Analyzing Interview Questions via Bloom’s Taxonomy
to Enhance the Design Thinking Process

Fatemeh Kazemi Vanhari and Christopher Anand and Charles Welch
Department of Computing and Software
McMaster University
Hamilton, Ontario, Canada
{kazemivf, anandc, cwelch}@mcmaster.ca

Abstract

Interviews are central to the Empathy phase
of Design Thinking, helping designers un-
cover user needs and experience. Although
interviews are widely used to support human-
centered innovation, evaluating their quality,
especially from a cognitive perspective, re-
mains underexplored. This study introduces
a structured framework for evaluating inter-
view quality in the context of Design Think-
ing, using Bloom’s Taxonomy as a foundation.
We propose the Cognitive Interview Quality
Score, a composite metric that integrates three
dimensions: Effectiveness, Bloom Coverage,
and Distribution Balance Score. Using human-
annotations, we assessed 15 interviews across
three domains to measure cognitive diversity
and structure. We compared CIQS-based rank-
ings with human experts and found that the
Bloom Coverage Score aligned more closely
with expert judgments. We evaluated the per-
formance of LMA-3-8B-Instruct and GPT-40-
mini, using zero-shot, few-shot, and chain-of-
thought prompting, finding GPT-40-mini, es-
pecially in zero-shot mode, showed the high-
est correlation with human annotations in all
domains. Error analysis revealed that models
struggled more with mid-level cognitive tasks
(e.g., Apply, Analyze) and performed better
on Create, likely due to clearer linguistic cues.
These findings highlight both the promise and
limitations of using NLP models for automated
cognitive classification and underscore the im-
portance of combining cognitive metrics with
qualitative insights to comprehensively assess
interview quality.

1 Introduction

Design Thinking is a widely adopted framework
for creative problem-solving, particularly in areas
that require deep user understanding and human-
centered innovation. It typically progresses through
five iterative stages: Empathize, Define, Ideate,
Prototype, and Test. At the heart of this process

is the first stage, “Empathize”, enabling design-
ers to deeply understand users’ experiences, emo-
tions, and needs. It distinguishes Design Thinking
from purely analytical approaches by emphasizing
a human-centered perspective. This phase often
involves interviews, observations, and immersive
techniques, such as simulating real user experi-
ences, to uncover pain points and inform meaning-
ful design interventions (Brown, 2009; Org, 2015).
Among these methods, interviews play a vital role
by fostering open-ended, direct dialogue between
researchers and users. The quality of the interview
questions during this phase is especially critical,
as it shapes the depth, clarity, and diversity of re-
sponses, and ultimately influences the effectiveness
of the application’s design.

Despite the central role of interviews, there is
limited systematic guidance on how to structure
interview questions to encourage deeper cognitive
engagement. Many interviews rely on intuitive or
ad hoc question writing, often leading to unbal-
anced questioning that skews toward lower-order
thinking, such as remembering or understanding,
while neglecting higher-order processes such as
analyzing, evaluating, and creating (Anderson and
Krathwohl, 2001).

To address this gap, we propose a novel ap-
proach that takes advantage of Bloom’s Taxon-
omy, a widely used hierarchical framework that
classifies cognitive tasks into six categories: Re-
member, Understand, Apply, Analyze, Evaluate,
and Create (Bloom, 1956; Anderson and Krath-
wohl, 2001). Originally developed for educational
settings, Bloom’s Taxonomy has been effectively
adapted in recent years for use in question gen-
eration (Hwang et al., 2023), question classifica-
tion (Mohammed and Omar, 2018; Gani et al.,
2023), and curriculum evaluation (and, 2002). In
this study, we apply our approach to the domain of
interview question design within the context of De-
sign Thinking. Specifically, we investigate whether
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covering different levels of Bloom’s Taxonomy in
interview questions and responses has an effect on
the overall quality of interviews and contributes to
enhancing the Design Thinking process. Our anal-
ysis covers three interview subjects: Al Regulation,
Math Visualizer, and Grandfather Game.

We use Large Language Models (LLMs) to au-
tomatically classify both interview questions and
their responses according to Bloom’s Taxonomy.
Leveraging recent advances in prompt engineer-
ing techniques including zero-shot (Brown et al.,
2020), few-shot (Liu et al., 2023), and chain-of-
thought (CoT) prompting (Wei et al., 2022), we use
LLaMA-3-8B-Instruct, an instruction-tuned open-
source LLM, and GPT-40-mini, a lightweight pro-
prietary model from OpenAl optimized for fast
reasoning tasks, to assign Bloom levels based on
the cognitive demands of the text. We also intro-
duce a composite evaluation metric, the Cognitive
Interview Quality Score (CIQS), which integrates
Bloom effectiveness, coverage, and distribution
balance scores into a single measure to assess the
overall quality of interview questions.

To guide our investigation into the cognitive
quality of interviews and the role of automated
classification, this study is driven by the following
research questions:

RQ1: Does covering multiple levels of Bloom’s
Taxonomy in interview questions and responses
contribute to higher-quality interviews within the
Design Thinking process?

RQ2: Can LLMs, such as LLaMA-3-8B-Instruct
and GPT-40-mini, reliably classify interview con-
tent into Bloom’s cognitive levels across different
prompting strategies?

RQ3: To what extent do our CIQS-based au-
tomated rankings of interview quality align with
expert human evaluations across diverse interview
subjects?

2 Related Work

2.1 Automated Classification of Questions
Using Bloom’s Taxonomy

Bloom’s Taxonomy, originally introduced
by Bloom (1956) and later revised by Anderson
and Krathwohl (2001), has long served as a
framework for classifying learning objectives and
designing educational assessments. Numerous
studies have leveraged this taxonomy to guide
the construction of questions that effectively
target various cognitive levels, from simple

recall (Remember) to complex creative tasks
(Create). Chang and Chung (2009) developed a
keyword-based system aimed at automatically
classifying teachers’ questions according to
Bloom’s Taxonomy. By constructing a dictionary
that maps specific keywords to corresponding
cognitive levels, their system achieved a 75%
accuracy in identifying questions at the Remember
level. However, its performance declined for
higher-order levels, with accuracy ranging between
25% and 59%. Yahya and Osman (2011) explored
the effectiveness of machine learning techniques
by employing TF-IDF features combined with
Support Vector Machine (SVM) classifiers to
categorize 190 exam questions across Bloom’s
six cognitive categories. Haris and Omar (2012)
employed a rule-based classifier to categorize 135
computer programming examination questions
according to Bloom’s Taxonomy.

Building upon these methodologies, Mohammed
and Omar (2020) introduced an enhanced classi-
fication model incorporating TFPOS-IDF, a vari-
ation of TF-IDF that considers part-of-speech in-
formation, and pretrained word2vec embeddings
to capture semantic relationships. They evaluated
their model using kNN, Logistic Regression, and
SVM classifiers on datasets containing 141 and
600 questions. The SVM classifier exhibited supe-
rior performance, achieving weighted F1-scores of
83.7% and 89.7% on the respective datasets, high-
lighting the efficacy of integrating syntactic and
semantic features in question classification.

Liet al. (2022) conducted a study to automate the
classification of learning objectives according to
Bloom’s Taxonomy. They compiled 21,380 learn-
ing objectives from 5,558 courses at an Australian
university, manually labeled these objectives based
on Bloom’s six cognitive levels, and applied five
conventional machine learning algorithms—Naive
Bayes, Logistic Regression, Support Vector Ma-
chine, Random Forest, and XGBoost—as well as a
deep learning approach using the pretrained BERT
language model. Their findings demonstrated that
BERT-based classifiers outperformed others across
all cognitive levels, achieving Cohen’s  up to 0.93
and F1 scores up to 0.95. Additionally, SVM, Ran-
dom Forest, and XGBoost models delivered per-
formance comparable to BERT-based classifiers.
The study also revealed that constructing separate
binary classifiers for each cognitive level slightly
outperformed a single multi-class, multi-label clas-
sifier, suggesting that individualized models for
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each cognitive level may enhance classification ac-
curacy.

Gani et al. (2023) focused on automating the
classification of exam questions by evaluating var-
ious pretrained word embedding techniques, both
contextual and non-contextual, across two datasets.
Their study highlighted that while deep learning
and contextual embeddings improved classification
performance, their effectiveness was significantly
influenced by dataset characteristics. Similarly, Al
Faraby et al. (2024) assessed the capability of Chat-
GPT in classifying and generating questions. They
found that in generating questions from reading sec-
tions, the differences with human-generated ques-
tions were not significant, indicating ChatGPT’s
potential for educational content creation.

2.2 Automatic Evaluation of Questions

Recent advancements in natural language process-
ing have facilitated the automated evaluation of
open-ended question complexity using Bloom’s
Taxonomy. Raz et al. (2024) employed a fine-tuned
LLM to predict human ratings of question complex-
ity, demonstrating a strong correlation (r = 0.73)
between LLM-generated scores and human assess-
ments, outperforming traditional baseline measures
such as semantic distance and word count. Si-
mone A Luchini and Beaty (2025) investigated
the use of LLMs to assess the originality of nar-
ratives across multiple languages. They trained
three distinct LLMs to predict human originality
ratings of short stories written in 11 languages.
The first model, trained exclusively on English nar-
ratives, achieved a robust correlation (r = 0.81)
with human assessments. When this model was
applied to multilingual stories translated into En-
glish, it maintained strong predictive performance
(r > 0.73). Additionally, a multilingual model
trained on narratives in their original languages re-
liably predicted human originality scores across
all languages (r > 0.72). Hwang et al. (2023), ex-
plored an Al-driven approach to generating and
evaluating multiple-choice questions in introduc-
tory chemistry and biology, focusing on alignment
with Bloom’s Taxonomy. They employed zero-shot
prompting with GPT-3.5 to create questions, val-
idated their cognitive levels using RoBERTa, and
assessed question quality based on Item Writing
Flaws Moore et al. (2023). The findings indicate
that GPT-3.5 is capable of generating questions at
various cognitive levels, particularly excelling at
producing higher-order thinking questions at the

Evaluation level. However, discrepancies between
Al-generated and human-assessed Bloom levels
suggest the need for further refinement in question
generation methodologies. Additionally, the study
highlights an inverse correlation between Bloom’s
level and perceived question quality, indicating that
while Al can generate complex questions, it may
struggle with nuances in cognitive distinction and
clarity at higher taxonomic levels.

3 Methodology

3.1 Dataset

This study is based on a dataset of transcribed inter-
views collected to evaluate the cognitive depth of
questions and responses used during the “Empathy”
phase of the Design Thinking process. In this study,
the interviews focused on three distinct subject ar-
eas: Grandfather Game Application, Math Visu-
alizer Software, and Al Regulation (for a descrip-
tion of each area see Appendix B). These topics
were selected to ensure a variety of user perspec-
tives and cognitive demands, ranging from personal
storytelling to educational technology and policy
discussions.

A total of 15 semi-structured interviews were
conducted. Each interview consisted of both high-
level and low-level open-ended questions. Not
all questions were equally well-structured, as the
goal was to intentionally support a range of cog-
nitive levels in line with Bloom’s Taxonomy, en-
abling analysis across varying depths of reasoning
and understanding. The interviews were audio-
recorded with participant consent, transcribed us-
ing Microsoft Teams, and manually reviewed for
accuracy. Transcripts were anonymized and struc-
tured by role (interviewer/interviewee).

While the original transcripts included more en-
tries, we removed manually segments that were not
suitable for cognitive classification. This included
ice-breaker exchanges (for example, “Hi, how are
you today?”, “Thanks for joining us!”), affirma-
tions (for example, “yes”, “okay”), and expres-
sions of appreciation (for example, “thank you”),
all of which could not be meaningfully assigned
a Bloom’s level. After this filtering process, the
final dataset consisted of 726 entries, comprising
363 interview questions and their corresponding
363 responses. All questions and responses were
manually classified by one of the authors famil-
iar with Bloom’s Taxonomy levels. Our analysis
spans the three interview subjects: Al Regulation
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(274 entries), Math Visualizer (244 entries), and
Grandfather Game (208 entries).

3.2 Bloom-Level Classification Process

To classify each interview question and response
according to Bloom’s Taxonomy, we employed a
prompt-based strategy using two LLMs: LLaMA-
3-8B-Instruct and GPT-40-mini. We applied three
prompting techniques including: zero-shot, few-
shot, and CoT to guide the models’ responses.

In the zero-shot prompting approach, the model
receives a direct instruction to classify the input
into one of the six Bloom levels including: Re-
member, Understand, Apply, Analyze, Evaluate,
or Create, without being given any prior examples.
This method tests the model’s ability to rely on its
internalized knowledge of Bloom’s Taxonomy and
produces a fast baseline classification.

In few-shot prompting, we provide the model
with one labeled example for each Bloom’s Tax-
onomy level before introducing the target input.
These examples help calibrate the model’s under-
standing of the classification task.

Finally, we apply CoT prompting, which in-
structs the model to explain its reasoning before
presenting a final classification. This method en-
courages step-by-step cognitive processing, mak-
ing the model’s decision-making process transpar-
ent and auditable.

The purpose of this classifications is to evaluate
their alignment with human judgment and to inform
future efforts toward automating cognitive-level
assessment in interviews (see Section 4.1 for the
results).

3.3 Evaluation Framework

To assess the cognitive quality of interviews, we
used human-annotated Bloom’s Taxonomy classi-
fications for each question and response. Based
on these annotations, we calculated three key eval-
uation metrics: Effectiveness Score (ES), Bloom
Coverage Score (BCS), and Distribution Balance
Score (BDS), developed by the authors to capture
different dimensions of cognitive engagement. To-
gether, these metrics represent the Cognitive Inter-
view Quality Score (CIQS), a composite measure
reflecting the cognitive richness and structural di-
versity of each interview.

In this study, CIQS and its components were
derived from human classifications due to their
higher reliability. The following sections review
the components of the CIQS metric.

3.3.1 Effective Score (ES)

The Effectiveness Score measures how well each
interview question succeeds in eliciting the in-
tended level of cognitive engagement, as defined
by Bloom’s Taxonomy. Rather than evaluating
the question in isolation, this score is grounded in
a comparison between the cognitive level of the
question and the cognitive depth observed in the
interviewee’s response. This approach aligns with
the goals of the “Empathy” phase in Design Think-
ing, where the primary objective is not only to ask
meaningful questions but to generate equally mean-
ingful insights Brown (2009).

To calculate ES, first each question—response
pair is evaluated by comparing the intended cog-
nitive level of the question with the actual level of
the response, and rated according to this criteria:

* Highly Effective (2 points): The response ex-
ceeds the intended cognitive level (for exam-
ple, a question aimed at “Analysis” receives a
“Creative” response).

* Effective (1 point): The response matches the
intended cognitive level of the question.

* Needs Improvement (0 points): The response
falls below the intended level, indicating lim-
ited cognitive engagement.

After assigning these numerical values to each
pair, the ES for each interview is calculated as the
average score across all pairs:

D ie Si

n
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Effectiveness Score =

where s; € {0,1,2} is the score assigned to the
1-th question—response pair based on the mentioned
criteria, and n is the total number of pairs in the
interview. The resulting score ranges from 0 (all
questions need improvement) to 2 (all questions
are highly effective). This metric captures not only
the cognitive intent behind the questions but also
their real-world impact as demonstrated through
participant responses.

3.3.2 Bloom Coverage Score (BCS)

The Bloom Coverage Score evaluates the extent to
which an interview engages participants across the
six levels of Bloom’s Taxonomy. A higher BCS
indicates greater cognitive diversity, reflecting an
intentional design that stimulates a broad range of
thinking processes.
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This diversity is particularly important in the con-
text of Design Thinking, where complex problem-
solving requires movement across multiple cog-
nitive domains. Wu et al. (2021) propose a de-
sign thinking model explicitly structured around
Bloom’s Taxonomy, arguing that design thinking
can be taught and structured through cognitive pro-
cesses, from basic understanding to advanced cre-
ative generation. They emphasize that aligning
design tasks with Bloom’s full spectrum enables
learners and participants to progress systematically
from comprehension to innovation.

We define BCS as the number of cognitive lev-
els covered in the interview divided by the total
number of levels (6). The ideal BCS is 1.0, in-
dicating that all six Bloom’s levels are present at
least once. The metric focuses on whether each
level appears, not how often, encouraging diverse
cognitive coverage in interview design.

3.3.3 Distribution Balance Score (BDS)

While the BCS measures the number of Bloom’s
cognitive levels represented in an interview, it does
not reflect how evenly those levels are distributed.
A cognitively rich interview is not only diverse in
coverage but also balanced, ensuring that no sin-
gle level dominates. To address this, we introduce
BDS, which quantifies the uniformity of the cogni-
tive distribution across Bloom’s levels.

Let p; represent the proportion of questions clas-
sified into the i-th Bloom’s Taxonomy level, and
let n be the total number of Bloom levels ( n = 6).
The BDS is defined as:

BDS =1 — (2)

D ey (pi - %)2
n—1
n

This formula computes the squared deviation of
the observed distribution {p;} from a uniform dis-
tribution %, and normalizes it by the maximum pos-
sible imbalance, which occurs when all items are
concentrated in a single Bloom level. The squared
term ensures that both over and underrepresentation
contribute equally to the imbalance score, while pe-
nalizing larger deviations more. The BDS value
ranges between 0 and 1.0. A BDS of 1.0 indicates
a perfectly balanced distribution across all Bloom
levels, reflecting equal representation. Conversely,
a BDS of 0 signifies complete imbalance, with all
items concentrated in a single Bloom level.

The formulation of the BDS is adapted from
Pielou’s Evenness Index Pielou (1966), tradition-

ally used in ecology to assess distributional unifor-
mity. We apply this concept to measure cognitive
balance across Bloom’s levels. Unlike entropy-
based alternatives, our variance-based approach of-
fers greater simplicity and sensitivity to cognitive
imbalances. This metric encourages interviews that
span multiple cognitive levels in a well-distributed
and cognitively meaningful way.

3.3.4 Cognitive Interview Quality Score
(CIQS)

To provide a comprehensive assessment of inter-
view quality from a cognitive perspective, we pro-
pose the Cognitive Interview Quality Score. This
metric combines three core dimensions: practical
effectiveness, cognitive coverage, and structural
balance. CIQS is calculated using the following
weighted formula:

CIQS = 0.5 xES+ 0.3 x BCS+0.2 x BDS (3)

In this formula, Effectiveness is emphasized most
heavily to reflect the importance of empirical suc-
cess: questions must not only be well-designed but
must also stimulate the intended cognitive engage-
ment, as evidenced by actual responses Anderson
and Krathwohl (2001). Bloom Coverage receives
moderate emphasis for its role in encouraging di-
verse thinking pathways, while Distribution Bal-
ance contributes structural integrity without domi-
nating the evaluation. The weighting scheme (0.5
for ES, 0.3 for BCS, and 0.2 for BDS) was deter-
mined to prioritize cognitive alignment in actual
responses while still valuing breadth and balance.
This design is informed by principles from edu-
cational assessment and cognitive taxonomy the-
ory Anderson and Krathwohl (2001), though the
metric itself is introduced as part of this work. The
CIQS serves as a unified cognitive quality rating
for each interview, enabling systematic comparison
across topics or participant groups while supporting
iterative improvement in interview design.

3.4 Human Evaluation of Interview Quality

To validate the CIQS framework, we conducted
a human evaluation in which an expert (tenured
Professor) in design thinking independently ranked
the interviews across all three subjects. The ex-
pert ranked each interview based on its effective-
ness in uncovering useful information about the
user and their practices and needs. This qualita-
tive judgment served as a benchmark to assess how
well CIQS scores aligned with human-perceived
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interview quality. Comparing the CIQS rankings
with the expert’s rankings helps determine whether
cognitively focused metrics reflect what a human
evaluator considers a high-quality, informative in-
terview.

4 Experiments & Results

4.1 Evaluating Human-LLM Cognitive
Classification Agreement

One of the authors annotated all question-response
pairs in our dataset for their Bloom’s Taxonomy
level. To measure the agreement between LLM-
assigned and human-assigned Bloom’s Taxonomy
levels, we used Kendall’s Tau (7), which is well-
suited for ordinal data and provides a robust esti-
mate of correlation, particularly with small sample
sizes and tied ranks (Kendall, 1938). The results
are presented in Table 1, indicate that the zero-shot
GPT-40-mini achieved the strongest alignment with
human judgments in all domains: Al Regulation
(7 =0.58), Math Visualizer (7 = 0.47), and Grand-
father Game (7 = 0.56). Among LLaMA-3-8B-
Instruct models, the few-shot prompting yielded the
highest correlations overall, particularly in Al Reg-
ulation (7 = 0.33). In contrast, zero-shot prompting
under LLaMA showed very weak agreement across
subjects.

These findings suggest that GPT-40-mini, espe-
cially in zero-shot, is more reliable for capturing
cognitive-level distinctions in interview data, while
open-source LLaMA models show more limited
alignment with expert assessments. Performance
differences can be attributed to the models’ archi-
tectures and training methodologies. GPT-40-mini
(OpenAT’s distilled model) balances efficiency and
advanced reasoning, excelling in nuanced tasks.!
LLaMA-3-8B-Instruct, while optimized for dia-
logue and instruction-following, may require fur-
ther fine-tuning to match the classification accuracy
demonstrated by GPT-40-mini in this study.’

To identify which Bloom’s levels posed the
greatest challenges for LLMs, we generated sepa-
rate confusion matrices comparing the aggregated
predictions of LLaMA-3-8B-Instruct models and
GPT-40-mini models against human classifications
across Bloom’s Taxonomy levels, as presented in
Figures 1 and 2. The LLaMA ensemble, based on

"https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence

2https://huggingface.co/meta—llama/
Meta-Llama-3-8B-Instruct
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Figure 1: Confusion Matrix: LLaMA-3-8B-Instruct
Majority Vote Vs Human Classification.

majority voting, exhibited a strong overprediction
of the “Remember” category, leading to widespread
misclassification of responses originally labeled as
“Understand”, “Evaluate”, and “Create”. This pat-
tern suggests a tendency to default to lower-order
cognitive categories. In contrast, the GPT-40-mini
ensemble produced a more balanced distribution
across predicted classes, with higher accuracy in
identifying“Remember”, “Understand” and “Evalu-
ate”, and notably less confusion between the levels.

These findings are further supported by the
quantitative results reported in Tables 2 and 3.
The LLaMA-3-8B-Instruct models showed limited
alignment with human labels, with accuracy rang-
ing from 23.9% to 29.1% and macro F1-scores
below 0.19. Their highest macro precision and re-
call were 0.312 and 0.226, respectively, under the
Chain-of-Thought setting. In contrast, all GPT-40-
mini variants outperformed LLaMA across met-
rics. The Zero-shot GPT model achieved 53.7%
accuracy and a macro Fl-score of 0.511, while
Few-shot prompting reached a macro precision of
0.642. GPT models also showed stronger weighted
F1-scores, indicating better overall balance across
Bloom levels.

4.2 Evaluating Cognitive Dimensions of
Interviews with CIQS

To evaluate and compare the cognitive quality of in-
terviews across different topics, we applied our pro-
posed scoring framework, the Cognitive Interview
Quality Score, which combines three key dimen-
sions: Effectiveness Score, Bloom Coverage Score,
and Distribution Balance Score. As illustrated in
Table 4, Al Regulation achieved the highest CIQS
(0.88), supported by strong effectiveness (ES =
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Model and Prompting Technique Al Regulation Math Visualizer Grandfather Game
LLaMA-3-8B-Instruct Zero-shot 0.08 -0.01 0.01
LLaMA-3-8B-Instruct Few-shot 0.33 0.26 0.26
LLaMA-3-8B-Instruct Chain-of-Thought 0.18 0.09 0.33
GPT-40-mini Zero-shot 0.58 0.47 0.56
GPT-40-mini Few-shot 0.45 0.41 0.51
GPT-40-mini Chain-of-Thought 0.52 0.41 0.47

Table 1: Kendall’s Tau (7) correlation coefficients between model predictions and human annotations with highest

scoring models in bold.

Model Accuracy Macro Precision Macro Recall Macro F1 ~ Weighted F1
LLaMA-3-8B-Instruct Zero-shot 0.239 0.218 0.171 0.129 0.180
LLaMA-3-8B-Instruct Few-shot 0.285 0.222 0.225 0.155 0.205
LLaMA-3-8B-Instruct Chain-of-Thought 0.291 0.312 0.226 0.185 0.230

Table 2: Performance of LLaMA-3-8B-Instruct models across prompting techniques.

Confusion Matrix: GPT Majority Vote vs Human

Remember 49 3 0 0 0
Understand

Apply{ 0 6 16 0 2 0 100

True label
@
o

Analyze{ 0 29 2 18 3 0

Evaluate { 2 15 8 18 46 7 40

Create{ 0 6 6 0 0 18

predicted label

Figure 2: Confusion Matrix: GPT-40-mini Majority
Vote vs Human Classification.

1.01) and distribution balance (BDS = 0.80), de-
spite slightly lower Bloom coverage (BCS = 0.71).
This suggests that responses in Al-related inter-
views were well-aligned with the intended cog-
nitive levels and well-distributed, though not all
Bloom levels were equally represented. In contrast,
Math Visualizer interviews exhibited the lowest
CIQS (0.82), mainly due to a lower effectiveness
score, suggesting that responses did not consis-
tently reach the cognitive depth expected from the
questions. Grandfather Game fell in the middle
CIQS (0.84), showing relatively strong alignment
but narrower cognitive coverage.

This automated scoring approach enables an ob-
jective comparison of interviews based on cogni-
tive dimensions. However, cognitive depth is only
one aspect of interview quality. As part of future
work, we aim to explore additional metrics, such
as emotional engagement, relevance to interview
goals, procedural coverage, and question neutrality.
These dimensions emerged from the feedback we

received during our interview sessions on differ-
ent topics, where participants highlighted aspects
that contributed to more meaningful and engaging
conversations. These dimensions may offer a more
complete view of interview quality beyond what
Bloom’s taxonomy captures.

4.3 Evaluating the Alignment Between CIQS
and Human Rankings

Figures 3-5 compare CIQS-based rankings with
human expert judgments. Each CIQS score reflects
a weighted combination of ES, BCS, and BDS.

In AI Regulation, the expert ranked Interview 3
as the most effective and Interview 1 as the least,
while our CIQS-based scoring produced the op-
posite order and ranked Interview 3 as the most
effective, highlighting a misalignment between cog-
nitive structure (as captured by CIQS) and the ex-
pert’s judgment, which was based on how well each
interview uncovered useful information about the
user and their practices and needs. For Math Visu-
alizer, Interview 5 ranked highest by CIQS due to
perfect BCS and strong ES, while the expert pre-
ferred Interview 2 for its insightfulness. In Grand-
father Game, both approaches aligned on Interview
1 as the best, though discrepancies appeared in the
middle ranks. Notably, further analysis revealed
that Bloom Coverage Score more closely aligned
with human expert rankings than CIQS or other in-
dividual metrics. BCS showed moderate to strong
correlations with expert judgments across all do-
mains: (p = 0.50) in Math Visualizer, (p = 0.90)
in Grandfather Game, and (p = 0.71) in Al Regu-
lation. These results suggest that interviews with
broader cognitive coverage were more likely to
be perceived as informative and high-quality by
experts, contradicting our initial hypothesis that
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Model Accuracy Macro Precision Macro Recall Macro F1 ~ Weighted F1
GPT-40-mini Zero-shot 0.537 0.584 0.537 0.511 0.521
GPT-40-mini Few-shot 0.491 0.642 0.481 0.477 0.453
GPT-40-mini Chain-of-Thought 0.518 0.529 0.527 0.494 0.518

Table 3: Performance of GPT-40-mini models across prompting techniques.

Metric

Al Regulation Math Visualizer Grandfather Game

Effectiveness Score 1.01 0.84 1.00
Bloom Coverage Score 0.71 0.80 0.64
Distribution Balance Score 0.80 0.82 0.75
Cognitive Interview Quality Score 0.88 0.82 0.84

Table 4: Cognitive evaluation scores across interview subjects with highest scores in bold.

Figure 4: Math Visualizer: CIQS vs Human Rankings.

Effectiveness Score would play the most influen-
tial role in overall evaluation. To further investi-

gate this we performed a linear regression to learn
the coefficients for Equation 3 that best align with
the human expert rankings. We found that BCS
had the highest coefficient but that values varied
across domains with ES and BDS less consistently

in their impact. While more work is needed to de-

termine which factors most correlate with human
judgments, these preliminary results suggest that
BCS is more impactful and that other attributes of
the topic may be relevant in expert decisions (for
full regression details, see Appendix C).

The results suggest that While CIQS captures

Figure 5: Grandfather Game: CIQS vs Human Rank-
ings.

the cognitive structure of interviews, human eval-
uations often consider additional factors such as
relevance, clarity, emotional engagement, and pro-
cedural detail. This highlights the value of combin-
ing cognitive metrics with qualitative insights for a
more complete assessment of interview quality.

5 Discussion

RQ1: Our results suggest that interviews cover-
ing a broader range of Bloom’s cognitive levels
(higher BCS) tend to be ranked more favorably by
the human expert, indicating greater cognitive di-
versity. This supports the hypothesis that cognitive
richness, particularly through varied questioning
strategies, enhances the quality of interviews in the
Design Thinking context. However, alignment with
human expert rankings was not always consistent,
implying that additional qualitative dimensions (for
example, emotional engagement and the inclusion
of procedural information) also influence perceived
interview quality.

RQ2: The outputs from LLaMA and GPT-40-
mini demonstrated partial alignment with human
annotations, showing that LLLMs have the poten-
tial to support cognitive level classification. GPT-
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40-mini, in particular, showed stronger agreement
with human labels across prompting strategies, es-
pecially in zero-shot settings. However, inconsis-
tencies across domains and between models re-
veal that current LLMs are not yet fully reliable
as standalone evaluators. While their performance
is promising for future automation efforts, fine-
tuning and prompt engineering may be necessary
to achieve consistent, human-comparable accuracy.
RQ3: The CIQS rankings showed partial align-
ment with expert human evaluations, with higher
consistency in the Grandfather Game domain (7
= (0.40) and greater divergence in Math Visualizer
(7 =-0.8) domain. These differences suggest that
while CIQS effectively captures the cognitive struc-
ture and balance of interviews, human experts often
consider additional qualitative dimensions, such as
emotional engagement, relevance to user needs,
and the inclusion of procedural information, that
are not directly encoded in cognitive metrics. As
such, CIQS serves as a valuable and scalable start-
ing point for evaluating interview quality, but it
should complement qualitative assessments.

6 Conclusion & Future Work

This study introduced a cognitive evaluation frame-
work for interview quality based on Bloom’s Tax-
onomy, applied within the context of Design Think-
ing. We proposed the CIQS, a composite metric
incorporating effectiveness, coverage, and distribu-
tion of cognitive levels. Using human-annotations,
we collected and evaluated 15 interviews across
three domains to measure the cognitive diversity
and structure of interview content. We compared
CIQS rankings with expert judgments, finding that
while they are partially aligned, BCS correlates
more strongly with human rankings than CIQS or
other individual metrics, suggesting that breadth is
especially valued by experts. GPT-40-mini, partic-
ularly in zero-shot, showed the highest agreement
with human Bloom level annotations (up to 7 =
0.58), outperforming LL.aMA-3-8B-Instruct.
These findings suggest that while CIQS effec-
tively captures the cognitive structure of interviews,
human evaluations often prioritize additional fac-
tors such as relevance to user needs, clarity, emo-
tional engagement, and procedural depth. This
highlights the importance of complementing cog-
nitive metrics with broader qualitative dimensions
for a more comprehensive assessment of interview
quality. In future work, we plan to refine CIQS by

exploring alternative weighting, incorporating addi-
tional qualitative indicators, and fine-tuning LLMs
for more accurate, autonomous classification of in-
terview content based on Bloom’s Taxonomy. To
support continued research, we will release our cor-
pus of 726 question—response pairs spanning three
domains to support future work.

Limitations

The main challenge of this and any study of De-
sign Thinking effectiveness is the maxim “savour
surprises”, by which design thinkers mean that the
most important information is usually the informa-
tion which was not anticipated and not planned for.
This is because this information is the most likely
to invalidate a design made without in-depth user
interviews, or to lead to a new product category
which was not previously contemplated Furr and
Dyer (2014). At this stage, we are not trying to
identify such surprises, but ultimately, a research
program aiming to improve design education will
have to address it.

A more immediate limitation of this study is the
use of a single human expert. Experts in teach-
ing and evaluating design thinking are uncommon
and in demand in academia and industry. To in-
crease the number of evaluators, it will be nec-
essary to streamline the process so that it is less
time-consuming.

Another limitation of this study is that even the
human evaluator is not evaluating what we ulti-
mately care about: the acceleration of the innova-
tion process through better design interviews. We
do not know whether interviews ranked highly by
human experts actually lead to higher rates of in-
novation. Once automated metrics are found with
higher levels of agreement with human experts, val-
idation studies including the full development cycle
from initial interviews to product validation will be
necessary.

Role-playing can be challenging depending on
the task. For our Al interviews, we noticed a lack
of procedural information and emotion, where we
expected more of both. We think it is not trivial
for most people to role-play older individuals or
versions of themselves. We suggest future work in
this direction borrows from more established fields
to set up experiments involving perspective-taking,
e.g. work on empathy Batson et al. (2002).

Finally, since our intermediate goal is to produce
tools useful for teaching design skills, it is disap-
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pointing that the proprietary LLM greatly outper-
formed the open-source LLM. Many school boards
and higher education institutions will be reluctant
to submit their students’ data to proprietary LLMs
which they cannot control. In our study, we used
role-playing by sophisticated professionals, gradu-
ate students and upper-year undergraduate students
to produce a data set for training and evaluation.
In teaching scenarios, it would be much harder to
insure that personal information would not lead
into the interviews. Moreover, when you initially
describe the data set, you need to use similar lan-
guage to say that this data is designed to not include
personal information. Finally, a data set generated
using role-playing may be fundamentally different
from real design interviews in a way which effects
the validity of the metrics.

While Bloom’s Taxonomy provides a useful scaf-
fold for assessing cognitive engagement, it has
known limitations. The taxonomy does not ex-
plicitly model underlying mental processes such
as perception, memory, and intuition, and some
categories may overlap in practice—for example,
extrapolation under “Understand” often resembles
“Apply.” Furthermore, the hierarchy between “Ap-
ply”, “Analyze”, and “Create” has been critiqued
as insufficiently nuanced. Future extensions could
explore integrating more adaptive taxonomies that
better capture the fluid and context-dependent na-
ture of reasoning in design interviews (Madaus
et al., 1973).
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7 Appendix
A Prompts Used for LLM Classification

This appendix provides the exact prompts used
to classify interview questions and responses into

cognitive levels according to Revised Bloom’s Tax-
onomy, using different prompting techniques.

Zero-Shot Prompt

You are a cognitive science expert that categorizes
text into one of the Revised Bloom’s Taxonomy
levels.

You must respond with only one word: one of the
following levels: Remember, Understand, Apply,
Analyze, Evaluate, or Create.

Do not provide any explanation, reasoning, or ad-
ditional text. Only return the level name in the
following format.

Classification: <One of the six Bloom’s levels>

Few-Shot Prompt

You are a cognitive science expert trained in Re-
vised Bloom’s Taxonomy.

Classify the following text according to Revised
Bloom’s Taxonomy levels: Remember, Under-
stand, Apply, Analyze, Evaluate, or Create.
Examples:

Text: "List the main components of design think-

ing.

Classification: Remember

Text: "Explain the theory of cognitive load."
Classification: Understand

Text: "How would you apply Pythagoras’ theorem
to calculate the height of a building?"
Classification: Apply

Text: "Identify patterns in customer behavior based
on the provided dataset."

Classification: Analyze

Text: "Evaluate the effectiveness of renewable en-
ergy sources compared to fossil fuels."
Classification: Evaluate

Text: "Design a new marketing strategy for launch-
ing a product."”

Classification: Create

Do not provide any explanation, reasoning, or ad-
ditional text. Only return the level name in the
following format.

Classification:<One of the six Bloom’s levels>

Chain-of-Thought Prompt

You are a cognitive science expert in Revised
Bloom’s Taxonomy.

Your task is to classify a given text into one of the
Revised Bloom’s Taxonomy cognitive levels:
Remember, Understand, Apply, Analyze, Evaluate,
or Create.

Text: {input-text}
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First, explain your reasoning step by step based on
what the text requires cognitively.

Then, based on your explanation, select the most
appropriate Bloom’s level from (Remember, Un-
derstand, Apply, Analyze, Evaluate, Create) using
the following format:

Classification: <One of the six Bloom’s levels>
Note: For all classifications, the following model
parameters were used:

Temperature = 0.0, Max tokens = 500.

B Description of Interview Topics

This study includes interviews conducted on three
different design topics, each selected to represent
different cognitive and contextual demands. The
topics were used to simulate early-stage Design
Thinking sessions and assess the cognitive qual-
ity of interview interactions.The participants in this
study included a mix of students or recent graduates
and university professors, some of whom had prior
experience with Design Thinking. To maintain
anonymity, they were instructed to avoid disclosing
any real personal information. Depending on the
interview topic, participants were asked to adopt
specific roles. In the Math Visualizer interviews,
they were asked to act as university students; in the
Grandfather Game interviews, they assumed the
perspective of older adults; and in the Al Regula-
tion interviews, they portrayed individuals using
Al platforms in organizations such as schools or
businesses. Interviewers were instructed to engage
naturally while focusing on uncovering user needs
and generating meaningful insights.

B.1 Al Regulation

This topic explores public perceptions, concerns,
and expectations surrounding the regulation of ar-
tificial intelligence. The interviewees were asked
about their understanding of Al technologies, trust
in regulatory frameworks, and suggestions for eth-
ical oversight. The domain encourages abstract
reasoning and evaluative thinking about policy and
technology.

B.2 Math Visualizer

This topic focuses on the use of visualization tools
in learning mathematics. Participants discussed
their personal experiences with visual learning, the
challenges they face in understanding mathematical
concepts, and ideas for improving visual interfaces.

B.3 Grandfather Game

This topic centers on designing a game that would
appeal to older adults. Participants were asked to
reflect on their childhood memories, personal in-
terests, and previous gaming experiences to inform
the creation of engaging and age-appropriate game
concepts.

C Linear Regression for CIQS

We can predict the human rankings of design
thinking interviews with the CIQS score by learn-
ing coefficients for Equation 3. We predict the
coefficients with intercept for each conversation
topic. The equation for the Grandfather Game
topic is shown in Equation 4 and yields R? = 0.51
which matches human ranking. Similarly, for Al-
Regulation, we get R? = 0.99 for Equation 5.
Lastly, for the Math Visualiser we get Equation 6
with R? = 0.58. Here we are predicting the rank
(lower is better) with the same terms, which is dif-
ferent than ranking by the maximum score as we
did in the main part of the paper, however, it serves
the same function and supports our claims that BCS
is the most important term and the impact of factors
appears to vary with the domain.

CIQS = —11.0 x ES — 25.0 x BCS
+ 9.2 x BDS + 22.9 “)

CIQS = —13.6 x ES — 3.6 x BCS
4+ 53.5 x BDS — 23.1 )

CIQS = 21.0 x ES — 18.8 x BCS
—13.0 x BDS + 11.1 (©)
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