, 2024). With
the complete dataset containing 59 test languages
from 86 countries and regions in total, we sampled
a subset of 11 test languages for the present evalua-
tion, resulting in about 3.8 million text responses
to 160 items from 3 assessment domains and more
than 270,000 students. To represent diverse lan-
guage families and writing systems, the selected
test languages included Arabic, Finnish, Hebrew,
Kazakh, and Korean, among others.

The empirical evaluation was guided by two
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overarching research questions. (I) Overall and
for each subcomponent, how effective is the model
at generating accurate scores and reducing man-
ual effort? (II) How robust are scoring accuracy
and reduced manual effort across subsamples with
different test languages?

2 Background

2.1 Relevance for Operational Assessments

International educational large-scale assessments,
such as PISA, are characterized by their large
scope in addressing diverse student characteristics
from different cultures using complex methodology.
This can pose significant challenges for automatic
scoring (Yan et al., 2020; Zesch et al., 2023). The
resulting diversity manifests in response texts and
corresponding scoring, stemming from many fac-
tors, including the world-wide participation (i.e.,
over ninety countries and economies in PISA 2025;
OECD, 2025). The tests are administered in a large
number of test languages (almost sixty test lan-
guages from 2018 to 2022), with high-resource
languages, such as Indonesian, just as low-resource
languages, such as Kazakh or Catalan. Moreover,
the tests assess three major literacy domains, using
a large number of items and various item types with
complex coding guides for constructed-response
formats. Additionally, the low-stakes nature at
the individual level often results in lower test en-
gagement (Schlosser et al., 2019) and, thus, more
informal, fragmented, and less integrated (Chafe,
1982) text responses. Continuous changes in assess-
ment design—such as the transition from paper- to
computer-based testing and the adoption of adap-
tive testing—introduce additional variability over
time; for example, by reducing the number of re-
sponses per item (OECD, 2024) or by impacting the
length and quality of text responses (Zehner et al.,
2019, 2020). On top of this, not only sample sizes
vary largely per test language (e.g., from n = 269
to n = 22,163 responses per item in the present
paper’s reported dataset), which poses challenges
for training, but also a reduced rigor in human cod-
ing can lead to more label noise in subsamples. At
the same time, large-scale assessments pose incon-
testable quality requirements (see OECD, 2025),
including high-quality coding and accountability
(i.e., explainability), due to their high stakes at the
state level. Shin et al. (2019) demonstrated that
automatic scoring can align closely with human
experts in identifying rater severity, and less so

regarding centrality and accuracy, highlighting fur-
ther challenges in introducing automatic systems
in operational procedures. Noteworthy, large-scale
assessments usually administer a subset of items
repeatedly over time, making them an attractive
field of application for supervised learning.

Thus far, automatic scoring has seen limited re-
search and operational use in international large-
scale assessments. Early efforts include the intro-
duction of PISA’a Machine-Supported Coding Sys-
tem (Yamamoto et al., 2018), a precursor to FLM,
and a baseline evaluation for German (Zehner et al.,
2016). Recent research funded by international
bodies, such as on IEA’s ePIRLS data (Interna-
tional Association for the Evaluation of Educa-
tional Achievement; Shin et al., 2024), and a com-
petition on data from the National NAEP (Na-
tional Assessment of Educational Progress; Whit-
mer et al., 2023) signal growing interest in automat-
ing scoring, notoriously centering around national
U.S. assessments (Yan et al., 2020).

2.2 Diverse Models to Address Text Diversity
All these extraneous factors manifest in varying de-
grees of linguistic variance in text responses (Zesch
et al., 2023; Horbach and Zesch, 2019) across co-
horts, subpopulations (i.a., languages), domains,
items, and their context. Single automatic scoring
approaches can fall short of adequately addressing
this diversity. For instance, while lexical match-
ing methods offer excellent accuracy for known
responses, they lack generalizability to unseen lin-
guistic expressions. Moreover, supervised clas-
sifiers are often hampered as they assign a label
regardless of relatively low probabilities (i.e., con-
fidence) for certain instances (Li et al., 2023).

Recognizing these limitations, the here presented
first collection of implemented components in an
Omethi framework retain human raters as the fi-
nal recourse when automatic models fail to score
responses with sufficient confidence, rendering it
a semi-automatic system. By hierarchically com-
posing multiple scoring approaches and discarding
lower-level components once a score is confidently
assigned, Omethi navigates the complexities of in-
ternational large-scale assessments while maintain-
ing the high-quality standards required for them.

2.3 Ensembles for (Semi-)Automatic Scoring
Ensembles for automatic and semi-automatic scor-
ing come in two fashions: algorithmic ensembles
that inherently comprise multiple models (e.g., ran-
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dom forests) or combinations of relatively loosely
coupled models (e.g., stacking). Omethi belongs to
the latter and diverges from traditional systems by
combining multiple components, including super-
vised classifiers, in a conceptually governed, top-
down manner rather than relying on data-driven,
bottom-up learning. Unlike the common paradigm
of identifying a single optimal model for a dataset,
task, or domain, Omethi deliberately alternates
models at the response level based on explicit cri-
teria. This approach contrasts with standard en-
sembles, such as those in Goenka et al. (2020) and
Ormerod (2022), where model selection is carried
out uniformly (e.g., majority voting or averaging)
or with ensembles designed to capture diverse re-
sponse characteristics (e.g., Mohler et al., 2011;
Sahu and Bhowmick, 2020; Sakaguchi et al., 2015;
Zhang et al., 2022). For instance, Heilman and
Madnani (2013) stacked models for item-specific
n-gram features and text similarity, while Roy et al.
(2016) employed transfer learning between general-
and question-specific classifiers.

If humans are still involved during inference, the
scoring is considered semi-automatic. For systems
deferring responses to humans, appropriate confi-
dence thresholds of the automatic component need
to be identified; referred to as deferral policy in
(Li et al., 2023), which we rephrase here as the
eligibility policy for assigning a score. This has
been investigated for semi-automatic systems, such
as in Andersen et al. (2023) and Horbach et al.
(2014), which combined unsupervised clustering
with human scoring. Horbach and Pinkal (2018)
more directly integrated humans and machines via
semi-supervised clustering. In the context of la-
bel probabilities as a confidence criterion, results
on identifying optimal confidence thresholds have
been mixed. Suen et al. (2023) successfully set
thresholds based on a minimum required F1 score,
while Bexte et al. (2024) observed substantial item-
and data-wise variation in confidence distributions
with this, failing to identify viable thresholds for
certain items at all. Funayama et al. (2022) sim-
ilarly used confidence scores to revert to human
raters, and Li et al. (2025) proposed a constant
threshold of δ = .25, basically halving the range of
values from random chance to perfect agreement.

3 Omethi Framework

Unlike traditional ensemble methods, Omethi or-
chestrates scoring components hierarchically based

on their conceptual priority, compiling a logical de-
cision flow that is informed by each component’s
inherent characteristics. If a component is eligi-
ble by satisfying its specific conditions (i.e., its
eligibility policy), it assigns the final score and the
response bypasses subsequent components.

Match?
Yes

Yes

Fallback to Manual Scoring

Yes

Sufficient 
Certainty?

No

I) Fuzzy
Lexical

Matching

II) Supervised
Classifier

XLM-R

IV) Human

Sufficient 
Training
Quality?

Yes Yes

Sufficient 
Certainty?

No

III) Supervised
Classifier

SVM

No No

No

Response Score

Sufficient 
Training
Quality?

Response

Figure 1: Response flow through the implemented Ome-
thi pipeline

In this paper, we present an initial implementa-
tion consisting of four components, described in
the following (see Figure 1). The rationale underly-
ing the implementation was to allocate components
with the highest accuracy prior to those exhibit-
ing higher generalizability, while also aiming at
minimizing human effort resulting from responses
deferred to the final component.

During training, each scoring component was
built separately using data from a given subsam-
ple; that is, for (i) a specific item and (ii) test
language. Human scores available from the op-
erational PISA studies served as the ground truth
for training. During inference, each response was
first evaluated by Fuzzy Lexical Matching (FLM),
which attempts to match normalized text to a pool
of normalized response texts. If sufficient matching
responses were identified that satisfied predefined
score-homogeneity criteria (see next section), prop-
agating their score to the unseen response is con-
sidered highly reliable, as the response had been
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scored multiple times previously by humans, or
at least a lexically very close counterpart. FLM,
therefore, receives the highest priority in the flow
because its classifications are largely valid, inter-
pretable, and applicable for any language. How-
ever, FLM’s obvious downside is its lack of out-
of-sample generalization, the severity of which de-
pends on the item-specific linguistic variance in the
responses. Thus, if FLM could provided a score,
that score was adopted, bypassing subsequent com-
ponents. Otherwise, the response proceeded to the
next scoring component.

Responses not scored by FLM were next passed
to a supervised classifier: a fine-tuned XLM-
RoBERTa classifier or SVM. The model’s output
was assigned to the response if its overall train-
ing performance quality sufficed and the individual
classification’s confidence exceeded an item- and
language-specific threshold.

If none of the automatic components satisfied
their eligibility policy, the response was forwarded
to the final component, namely manual scoring by
human raters.

3.1 Fuzzy Lexical Matching
FLM extends the idea of PISA’s Machine Support
Coding System (Yamamoto et al., 2018), opera-
tionally introduced in PISA 2018. There, strict
exact string matching was applied, automatically
propagating scores if at least five homogeneously
scored text responses were found in legacy data.

FLM builds on this widely adoptable principle
of matching unseen to historic data. In contrast to
exact matching, FLM first normalizes the texts by
traditional preprocessing techniques. The normal-
ization pipeline was first evaluated on ePIRLS data
(the Progress in International Reading Literacy
Study; Shin et al., 2024). The standard techniques
used were white-space trimming, punctuation re-
moval, case insensitivity, diacritics removal, stem-
ming, stop word removal, and bag of words.

For optimization to a subsample (i.e., item and
language), this set of normalization techniques is
trained on the respective data. That is, the effec-
tiveness of each pipeline step is evaluated using the
coefficient ER (Effort Reduction), simply consti-
tuting the share of matched responses, ER = nm

nt
;

nt denoting the total number of responses in the
data and nm the number of matches. Importantly
though, FLM’s scoring quality also manifests in
ER because the method requires sufficiently fre-
quent as well as homogeneously scored responses

for automatic scoring. That is, if the grouping of
the normalized texts leads to heterogeneous scores
within that group, ER will decrease. A response
is automatically scored if the following criteria are
met. For a given response i, let mi denote the
number of its matches and si the number of re-
sponses that received the dominant score in the
group. Then, the response is scored (M = 1) or
not scored automatically (M = 0) as follows:

M =




1,

if mi ≥ 3 and

si ≥ max (⌈mi · .92⌉, mi − 5)

0, otherwise

That is, a response is scored automatically if at least
3 responses are matched, requiring a minimum of
92 percent of homogeneous scores, but limited to
an absolute maximum of 5 deviant responses.1

Whenever a pipeline step in FLM leads to a de-
crease in ER, the respective step is discarded for
the specific subsample (i.e., item and language).
For example, if respondents were asked to provide
an email address from a text, applying punctuation
removal on the responses eliminates relevant infor-
mation, leading to heterogeneously scored match-
ing groups, a reduced ER, and, hence, this normal-
ization step would be discarded during inference.

Another adaptive step in FLM is the tailoring
of stopword lists to the subsample. The rationale
behind this is twofold. For one, stopword lists are
language-specific and differ largely in their scope.
Second, whether certain words are predictive for a
response’s score depends on the item. Therefore,
if an optimized stopword list leads to an increase
in ER or an increase of the overall accuracy while
ER remains identical, the optimized stopword list
is used during inference.

3.2 Supervised Classifiers
Two types of classifiers based on supervised learn-
ing were built: fine-tuned XLM-RoBERTa models
and support vector machines. During inference,
both only take response texts as their input, not
considering item stems, stimulus materials, or scor-
ing guides.

As a core component, fine-tuned XLM-
RoBERTa models (Conneau et al., 2020) were em-
ployed for their robust multilingual representation
and classification capabilities. XLM-R is a mas-
sively multilingual model pretrained on a corpus

1In PISA, the minimum inter-rater agreement is required
to be 92 percent (OECD, 2024).
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comprising one hundred languages. For enabling
binary (i.e., dichotomous) and multiclass (i.e., poly-
tomous) scoring, respectively, a classification head
was appended to the pretrained model.

With the objective to only have the model as-
sign fairly probable scores, labels’ output probabil-
ities were stored for each instance. Using Receiver
Operating Characteristic (ROC) analysis, an opti-
mal threshold of label output probability oj , spe-
cific to subsample j, was determined to minimize
misclassifications. This threshold was determined
by maximizing Youden’s index (Youden, 1950),
which quantifies the trade-off between sensitivity
and specificity. Specifically, we computed

oj = arg max
x∈[0,1]

(
TPx

TPx + FNx
− FPx

FPx + TNx

)
,

where TP, FP, TN, and FN denote subsample j’s
number of true positives, false negatives, and so on,
based on a vector of classification correctness at
threshold x.

This threshold identification differs from conven-
tional ROC analyses, which typically rely on the
actual binary labels rather than their correctness.
With tailored confidence thresholds, the XLM-R
classifiers ensure reliable predictions while defer-
ring uncertain cases to downstream components.
Moreover, only classifiers with sufficient training
performance were employed at all.

In addition to fine-tuned XLM-R classifiers, sup-
port vector machine classifiers were trained using
XLM-R embeddings as the input features. With
a small number of entirely underfitting XLM-R
models, the SVM classifiers were designed as fall-
back classifiers before ultimately deferring to hu-
man scoring. While linguistic representation re-
mained consistent with XLM-R classifiers, SVMs’
distinct classification provided—despite somewhat
poorer accuracy—more robustness in scenarios
where datasets may be small, noisy, or skewed in
their class distribution.

As the threshold for inference certainty, SVM
classifiers used the arithmetic mean probability in-
stead of the ROC-based approach employed for
fine-tuned XLM-R models. This simpler threshold-
ing mechanism was chosen because SVMs were
applied only to responses that had already been
deemed uncertain by upstream models.

4 Empirical Evaluation

Omethi implemented as described above was evalu-
ated by simulating its flow on a real-world dataset.

4.1 Dataset and Instrument

In PISA (OECD, 2023), 15-year-old students take
tests in a total of three domains to assess their sci-
entific, mathematics, and reading literacy. For the
present study, we had available text responses for
all construct-response items from all Field Trials
and Main Studies for PISA 2018 and 2022. With
the complete data being too large for one evaluation
and its reporting, we sampled 11 datasets with di-
verse languages for the present paper: Arabic (Jor-
dan), Traditional Chinese (Chinese Taipei), Finnish
(Finland), English (U.S.), German (Germany),
Hebrew (Israel), Indonesian (Indonesia), Kazakh
(Cyrillic script; Kazakhstan), Korean (South Ko-
rea), Portuguese (Brazil), and Spanish (Spain). Cor-
responding to n = 270,445 students, this resulted
in a total of n = 3,773,728 responses that had al-
ready been assigned human scores in PISA with its
high quality standards (OECD, 2025).

The dataset comprised 160 items (89 reading,
39 math, and 32 science items), 121 with two and
39 of them with three score levels. Not all items
had been administered in all selected languages,
resulting in a total of 1,676 datasets (i.e., classifiers
to be trained). Sample items with corresponding
coding guides can be found on the OECD’s web-
site (OECD, 2025). Coding guides for some items
are simple, such as “Full credit is given when the
student states that the weight or size [. . . ] was
not provided . . .” (CR548Q09), others are more
complex, such as “Selects one of the names and
gives an appropriate explanation as described be-
low.” (with 19 explanations specified and mapped
to one of three different names; CR557Q14).

Table 1 shows exemplary responses for each do-
main. They are selected from coding guides re-
leased by the OECD and not from the evaluation
data set, because items in PISA are confidential
due to the assessment’s high stakes at the national
level, constraining the selection options. Note that
constructed-response items in math regularly in-
volve mathematical reasoning (sometimes, naming
a number), but rarely involve stating formulas.

4.2 Implementation

We used Python 3.11.5 and R 4.4.3 (R Core Team,
2025). For XLM-R, the base model2 with 279
million parameters was used. Due to the large num-
ber of required classifiers, hyperparameters and

2https://huggingface.co/FacebookAI/
xlm-roberta-base [2025-04-01]
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Domain Item ID Item Stem Sample Response Context

Math CMA159Q01 Peter thinks there is a greater prob-
ability of the arrow stopping on
blue in Spinner A than there is in
Spinner B. Is Peter correct?

Because 1
2

= 2
4

. He is not correct
because the probability is the same for
each spinner.

Details
(OECD, 2025)

Reading CR548Q09 With whom do you agree? Sam. These are only two texts and
more research is needed before a con-
clusion can be made.

Details
(OECD, 2025)

Science CS623Q03 What is the biological reason for
this effect?

Increasing sweat levels in high temper-
atures keeps the body from getting too
hot.

Details
(OECD, 2024)

Table 1: Sample PISA items and responses from released coding guides

settings were not tuned classifier-wise for compu-
tational constraints. Instead, a fixed batch size of
B = 32, learning rate of η = 5e−5, the AdamW
optimizer (Loshchilov and Hutter, 2017), and a co-
sine learning rate scheduler with warm-up were
used. Training was capped at ten epochs, with
early stopping after stagnating performance in three
consecutive epochs. Cross-entropy loss was used
for optimization. SVMs employed a Radial Basis
Function (RBF) kernel.

Classifiers were deployed only if they met min-
imum training performance thresholds (κ ≥ .300
for XLM-R and κ ≥ .900 for SVM) as mea-
sured by QWK (Quadratic Weighted Kappa; Co-
hen, 1960). F1-score is reported as F1 micro. Im-
portantly, in the reported evaluation, the final man-
ual scoring component was assumed to yield per-
fect accuracy, despite normal inconsistencies in
human scoring. That is, this component takes the
ground truth label, as provided by PISA’s human
raters, as its output. This assumption was made for
two reasons: (i) consistent estimates of inter-rater
agreements were not available for all subsamples,
and (ii) the substantial reduction in manual effort
could alter relevant rater cognition (Bejar, 2017)
and reliability (Padó and Padó, 2022).

Finally, due to computational constraints stem-
ming from the fine-tuning of many XLM-R models,
an 80/20 training-test-split was used for evaluation.

4.3 Results

All reported average values constitute means
weighted by sample size across all classifiers.3

3For the sake of readability, only a selected set of standard
errors is reported (in brackets) where comparisons may be
relevant. All result data is available upon request.

Acc (%) κ F1 ER (%)

Math 98.8 .972 .988 73.0
Reading 97.7 .954 .977 71.0
Science 97.7 .951 .977 67.3

Table 2: Omethi’s performance by domain

4.3.1 Performance by Domain

Omethi achieved very high agreement with human
scores, with an average κ = .957, TPR = .968,
and FPR = .977, alongside substantial manual ef-
fort savings (on average, ER = 70.5%). Notably,
these results include a share of responses scored
manually, as reflected in the effort reduction met-
ric, and assume perfect agreement for this subset.
Nonetheless, the reported figures represent the ex-
pected scoring quality if Omethi were deployed in
an operational setting.

Table 2 details the agreement and effort reduc-
tion across all domains. Scores showed the highest
agreement for math items with an average accuracy
of 98.8 percent [±0.1%], κ = .972 [±.003], and
an effort reduction of 73.0 percent [±1.2%], mean-
ing 27.0 percent of responses have been deferred
to human scoring. For the other two assessment
domains, Omethi scores showed marginally lower
but still very high agreement values, with accu-
racy at 97.7 percent [±0.1%] for reading and iden-
tical 97.7 percent [±0.3%] for science (κ = .954
[±.002] and κ = .951[±.005]), and an effort reduc-
tion of 71.0 percent [±0.8%] and, for science some-
what lower, 67.3 percent [±1.1%], respectively.

The overall high agreement for the majority of
classifiers across domains and languages with only
rare exceptions is visualized in Figure 2.

Distinguishing performance of individual auto-
matic components, Table 3 reports component-
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Figure 2: Omethi’s distribution of performance at the
item- and language-level across domains

wise agreement values, excluding manual scor-
ing during inference. The first three columns
show the agreement of the components’ automatic
score with human scores for the subset of re-
sponses that were scored by the respective com-
ponent for Omethi. For FLM, accuracy was at
AccFLM = 98.6 percent on average, XLM-R’s
performance was κXLM = .775 [±.011], and for
SVM, κSVM = .554. The fourth column (κauto)
shows agreement for all automatic components
combined, again only for the subset of responses
scored automatically; κauto = .804 [±.009]. The
last column (κXLMall) reports agreement as would
have been the case if all responses were scored by
XLM-R classifiers alone, showcasing the substan-
tial added value of the combination of automatic
scoring approaches beyond transformer finetuning
as displayed in the adjacent column on the left
(∆κauto,XLMall

= .093). The Appendix visual-
izes this gain of the Omethi pipeline over mere
XLM-R fine-tuning (see Figure 4). Similarly, Fig-
ure 5 (see Appendix again) shows that XLM-R
outperforms SVM for the majority of item- and
language-specific classifiers, which is in line with
the rationale underlying the component hierarchy,
while also showcasing the number of random-level
XLM-R classifiers, for which SVM was added as a
potential fallback.

4.3.2 Robustness across Languages
Table 4 displays Omethi’s agreement with hu-
man scores and effort reduction across subsamples,

AccFLM κXLM κSVM κauto κXLMall

Math 99.2 .715 .414 .765 .683
Reading 98.2 .792 .584 .845 .739
Science 98.8 .784 .600 .756 .677

Table 3: Performance for automatic components and
their combination (auto); responses deferred to manual
scoring excluded, except for XLMall

which includes, among others, different test lan-
guages. Overall agreement was homogeneously
high, with accuracy ranging mainly from 97.8
(Spain) to 99.0 percent (Jordan) and the exception
of Indonesia with 96.9 percent. In contrast, effort
reduction varies largely from 60.3 (Indonesia) to
76.1 percent (Chinese Taipei), showing how the im-
plemented scoring conditions effectively identified
instances that required human scoring. Similarly,
the shares of responses scored by different com-
ponents varied heterogeneously across subsamples
(see Appendix A, Table 6). For example, FLM
scored 29.5 percent of responses in the subsample
from Chinese Taipei (Traditional Chinese), which
stands in stark contrast to the one from Israel (He-
brew) with only 19.7 percent. For Spain (Spanish),
SVMs only scored 1.2 percent of the responses,
compared to Jordan (Arabic) with 9.8 percent com-
bined with an outlier of only 28.1 percent of suffi-
ciently confident scoring by XLM-R, whereas the
XLM-R classifiers for the U.S. (English) scored
even 52.2 percent of the responses.

Acc (%) κ F1 ER (%)

ara-jor 99.0 .965 .990 66.7
deu-deu 98.1 .961 .981 72.2
eng-usa 98.0 .959 .980 75.5
esp-esp 97.8 .957 .978 70.4
fin-fin 98.5 .969 .985 75.2
heb-isr 98.1 .961 .981 70.8
ind-idn 96.9 .928 .969 60.3
kaz-kaz 98.3 .962 .983 67.9
kor-kor 98.3 .965 .983 75.1
por-bra 98.4 .965 .984 72.0
zho-tap 98.1 .963 .981 76.1

Table 4: Performance and effort reduction by language,
incl. manual scoring
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4.3.3 Component Shares
Table 5 shows the percentage of responses scored
by the respective component due to meeting the
eligibility policy. FLM and XLM-R played the ma-
jor role for automatic scoring. With its position at
the end of the sequence of automatic components,
SVMs only played a minor role quantitatively. Nev-
ertheless, as shown in Table 6, there were settings,
such as the subsample from Jordan (Arabic) in
which the first automatic components do not per-
form well and SVM takes over some of the shares
to retain the homogeneously high level of accuracy.

The prevalence of different flows responses take
through the scoring components is displayed in Fig-
ure 3. Said cases where XLM-R and FLM do not
manage to score responses for which SVM takes
over are visible in the figure as the orange ribbon.
Moreover the figure disentangles the specific condi-
tions for why responses are not scored by specific
components.

5 Discussion

The results demonstrate Omethi’s effectiveness
in orchestrating multiple methods in an explicitly
designed, adaptive scheme for automatic scoring
across domains and languages while maintaining
uniformly high accuracy. With an average agree-
ment of κ = .957 compared to complete human
scoring and manual effort reductions of 70.5 per-
cent across domains, Omethi proves its feasibility
in and operational usefulness. Thus far, for PISA
data, effort reduction gains have been reported to be
smaller with other methods and data sets compris-
ing fewer test languages and assessment domains
(Andersen et al., 2023; Yamamoto et al., 2018).
Critically, the system’s hierarchical composition
and scoring conditions ensured that accuracy was
prioritized, resulting in varying effort reduction
across settings. It is important to note that manual
effort reduction here does not refer to the entirety of
human involvement in operational assessment pro-
cedures but only the share of automatically scored
responses during inference.

FLM XLM-R SVM Manual

Math 35.0 34.2 3.8 27.0
Reading 24.1 44.5 2.5 29.0
Science 18.4 46.0 2.8 32.7

Table 5: Proportions (%) of component usage

The importance of combining different method-
ologies was evidenced by the homogeneous ac-
curacy levels despite heterogeneous shares of re-
sponses being scored by different components
across domains and languages. Each component
in Omethi played a distinct role, contributing to
the system’s overall robustness. While FLM and
XLM-R dominated the scoring, partly due to their
position in the sequence, SVMs served as a crucial
fallback mechanism, stepping in when upstream
components failed to score confidently. Although
SVMs scored only a minor share of responses quan-
titatively, their role turned out as indispensable in
maintaining accuracy for certain subsamples. This
underscores the importance of the adaptive work-
flow, where eligibility policies diagnosed the risk of
misclassifications and led to passing on responses.

For identifying a confidence threshold as compo-
nents’ eligibility policy, the proposed maximizing
of the ROC-based Youden’s Index on misclassifi-
cations worked excellently for XLM-R classifiers.
Less so for SVM classifiers that were faced with
only the more challenging responses not scorable
by upstream components. Hence, this measure may
be added to the repertoire of threshold identifica-
tion methods, complementing fixed constants (e.g.,
Li et al., 2025) or the definition of minimum F1

scores as proxies (e.g., Bexte et al., 2024), but its
suitability needs to be verified.

Omethi’s strength in adaptivity may also intro-
duce challenges in ensuring equivalence and fair-
ness across test languages and subpopulations, ne-
cessitating careful validation and bias checks, as
bias is known to be potentially masked at the ag-
gregate level (Andersen et al., 2023). From an
operational standpoint, implementing Omethi in in-
ternational large-scale assessments would require a
rigorous quality monitoring.

For human raters, the implementation of such
a framework would result in multiple changes
that may affect rater cognition in positive or neg-
ative ways, or both. First, the number of re-
sponses decreases, potentially leading to less fa-
tigue, monotonous work, and slippage. Second,
raters’ oversight of frequent responses would di-
minish and would thus change so-called contrast or
context effects by preceding responses, an effect re-
peatedly found even in highly standardized settings
with well-trained raters (Attali, 2011; Meadows
and Billington, 2005). Third, both for automatic
systems as well as humans (Padó and Padó, 2022),
incorrect responses are more challenging to score.
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Figure 3: Share of response flows through Omethi’s components. Y/N (yes/no) = eligibility policy satisfied?

Accordingly, if classifiers with poor recall leave
human raters with a higher frequency of incorrect
responses, this also may show effects.

In conclusion, Omethi’s response-level adaptiv-
ity, combined with its capability to maintain high
accuracy across diverse contexts, positions it as a
powerful tool for operational employment in assess-
ments. While challenges may remain in, among
others, ensuring fairness, the system’s effectiveness
and flexibility pave the way for its operational use
and future enhancements. In follow-up studies, the
results presented here may be used to sample spe-
cific datasets informative to diverse facets to carry
out an evaluation in order to systematize perfor-
mance differences and identify optimal hyperpa-
rameters, respectively.

Ethical Considerations

The implementation of a framework such as Ome-
thi in large-scale assessments necessitates careful
attention to ethical principles, which is not always
at the forefront of attention (Holmes et al., 2022).
Fairness and the mitigation of bias are paramount,
as variability in component usage across languages
and cultures could lead to disproportionate dis-
advantages for certain groups. Rigorous valida-
tion and bias investigations are essential to ensure
equitable performance across diverse populations.
Transparency in the scoring process is critical to
fostering trust among stakeholders, including or-
ganizations such as the OECD, policymakers, and
test takers. Clear documentation of the system’s
decision-making mechanisms and limitations must
be provided to ensure interpretability and account-

ability. Additionally, equity in resource allocation
must be discussed, as disparities in system perfor-
mance between high- and low-resource languages
could exacerbate existing inequalities. Finally, the
increasing automation of standardized assessments
raises broader questions about their role in educa-
tion. While automation enhances efficiency and
scalability, it also risks amplifying uniformity, po-
tentially overlooking diversity facets.

Limitations

The study faces several limitations, primarily due
to computational constraints. With many test lan-
guages, items, and domains, a large number of item-
and language-specific classifiers were fine-tuned
using the XLM-RoBERTa base model. This scale
rendered classifier-specific hyperparameter tuning
via grid search computationally infeasible, necessi-
tating the use of fixed hyperparameters. Similarly,
k-fold cross-validation was not conducted due to
resource limitations, restricting the evaluation to a
single 80/20 train-test split.

The system’s runtime scales with the number
of components, complicating potential real-time
deployment in certain settings. Additionally, the
evaluation focused exclusively on operational data,
lacking comparison with public benchmarks or
standardized datasets. The use of human scoring
as the gold standard, particularly for responses de-
ferred to manual scoring, assumes perfect inter-
rater reliability, which may overestimate accuracy
in production.
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A Appendix

A.1 Proportions of Component Usage by
Subsample

FLM XLM-R SVM Manual

ara-jor 28.8 28.1 9.8 33.3
deu-deu 23.3 46.1 2.9 27.8
eng-usa 20.0 52.2 3.2 24.5
esp-esp 25.8 43.4 1.2 29.6
fin-fin 25.3 46.4 3.5 24.8
heb-isr 19.7 46.8 4.4 29.2
ind-idn 23.0 35.0 2.3 39.7
kaz-kaz 27.5 37.6 2.8 32.1
kor-kor 21.1 50.1 4.0 24.9
por-bra 28.8 39.8 3.4 28.0
zho-tap 29.5 44.1 2.5 23.9

Table 6: Proportions (%) of component usage by sub-
sample

A.2 Gains Beyond Mere XLM-R Fine-Tuning

Figure 4: Quadratic Weighted Kappa of XLM-R fine-
tuning applied to all responses and Omethi. The com-
plete Omethi pipeline, which includes XLM-R itself
and a share of human-scored responses, strongly outper-
forms XLM-R consistently (values above the diagonal).

A.3 XLM-R Fine-Tuning and SVM

Figure 5: Quadratic Weighted Kappa of XLM-R fine-
tuning applied to all responses and SVM. Generally,
XLM-R outperforms SVM for the majority of classifiers
(values above the diagonal), but SVM shows to be more
robust with respect to a number of XLM-R classifiers
only showing chance-level performance.
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