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Abstract

Automatic Short Answer Grading (ASAG)
refers to automated scoring of open-ended tex-
tual responses to specific questions, both in
natural language form. In this paper, we pro-
pose a method to tackle this task in a setting
where annotated data is unavailable. Crucially,
our method is competitive with the state-of-the-
art while being lighter and interpretable. We
crafted a unique dataset containing a highly
diverse set of questions and a small amount
of answers to these questions; making it more
challenging compared to previous tasks. Our
method uses weak labels generated from other
methods proven to be effective in this task,
which are then used to train a white-box (lin-
ear) regression based on a few interpretable
features. The latter are extracted expert fea-
tures and learned representations that are in-
terpretable per se and aligned with manual la-
beling. We show the potential of our method
by evaluating it on a small annotated portion
of the dataset, and demonstrate that its abil-
ity compares with that of strong baselines and
state-of-the-art methods, comprising an LLM
that in contrast to our method comes with a
high computational price and an opaque rea-
soning process. We further validate our model
on a public Automatic Essay Scoring dataset
in English, and obtained competitive results
compared to other unsupervised baselines, out-
performing the LLM. To gain further insights
of our method, we conducted an interpretability
analysis revealing sparse weights in our linear
regression model, and alignment between our
features and human ratings.1

1 Introduction

Applications of Large Language Models (LLMs)
are emerging in the field of education and have

1Code available at furrutiav/unasages-bea2025

taken complementary roles to those of teachers
(Jeon and Lee, 2023). For instance, LLMs have
been used, with mixed results, to train teachers to
learn new strategies (Wang and Demszky, 2023).
One aspect of education that can greatly benefit of
automation is that of grading or scoring (Lan et al.,
2024). Such automation could greatly improve the
flexibility of teaching and target on the fly specific
educational shortcomings of students.

In this work, we focus on two of these au-
tomations: (i) Automatic Short Answer Grad-
ing (ASAG) and (ii) Automatic Essay Scoring
(AES); both instances of automated scoring for
open-ended questions. More specifically, ASAG
focuses on grading short, open-ended responses.
These responses are typically a few sentences to a
paragraph long and are often fact-based, requiring
concise answers. In contrast, AES evaluates longer,
more complex pieces of writing, which typically
contain an introduction, body, and conclusion, and
involve argumentation, analysis, and critical think-
ing. AES is one of the earliest research problems
in natural language processing (Page, 1966, 1967).

One crucial aspect of automated grading on
open-ended questions is the ability to interpret the
grade. The machine learning community has prior-
itized increasing explainability in models, leading
to the emergence of Explainable AI. This area fo-
cuses on building tools to understand the decisions
made by learning models (Gunning et al., 2019;
Arrieta et al., 2020; Fel et al., 2022), or even advo-
cates for the sole use of white-box models (Rudin,
2019). However, white-box models typically dis-
play poorer performances compared with black-
box ones (Loyola-Gonzalez, 2019). Thus, in line
with the explainable trend, recent methods have
focused on developing novel tools to increase the
performance of white-box models, sometimes up
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Figure 1: Full process. Phase 1, Generation of Weak Labels using Unsupervised methods: Signal Clustering (Chen
et al., 2010a) or through an LLM (Jiang et al., 2023b). Phase 2, domain Expert Features (EFs) extraction and
Natural Language Learned Features (NLLFs) obtained from answers to Binary Subtask Questions (BSQs) (Urrutia
et al., 2023). Phase 3, feature selection, interpretable model training and analysis.

to that of black-box models (Urrutia et al., 2023).
Finally, most studies rely on supervised learn-

ing with annotated datasets (Takano and Ichikawa,
2022; Bonthu et al., 2023; Zhang et al., 2022),
where a few items are associated to many anno-
tations. A situation that is barely encountered in
real-life scenarios. Moreover, only a few works
in this area focus on non-English language (Latif
et al., 2024). The majority of them are restrained
to English, and none of them in (Latin-American)
Spanish.

Motivation and Contributions. In this work, we
tackle the issues raised above in a single framework
(see Figure 1). First, we propose a method that al-
lows us to reach high performance in ASAG and
AES tasks in an unsupervised way. Second, we
show the potential of our model to create inter-
pretable white-box predictions based on sparse fea-
tures, in a setting where strong generalization abil-
ities are required because of highly diverse ques-
tions with a few answers.

Therefore our contributions are as follows: (i)
we present a novel Non-English language dataset
that is particularly challenging for ASAG systems,
as it involves many questions with few answers,
(ii) we propose a novel framework that unifies un-
supervised and supervised methods into a single
ASAG/AES system. In particular, we use weak
labels from opaque unsupervised methods for su-
pervised learning in white-box models, (iii) we
propose a way to maximize the impact of the best-
labeled training examples by weighting the loss

function regarding the degree of consensus between
each weak label, (iv) we compare our method with
strong ASAG and AES baselines on two distinct
datasets of different languages, and show that our
method significantly outperforms previous white-
box models, and falls barely short to LLM-based
ASAG or to SOTA AES, (v) we run a thorough
analysis on the AES dataset to demonstrate the
interpretability of our method by: looking at our
model’s sparse weights, comparing it with SOTA
using their integrated gradients but also showing
our features are aligned with humans scores.

2 Related Work

In the context of ASAG, several methods have been
proposed. Recent work has focused on generating
understandable scoring by decomposing items (i.e.,
questions and responses to math problems) into
rubrics whose validity can be inferred with lan-
guage models (Hellman et al., 2023). Similar work
have focused on directly fine-tuning pre-trained
language models for ASAG (Takano and Ichikawa,
2022; Bonthu et al., 2023; Zhang et al., 2022), or
training language models only based on student re-
sponses (Steimel and Riordan, 2020). Some works
developed a hybrid ASAG system that evaluates an-
swers to mathematical questions based on determin-
istic methods and the quality of explanations using
text-based scoring methods (Cahill et al., 2020).
Note that many semi-supervised (Brooks et al.,
2014; Weegar and Idestam-almquist, 2024; Basu
et al., 2013) or similarity-based methods (Bexte
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et al., 2023) allow to use less labels, but they still
need some of them.

In the context of AES, Taghipour and Ng (2016)
were pioneers in training neural networks for AES,
using a CNN-LSTM on the Automated Student As-
sessment Prize (ASAP; Hamner et al. 2012) dataset.
Even though supervised models remain the most
efficient (Yang et al., 2020), unsupervised methods
like the one we are proposing show promising re-
sults. For instance, AESPrompt (Tao et al., 2022)
obtains competitive results in one-shot essay scor-
ing using continuous prompt learning. Wang et al.
(2023) created a fully unsupervised approach using
heuristic signals learning as a proxy task, as ulti-
mate goal to train a BERT-based essay scorer, and
obtained state-of-the-art performances on ASAP.
Recent works have focused on the ability of LLMs
to automatically score the proficiency of written
essays on ASAP (Mansour et al., 2024; Lee et al.,
2024). Stahl et al. (2024) even proposed prompt-
ing strategies for joint essay scoring and feedback
generation to gain more interpretability.

Regarding general explanability, techniques that
could be used for ASAG and AES such as Chain-
of-Thought (CoT) (Wei et al., 2022) can provide
a superficial level of explanation but are prone
to structural biases in the text that put in ques-
tion their fidelity (Turpin et al., 2023; Paul et al.,
2024). Moreover, these techniques are fragile as
pre-trained language models show lack of robust-
ness on adversarial or unusual writing (Lottridge
et al., 2023). Importantly, these writing types are
often present in the answers of young children like
in the ASAG dataset of this study.

3 Methods

The task of automatically assigning scores to short
answers/essays involves finding a model M that
assigns a score ŷi between 1 and Smax to each pair
of question/answer or instruction/essay. First, we
use unsupervised methods to create weak labels.
Second, we represent every document using inter-
pretable features. Third, we select features and
train a non-negative linear regression model on the
weak labels, using a special loss to maximize the
weak labels quality. We show the model is both
white-box, sparse and interpretable.

Weak-supervision We propose to train an unsu-
pervised model M by leveraging high-level heuris-
tic signals, or weak labels. Our method (see Figure
1, Phase 1) involves utilizing two distinct signals:

(i) scores derived from the unsupervised Signal
Clustering method (SC; Chen et al. 2010b, see be-
low) and (ii) scores obtained from an LLM using
zero-shot in-context learning. For a given question-
answer/instruction-essay pair (qi, ai), we denote
as Zi the signal of the answer with SC or LLMi

the LLM-based signal. To weakly-supervise the
training of M , we use yi = Zi or yi = LLMi in
order to minimize the loss function L(ŷi, yi).

Signal Clustering (or Z-score) Based on Chen
et al. (2010a), this method is simple yet allows
for surprisingly good results in unsupervised au-
tomatic essay scoring. Basically, it initialize each
essay score with a simple value, and then iteratively
propagates the scores to other samples in the same
cluster. For their essay scoring task, the authors
of the original paper used the number of unique
terms in the answer as the initial score. It uses the
following inductive formula:

Zi0 : Initial score for the i-th answer,

Sit =
∑

j ̸=i

Simij · Zi(t−1),

Zit =
Sit − 1

N−1

∑
k ̸=i Skt

σt
,

where Sit is the score for the i-th answer at step
t, Simij is the similarity between the i-th answer
and the j-th answer, and Zit is the Z-score of the
i-th with σt the standard deviation of S·t at step t.
We call Zi the Z-score of the i-th answer at final
step. We update Zi until convergence.

Interpretable Features Following the work of
Urrutia et al. (2023), we incorporated a set of
expert-derived features (EF) coming from expert
domain knowledge, and also high-level explainable
features such as Natural Language Learned Fea-
tures (NLLF; Urrutia et al. 2023). NLLFs encode
answers to simpler-than-the-task binary questions,
called Binary Subtask Questions (BSQs), into a
human-readable feature vector. It allows the model
to represent each sample as a vector of probabilities
on other interpretable simpler sub-tasks, like "Is
the answer written clearly and concisely?". More
details are available in (Urrutia et al., 2023) and
in Appendix B. We also use the concatenation of
both type of features (EF+NLLF). For EF, we use
in ASAG/AES a list of 36/14 hand-crafted features,
to describe the answers to math questions/essays
(Table 6/7 in Appendix). Figure 1 shows the feature
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Question

Don Antonio bought 3 boxes of cereal at $673
each. The seller charged him $2100. Is what they
charged him correct? Explain in your own words.

Answers
If Don Antonio bought 3 boxes, it’s fine.
No, because he should be charged less.
It’s not wrong, I got 2019.

Score
{2, 3}
{4, 3}
{6, 7}

Figure 2: Examples of a Question, Answers and Scores from our ASAG dataset. Translated from Spanish.

extraction in Phase 2, with an example of BSQ and
the NLLF vector for an essay.

Interpretable Model: Linear Regression We
trained a linear regression on two types of weak
labels (see Figure 1, Phase 3).

Signal Filtering We propose a method to maxi-
mize the impact of well-labeled examples through
the weighting of the loss function with respect to
the degree of consensus among weak labels (see
Figure 1, Phase 3). Basically, we compute linear
weights utilizing the difference between the pre-
dicted scores generated by the LLM and the ones
derived from the Signal Clustering method, both of
which obtained in a unsupervised way. For a given
question-answer pair (qi, ai) and weak-label yi ∈
{Zi,LLMi}, the weighted loss is wSF

i · L(ŷi, yi),
where:

wSF
i = 1− |Zi − LLMi|

Smax − Smin
.

Feature Selection In order to keep our model
interpretable, we used two tricks (see Figure 1,
Phase 3). First, we only chose BSQs formulation
that were positively correlated with the score of the
student2 i.e., describing events that were seen as
positive by the teacher. Second, we forced the lin-
ear regression model to learn only positive weights
(Slawski and Hein, 2013) as they are applied on
features that are positives w.r.t. the score. Section
5 shows that this setting allows for sparsity in the
parameters space of the linear regression model.

4 Experiment and Results

4.1 Datasets and Evaluation Metrics

We ran experiments on two distinct tasks using two
datasets in different languages. The first set of ex-
periments (Section 4.1.1) tackles ASAG in Spanish
while the second set of experiments (Section 4.1.2)
tackles AES in English.

2using weak labels

Task Genre Avg. Length Score Range # Essays

1
PER

350 2-12 1783
2 350 1-6 1800
3 150 0-3 1726

4
SDE

150 0-3 1772
5 150 0-4 1805
6 150 0-4 1800

7
NAR

250 0-30 1569
8 650 0-60 723

Table 1: Properties of the different tasks in the AES
dataset called ASAP. Genre: PER (persuasive), SDE
(source-dependent), NAR (narrative).

4.1.1 Automatic Short Answer Grading in
Spanish

The dataset comprises written answers from fourth-
grade students to mathematics questions. The
question-answers pairs were collected using the
online e-learning platform ConectaIdeas, which is
currently deployed and use by teachers and stu-
dents in Chile. Its data was already used in past
scientific studies (Urrutia Vargas and Araya, 2023;
Urrutia and Araya, 2023). It encompasses a total of
63,612 answers to 1,248 unique questions collected
across two academic years. The answers were ob-
tained from a total of 3,463 fourth-grade students,
with 231 for the 2017 period and 3,232 for the 2022
period. The answers have on average a total of 50
characters. Each question has on average a total of
52 answers per question for 2022 and 30 for 2017.

The data are annotated based on the scoring of
answers for one academic year (2017). Answers
from the unlabeled academic year are utilized to
train automatic systems, while those from the la-
beled academic year serve as a test set for evalu-
ating the performance of these systems. Annota-
tion was conducted by two elementary mathematics
teachers, assigning scores ranging from 1 to 7 (i.e.,
from insufficient to excellent). Only the scores
from one teacher were utilized as the ground-truth,
while the scores from the other teacher were uti-
lized to analyze human performance, in this sense
we can make a model that predicts the grading be-
havior of one teacher. We calculate the agreement
between their scores and obtained a Correlation of
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Method Weak Signal Signal Filt. Text EF NLLF EF + NLLF
Length None - .2734 - - -
Jaccard Sim. None - .2758 - - -
Cosine Sim. None - .3759 - - -

ULRA
LF - .5112 - - -
EF - .4264 - - -
EF+LF - .4218 - - -

Z-score None - .5104 - - -
LLM None - .5727 - - -
LLM-CoT None - .4778 - - -

Linear Regression

Z-score ✗ - .4937 .3853 .5096
LLM-based signal ✗ - .4815 .3538 .4312
Z-score ✓ - .5018 .3899 .5450
LLM-based signal ✓ - .4974 .3712 .4791

BERT

Z-score ✗ .5220 - - -
LLM-based signal ✗ .5085 - - -
Z-score ✓ .5280 - - -
LLM-based signal ✓ .5430 - - -

Human None - .7568 - - -

Table 2: Results of the ASAG models using Pearson correlation: the cheap baselines using similarity, the ULRAs
using different weak linguistics signals, the Z-score and LLM predictions, and our weakly supervised models. For
the weakly supervised models, the linear model utilizes all combinations of two feature sets (EF and NLLF), while
the BERT model is trained on text data.

.76. Figure 2 shows an example of the dataset.

4.1.2 Automatic Essay Scoring in English
We ran experiments using the Automated Student
Assessment Prize3 (ASAP) dataset (Hamner et al.,
2012). This dataset has been widely used in several
AES studies (Xie et al., 2022; Jiang et al., 2023b;
Muangkammuen and Fukumoto, 2020; Mansour
et al., 2024; Mathias and Bhattacharyya, 2018). For
instance, it has been used by Wang et al. (2023) to
assess the ULRA model for an usupervised AES
task. It is composed of 12,978 essays divided into
8 different sets. Each of the sets corresponds to a
specific essay task or prompt, which can be seen
as domain. The tasks are of different genres: per-
suasive, source-dependent response, and narrative.
The statistics of the dataset is shown in Table 1.

As a validation metrics, we report Quadratic
Weighted Kappa (QWK) in order to compare the
different models, generally utilized to measure the
agreement between groundtruth scores and pre-
dicted scores on this dataset and in AES research.

4.2 Baselines

Dummy Baseline We use a regression model
based on the answer length in terms of number of
characters.

Similarity Measures We calculate the similar-
ity between the question and the answer to assess

3https://www.kaggle.com/c/asap-aes

its correctness based on the shared information be-
tween them.We use two methods: Jaccard Similar-
ity on sparse embeddings (Bag-of-Words; (Harris,
1954)), and cosine similarity with dense vectors ob-
tained from the [CLS] token of a multilingual Sen-
tence Transformer (Reimers and Gurevych, 2019).

Signal Clustering (Z-score) Based on Chen
et al., we use answer length as the initial scoring
and assessed answer similarity based on the shared
terms between two answers.

Mixtral We used a recent LLM to address the
task in a zero-shot format (Jiang et al., 2023a),
using a simple prompt containing the definition of
the task. More details in Appendix C.

ULRA We implemented the unsupervised ULRA
method of Wang et al. (2023) which showed state-
of-the-art results on Automated Essay Scoring,
which is close to ASAG. This model consists of
using multiple quality signals obtained from heuris-
tics as the pseudo-groundtruth, and then training
a neural model by learning from the aggregation
of these signals. The idea is that the final score
should depend on an aggregation of these simple
signals. For the ASAG task, we adapt the method
translating the original Linguistic Features (LF) to
Spanish, and by using our own Expert Features
(EF) as pseudo-groundtruth. For the AES task, we
utilized the LF from the original paper on the same
task. Note that ULRA was also considered as a
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Method Weak Signal Signal Filt. Text EF NLLF EF + NLLF
Length None - .3893 - - -
Jaccard Sim. None - -.1821 - - -
Cosine Sim. None - .0237 - - -
ULRA (Wang et al., 2023) LF - .6423 - - -
Z-score (Chen et al., 2010b) None - .5809 - - -
LLM (Jiang et al., 2023a) None - .5119 - - -
LLM-CoT (Wei et al., 2022) None - .4152 - - -
MTS† (Lee et al., 2024) None - .550 - - -

Linear Regression

Z-Score ✗ - .5528 .6083 .6141
LLM-based signal ✗ - .5762 .5720 .6385
Z-score ✓ - .5603 .6123 .6255
LLM-based signal ✓ - .5797 .5814 .6451

BERT

Z-Score ✗ .5728 - - -
LLM-based signal ✗ .4418 - - -
Z-score ✓ .5764 - - -
LLM-based signal ✓ .4781 - - -

AES-Prompt† (one-shot)
None - .639 - - -

(Tao et al., 2022)
R2-BERT† (supervised)

None - .794 - - -
(Yang et al., 2020)
Human None - .7384 - - -

Table 3: Results of the models on the AES task using the average of the QWK over the different essay tasks. We
report the cheap baselines using similarity, ULRAs using different weak linguistics signals, the Z-score and LLM
predictions, and our weakly supervised models. Human scores were re-calculated here. † From original papers.

weak label generation method, but did not generate
favorable results.

Weakly supervised BERT We evaluated differ-
ent BERT models (Devlin et al., 2019) with a re-
gression head on top of the [CLS] vector to pre-
dict the weak signals. For the ASAG task, we
used BETO, a Spanish BERT transformer (Cañete
et al., 2023). For the AES task, we used an English
BERT.4

Multi-trait Specialization We compare with the
work of Lee et al. (2024), who proposed an unsu-
pervised method using LLMs to predict the quality
of essays in a zero-shot way. Their method learns
to decompose the writing proficiency into distinct
traits, as some are known to be useful for judg-
ing global essay quality (Ke and Ng, 2019) such
as Position and Thesis Clarity, Organization and
Structure or Supporting Details and Evidence.

4.3 Experimental Protocol
The transformers library (Wolf et al., 2019)
was used to access the pre-trained model and to
train our models. We used BETO as backbone
for NLLF generation, and the 4-bit version of
Mixtral-8x7b5 as LLM. The linear regressions
were trained using scikit-learn (Pedregosa et al.,
2012). We standardized every features before the

4bert-base-cased, bert-base-spanish-wwm-cased
5mistralai/Mixtral-8x7B-Instruct-v0.1

logistic regression. For the ASAG task, Pearson
correlation measured the correlation between pre-
dicted scores from automatic models and ground-
truth scores from one teacher. We evaluated our
model on the 1,315 manually annotated examples.
For the AES task, we randomly split the data into a
training, a validation and a test sets following the
proportion 60/20/20 like Wang et al. (2023).

4.4 Results
4.4.1 Results on ASAG
Table 2 shows the results of the different baselines
and models. It is notable that naive baselines like
a linear regression using the answer length can
reach a correlation of .27, and are surpassed by
similarity between answer and question using a
sentence-bert. Best machine results (.57) are ob-
tained with an LLM, surprisingly without using the
CoT mechanism, but still far away from human
performances (.75). All our weakly supervised ap-
proaches benefit from the Signal Filtering method.
Adding NLLF to our method helps when using Z-
value or the LLM output as weak label, allowing to
reach a score close to the one of the LLM, but with
an interpretable white-box algorithm (contrary to
BERT). ULRA methods, using general and/or do-
main expert features, tend to display lower scores
when compared with Signal Clustering and remain-
ing methods in this task. Finally, the scores of the
BERT model trained with the weak-labels are im-
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Figure 3: Highest coefficients of the Linear Regression with Signal Filtering using EF+NLLF on AES tasks 2 and 4.
The box represents the 95% confidence interval. Biases are respectively of 3.37 and 1.35 for tasks 2 and 4.

proved when applying Signal Filtering, with the
best one of .543 using an LLM-based signal as
weak labels.

4.4.2 Results on AES

Table 3 shows the results of the different baselines
and models on the AES task. Simple baselines
achieve a moderate correlation (e.g., .4785 when us-
ing the answer length), while basic similarity mea-
sures, such as Jaccard and Cosine, perform poorly,
with negative or near-zero correlations. Among
the models, our method achieves the highest score
(.645), outperforming other methods such as ULRA
(.642), Z-score (.581), and LLM (.512), though all
falling short of human-level performance (.738).
Interestingly, the LLM with a CoT approach per-
forms worse than the standard LLM, with a cor-
relation of only .415, which is unexpected given
the reported success of CoT in other contexts, spe-
cially for a task such as essay scoring in English.
Notably, all of our weakly supervised models bene-
fit significantly from the Signal Filtering method.
Furthermore, adding the NLLF mechanism further
enhances performance. Indeed, combining LLM-
based labels, Signal Filtering, and NLLF reaches
reaches the highest performance, outperforming
prompt engineering baselines such as MTS or AES-
Prompt. Finally, the BERT models trained with the
weak-labels display lower scores (highest BERT
score of .577 using Z-score and Signal Filtering).
As a way to cross-check our results, existing works
assessed the capacity of various LLMs on this tasks
and dataset (Mansour et al., 2024; Lee et al., 2024).
The performances we obtained (QWK of 0.51), are

in line with the ones reported in Lee et al. (2024)6,
but higher than the ones reported in Mansour et al.
(2024).

5 Analysis

0.0 0.2 0.4 0.6
5.
4.
3.
2.
1.

EF

Zero Ref.
Coef.
(95% CI)

0.0 0.2 0.4 0.6
10.
9.
8.
7.
6.

NLLF

Coef.
(95% CI)

1. Proportion of alphabetic characters that are vowels
2. Number of tokens that do not contain numbers
3. Exist a number in the answer
4. Proportion of vowels in the answer
5. Maximum number of consecutive non- vowel characters
in a token
6. The answer is written in a way that can be easily
understood
7. The answer explains why a character is wrong
8. The answer is correctly written in numerical format
9. The answer shows a correct calculation of a
quantity
10. The answer correctly identifies the value

Figure 4: Highest coefficients of the Linear Regression
with Signal Filtering using EF+NLLF features (Table 9).
The box represents the 95% confidence interval. Bias is
4.65.

ASAG Coefficients Our best linear model uses a
combination of only 6 coefficients: 4 hand-crafted
features (EF) and 2 natural language learned fea-
tures (NLLF). Figure 4 shows, from the most rel-
evant features, that correct answers require a bal-
anced use of vowels7 (Features 1 and 5) or numbers

60.48 with a Mistral-7b-instruct
7Words with a balanced vowel-consonant structure, like

the CVCVC pattern, are easier for children to process
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Essay Prompt 2:

Essay Prompt and Scores

Write a persuasive essay to a
newspaper reflecting your vies on

censorship in libraries. Do you
believe that certain materials,
such as books, music, movies,

magazines, etc., should be removed
from the shelves if they are found
offensive? Support your position

with convincing arguments from your
own experience, observations,

and/or reading.

Essay (Text) 1
IG for ULRA

W E AL L D ON ' T T H IN K OF AN Y TH ING W H EN YOU R CH IL
DR EN CH EC K O UT B O OK S F RO M THE L IB RA RI ES . B UT ON
THE O TH ER H AN D , W E D O NO T WA NT YOU R CH IL DR EN GE
TT ING H OL D TO THE CE NS OR S H IP OF BA D B O OK , M O VI E
, M US IC OR MA GA Z IN ES . PA RE NT D ON ' T WA NT TO CO ME

H OM E AN THE RE CH IL D L EA R N A NE W W OR D F RO M THE NE
W B O OK OR M O VI E H E / SH E J US T CH EC KE D O UT F RO

M THE L IB AR Y , OR R EA DI NG A MA GA Z IN E F RO M THE L IB
AR Y . IT MI G HT MA KE S YOU R CH IL DR EN AT TI TU DE CH AN GE

P UT TI NG BA D IN FL E UN CE ON YOU R K ID B EC A US E OF A T
RI P TO THE L IB AR Y . S O THE RE F OR THE CH IL DR EN SH O U
LD H AV E A SEC TI ON W H ER E THE Y P IC K O UT THE RE B O OK
AND THE Y SH O U LD N ' T B E AB LE TO CH EC K O UT THE CE NS
OR S H IP B O OK . W E NE ED TO MA KE S UR E O UR CH IL DR EN

B E M OR E CO N VI NC ED AB O UT T H IS TO PI C .

1. 2. 3. 4. 5. 6.
0.5

0.0

0.5

IG for Our method

-0.49
(0.36)

-0.47
(0.34)

-0.22
(0.16)

-0.12
(0.09)

-0.06
(0.04)

-0.02
(0.02)

Higher Feature Attribution Score
NLLF EF

Reference scores:

Range: [1, 6] Real: 2.0

Predicted scores:

ULRA: 2.1 Our: 2.0

1. Number of wordtype
2. The essay has a clear and
logical organization
3. The essay takes a clear
position on whether or not to
remove offensive materials
from libraries
4. The essay provides a thorough
analysis or explanation
5. Polysyllabic Grade Level
(SMOG)
6. Familiar Word Difficulty (DC)1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Integrated Gradient Intensity

Essay Prompt 4:

Write a response that explains why
the author concludes the story with
this paragraph. In your response,
include details and examples from
the story that support your ideas.

Essay (Text) 2

The author ended the story with the paragraph of Sa eng vow ing
to re take the test in the spring , because he wanted to show

that the g eese and the hi bis cus plant represent a sort of
re birth or revival to Sa eng . He wanted to end the story
on a positive note . Spring is an arch ot yal season . It is
a season of birth and growing . Sa eng saw the hi bis cus
after she failed the first test . It took her to her memories

back in Vietnam , which comfort ed here she believes that maybe
when she sees the plant fl oris hing and she g eese returning

, she will experience that same revival again .

1. 2. 3. 4. 5.

0.2

0.0

0.2

0.24
(0.37)

0.22
(0.33)

0.14
(0.21)

0.06
(0.09)

-0.02
(1.00)

Reference scores:

Range: [0, 3] Real: 2.0

Predicted scores:

ULRA: 1.9 Our: 2.0

1. The essay avoids restating the
conclusion without providing additional
insights or analysis
2. The essay demonstrates a clear
understanding of the text
3. Number of difficult words
4. Number of complex words
5. Number of adjective words

Figure 5: IG feature attribution examples from our method and ULRA on tasks 2 and 4 of the AES dataset.

(Feature 2, 3). In addition, NLLFs address common
questions in which students are asked to explain if
a character is making or not the right choice (Feat.
7) or just if the answer is clear (Feat. 6).

AES Coefficients Figure 3 show the coefficients
of two of the eights linear regression models trained
using NLLF+EF, respectively on tasks 2 and 4, per-
suasive and source-dependent genre, respectively.
Most features have coefficients equal to zero, mak-
ing the linear regression model very sparse, and
leaving six usable features for each of the two mod-
els: 3 EF and 3 NLLF for the task 2, and 4 EF
and 2 NLLF for the task 4. For the persuasive task,
NLLFs are about argumentative techniques of the
writer, whether or not it takes strongly position, and
the structure of the essay.

AES IG Interpretability We claim that our sys-
tem is white-box, but also interpretable. To back
up our claim, we compare the two best perform-
ing models with a classical interpretation technique
using Integrated Gradients (IG; Sundararajan et al.
2017) in order to attribute a score to each input
feature. Figure 5 shows examples of feature attribu-
tion comparing our method and ULRA8. Whereas

(Jiménez González and Garcia, 1995; Brame, 1974) and help
recognize proper words like a measure of coherence (Urru-
tia Vargas and Araya, 2023).

8For the linear regression, the integrated gradient is simply
the product between the feature and its weight.

the attribution from the IG is complex to analyze
in ULRA, our method offers two interesting advan-
tages: (i) it is simple to interpret as it has only a
few parameters which are all described in natural
language, (ii) it identifies whether essays offer clear
analyses or lack clear stances.

AES Human Interpretability We designed two
experiments to manually validate our claim that
NLLF values are coherent with humans judgments.
First, we manually annotated 171 examples w.r.t
the BSQ labels, in order to estimate the perfor-
mances of the LLM and the NLLF Generator
(NLLFG) in the subtasks. We find that both the
LLM and the NLLFG obtain satisfying accuracies
of .89 and .84, in concordance with the analysis of
Urrutia et al. (2023). Second, for each BSQ, we
selected pairs of examples based on deciles in the
normalized distribution of the BSQ NLLF values.
Each pair came from examples separated either by
high (9 bins), medium (5 bins), or low (1 bin) dis-
tances in the distribution. We asked a human to
annotate for each pair of examples, the one with
highest NLLF value and the bin distance between
the examples of the pair. This rendered a 6-class
ordinal problem with 171 pairs. We obtained an
accuracy of .44 (random is .16), an accuracy with
a tolerance of 1 (Gaudette and Japkowicz, 2009) of
.77 (random is .44) and a Krippendorff (2013)’s α
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of 0.63 (random is 0). More details in Appendix F.

6 Conclusion and Future Work

In unsupervised ASAG of young students to diverse
open ended questions in Spanish, and unsupervised
AES in English, SoTA LLM-based methods are
still far away from human performances. More-
over, the models trained in answer scores made
with LLMs can be approximated by much simpler
and interpretable models. Weak supervision on
LLM labels but also on target values that are way
simpler including Signal Clustering is a potential
avenue of research for white-box model using sev-
eral types of interpretable features such as the com-
bination of linguistic-based expert-domain ones
and compositionality-based learned ones. Future
work should focus on more intensive search on the
prompt space, as well as involve supervised learn-
ing (and not only weakly supervised learning) and
out-of-distribution question analysis. Regarding
the interpretability, the integrated gradients could
be back-propagated up to the tokens in order to vi-
sualize the impact of each of them on each NLLF.

Limitations

Our work has been put in use in Spanish for a very
specific type of questions that are from math ex-
ams, and in English essay with a higher quality of
the text content. It would be interesting to try it
in a multilingual setting, using multilingual LLMs.
Future works would also imply weakly supervised
multi-task learning, and more advanced prompt
engineering such as the one of Lee et al. (2024),
that allows for decomposing an essay into multiple
traits to better score it using an LLM. Finally, it
would be interesting to use manually crafted BSQs
using the annotation guidelines instead of gener-
ating them, in order to see if it will improve the
quality of the final model.
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Policy as it allows to create models that might be
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A ASAG Dataset Statistics

We present a summary of the dataset in Table 4,
including the total number of students, different
questions and student answers. We added the aver-
age number of answers per question for each year.

Year #Students #Questions #Answers Avg. #Ans. per Question

2022 3,232 1,204 62,297 ≈ 52
2017 231 44 1,315 ≈ 30

Total 3,463 - 63,612 -

Table 4: Summary of students, total questions, total
answers, and average answers per question across years.

B Features

B.1 EF

We manually designed linguistic features, detailed
in Table 6, aimed at capturing structural, mor-
phological, and statistical properties of student re-
sponses for ASAG task in Chilean Spanish. Given
the unique characteristics of children’s writing in
a mathematical context, we categorize EF into six
groups: morphological features, which analyze the
presence of numbers, digit counts, and the ratio of
numerical to non-numerical tokens, essential for
evaluating arithmetic-based responses; syntactic
features, focusing on tokenization, negation length,
and the distribution of non-numeric tokens, which
help assess the sentence structure typical of early
learners; lexical features, which measure charac-
ter frequencies to detect common patterns in chil-
dren’s spelling and word usage in Chilean Spanish;
structural features, capturing answer length, re-
peated character sequences, and vowel/consonant
distributions, which are indicative of fluency and
coherence; punctuation features, which count and
analyze punctuation marks, distinguishing between
mathematical symbols (e.g., decimal points, equa-
tion signs) and non-mathematical punctuation that
might indicate explanatory attempts; and phonolog-
ical features, assessing vowel proportions relative
to alphabetic characters to identify phonetic sim-
plifications or spelling mistakes common in young
learners.

For example, the phonological feature measur-
ing the proportion of alphabetic characters that are
vowels (Feature 1) distinguishes between responses
like A1 (0.33) and A2 (0.52) to the same ques-
tion, with A2 being more phonetically fluent (see
Table 5). Similarly, syntactic complexity can be
estimated through the number of tokens without

digits (Feature 2), where a detailed explanation (12
tokens, A2) correlates with a higher score than a
brief response (2 tokens, A1). Morphological traits
such as the binary presence of a number (Feature 3)
allow us to capture relevant numerical grounding in
an answer; for instance, A2 includes a number and
scores higher. Phonological depth is further cap-
tured by vowel density (Feature 4), where answers
with higher vowel proportion (0.31) exhibit better
coherence than sparse ones (0.25). Finally, struc-
tural complexity, such as the maximum number of
consecutive non-vowel characters in a token (Fea-
ture 5), helps detect unnatural or noisy tokens, e.g.
A1 has a high value (5) due to “Hkflg”, suggest-
ing incoherence, compared to A2’s more natural
phrasing (value of 2).

B.2 NLLF

Following the method outlined in Urrutia et al.,
we utilize a selected roughly 12% subset of the
train-set to generate the NLLF. We ask to a Mix-
tral to generate a diverse pool of Binary Subtask
Questions (BSQ) for our ASAG/AES task. A mem-
ber of our research team manually removes irrele-
vant BSQ. We chose 12 binary questions through
automatic selection via Agglomerative Clustering,
taking the centroid. We automatically answer the
selected binary questions on the portion of the train-
set with the same LLM to teach a Spanish/English
BERT model in answering to all the selected binary
questions. We generated a total of 24 features from
the sigmoid of the logits of the trained BERT to pro-
vide Yes or No answers to the 12 binary questions
(Table 6), i.e. two features per binary question.

C LLM

We used a simple prompt containing the definition
of the task. For the AES task, initially, we use an
unspecified prompt to score answers, yet observed
a tendency for the model to assign notably low
scores to answers containing kid misspelling errors.
Subsequently, we refined our prompt specifying
“not penalize for spelling mistakes and focus on
the intended meaning conveyed by the student’s
answer”. This adjustment yielded enhancements in
the performance of the LLM.

D ULRA as Weak Signal

In the AES dataset, the LLM performances are out-
performed by the ones obtained using the ULRA
method, which is unsupervised but also black-box.
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Feature Question (Q) and Answer (A1-A2) Feature Value Score
Proportion of al-
phabetic characters
that are vowels

Q: Si Jose multiplica 150 veces 1 ¿Cuál sería su resultado? Explica - -

A1: 150x1 es 51 (Low vowel ratio) 0.33 3.0
A2: sería 150 porque 150 veces 1 sería 150 (Higher vowel ratio) 0.52 7.0

Number of tokens
without numbers

Q: José compró 4 cajas de leche a $245 cada una. El vendedor le cobró en
total $950. ¿Está correcto lo que le cobró el vendedor? Explica.

- -

A1: está bien (short, lacks analysis) 2 2.0
A2: está mal la respuesta es 980 se multiplica 245 x4 y el resultado es 980
(detailed reasoning)

12 7.0

Exist a number in
the answer

Q: Paulina tiene 16 lápices para repartir entre 4 amigas. Su mamá le dice a
Paulina que le va a dar 5 lápices a cada amiga. ¿Es correcto lo que le dice su
mamá?

- -

A1: no es mal porque no (no number) 0 3.0
A2: la mamá está mal porque son 4 lápices para cada amiga (includes
number)

1 7.0

Proportion of vow-
els in the answer

Q: Una manzana pesa 0,35 g, otra 0,251 g y la última 0,51 g. ¿Cuánto pesan
entre las tres?

- -

A1: 150x1 es 51 (low vowel ratio) 0.25 4.0
A2: sumo todas las manzanas es 1,111. y sumé 0,35 más 0,251 más 0,51 y
me dio ese resultado (more fluent)

0.31 7.0

Max. consecutive
non-vowel charac-
ters

Q: ¿Cuál es el resultado de 501x2? Comenta cómo resolviste el ejercicio y
explica qué es la multiplicación.

- -

A1: Hkflg (noisy token) 5 1.0
A2: es 1 002, lo resolví con sumas y la multiplicación es una suma repetida
(coherent)

2 7.0

Table 5: Examples of five expert features with their feature values for question/answer pairs in the ASAG task in
Chilean Spanish (examples presented in their original language, Spanish).

For these reasons, we propose an additional experi-
ments where we train a logistic regression model
on our interpretable vector of expert and natural
language learned representations, using the scores
from ULRA as a weak label. The results are shown
in Table 8. We can see that the use of a more ac-
curate weak signal does not allow to improve the
global performances.

E Prompt used for Zero-shot ICL with
LLM

Figure 6 is the prompt used for ASAG dataset. The
model is guided to assign grades while disregard-
ing spelling errors and focusing on the content of
the student’s response. Figure 7 is the prompt used
for Task 1 and Task 3-8 of the AES dataset, where
the range of possible scores is task-specific and
highlighted in blue, where [[MIN]] is the mini-
mum score and [[MAX]] the maximum. Figure 8
presents the prompt for Task 2 of the AES dataset,
which is the only task differing from the other eight
tasks in its focus on grading according to Writing
Applications. Throughout all figures, the orange
text represents the model’s initial response.

Instruction and Model answer

You are a teacher who assigns grades
(between 1 and 7) to fourth grade students’
answers to open-ended math questions. Do
not discount for spelling or grammatical
errors. Focus on what the student is trying
to say with his or her answer. Indicate the
grade after the prefix ’Score:’

Got it. Give me a question between <Q></Q>
and an answer between <A></A>. Then ask me
’What is the score for the answer to the
question?’. I will then give you the note
after the prefix ’Score:’

Follow-up instruction

Question: <Q> [[Q]] </Q> Answer: <A> [[A]]
</A> What is the score for the answer to
the question?

Figure 6: Prompt used for Zero-shot ICL with LLM on
the ASAG dataset. Translated from Spanish. the orange
text represents a model’s initial response.
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Feature Name Type of Feature
Exist a number in the answer EF (Morphological)
Number of digits in the answer EF (Morphological)
Number of numerical values in the answer EF (Morphological)
The answer is composed of digits EF (Morphological)
The answer is NaN (Not a Number) EF (Morphological)
Proportion of digit characters in the answer EF (Morphological)
Number of tokens in the answer EF (Syntactic)
Number of tokens that do not contain numbers EF (Syntactic)
Ratio of non-numeric tokens to the total number of tokens EF (Syntactic)
Ratio of punctuation marks to the total number of tokens EF (Syntactic)
Ratio of vowels to the total number of tokens EF (Syntactic)
Length of the negation of the answer EF (Syntactic)
Frequency of character ’x’ in the answer EF (Lexical)
Frequency of character ’y’ in the answer EF (Lexical)
Frequency of character ’g’ in the answer EF (Lexical)
Frequency of character ’h’ in the answer EF (Lexical)
Frequency of character ’j’ in the answer EF (Lexical)
Frequency of character ’k’ in the answer EF (Lexical)
Frequency of character ’w’ in the answer EF (Lexical)
Frequency of character ’ñ’ in the answer EF (Lexical)
Number of characters in the answer EF (Structural)
Length of the longest number in the answer EF (Structural)
Length of the longest sequence of repeated characters EF (Structural)
Maximum number of consecutive vowels in a token EF (Structural)
Maximum number of consecutive non-vowel characters in a token EF (Structural)
Number of punctuation marks in the answer EF (Punctuation)
Number of mathematical punctuation marks in the answer EF (Punctuation)
Proportion of punctuation characters in the answer EF (Punctuation)
Proportion of non-mathematical punctuation characters EF (Punctuation)
Proportion of punctuation and digit characters in the answer EF (Punctuation)
Proportion of non-digit and non-mathematical punctuation characters EF (Punctuation)
Proportion of alphabetic characters that are vowels EF (Phonological)
Proportion of vowels in the answer EF (Phonological)

The answer shows a correct calculation of a quantity NLLF
The answer does not show a correct calculation of a quantity NLLF
The answer explains why a character is wrong NLLF
The answer does not explain why a character is wrong NLLF
The answer is free of conceptual errors NLLF
The answer contains conceptual errors NLLF
The answer shows a correct understanding of the question NLLF
The answer does not show a correct understanding of the question NLLF
The answer correctly indicates a quantity NLLF
The answer does not correctly indicate a quantity NLLF
The answer is written in a way that can be easily understood NLLF
The answer is not written in a way that can be easily understood NLLF
The answer is written clearly and concisely NLLF
The answer is not written clearly and concisely NLLF
The answer is correctly written in numerical format NLLF
The answer is not correctly written in numerical format NLLF
The answer is accompanied by an explanation NLLF
The answer is not accompanied by an explanation NLLF
The answer is complete and does not lack any relevant information NLLF
The answer is incomplete or lacks relevant information NLLF
The answer addresses the question NLLF
The answer does not address the question NLLF
The answer correctly identifies the value NLLF
The answer does not correctly identify the value NLLF

Table 6: Expert features (EF) and Natural Language Learned Features (NLLF) for the ASAG task Everything was
translated from Spanish.
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Feature Name Code
Long-Word Ratio RIX
Polysyllabic Grade Level SMOG
Complex Word Grade Level GF
Familiar Word Difficulty DC
Number of sentences S
Number of adjective words JJ
Number of unique words UW
Number of preposition / subordinating - conjunction words IN
Number of long words LW
Number of determiner words DT
Number of difficult words DW
Number of complex words CW
Number of noun words NN
Number of commas CO
Number of wordtype WT
Number of non-basic words NBW
Number of words W
Number of characters CH
Number of adverb words RB

Table 7: Linguistic Features from Wang et al. (2023) for the AES task.

Method SF Text EF NLLF EF + NLLF
ULRA - .6423 - - -

LR
✗ - .5712 .6041 .6227
✓ - .5707 .6035 .6193

Table 8: Results of the Logistic Regression model using
the scores of ULRA as a target during the weakly super-
vised learning. SF is Signal Filtering.

Instruction and Model answer

You are a teacher who assigns grades
(between [[MIN]] and [[MAX]]) to essays
from students ranging in grade levels from
Grade 7 to Grade 10. You will help me break
down the ’assign grade to student essay’
task. To do this, I will give you a sample
essay along with the assignment. Indicates
the score after the prefix ’Score:’.

Got it. Give me a question between <A></A>
and an essay between <E></E>. Then ask me
’What is the score for the essay?’. I will
then give you the score after the prefix
’Score:’.

Follow-up instruction

Assignment: <A> [[A]] </A> Essay: <E> [[E]]
</E> What is the score for the essay?

Figure 7: Prompt used for Zero-shot ICL with LLM on
the Task 1 and Tasks 3 to 8 of the AES dataset. The
blue text highlights the range of values specific to each
task, while the orange text represents a model’s initial
response.

Instruction and Model answer

You are a teacher who assigns grades
(between 1 and 6) to essays from students
ranging in grade levels from Grade 7 to
Grade 10. You will help me break down the
’assign grade to student essay according to
Writing Applications’ task. To do this, I
will give you a sample essay along with the
assignment. Indicates the score after the
prefix ’Score:’.

Got it. Give me a question between <A></A>
and an essay between <E></E>. Then ask me
’According to Writing Applications, what is
the score for the essay?’. I will then give
you the score after the prefix ’Score:’.

Follow-up instruction

Assignment: <A> [[A]] </A> Essay: <E> [[E]]
</E> According to Writing Applications,
what is the score for the essay?

Figure 8: Prompt used for Zero-shot ICL with LLM
on the Task 2 of the AES dataset. The orange text
represents a model’s initial response.
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Feature Name Coef. Std. err. [0.025 0.975]
Intercept 4.65 0.01 4.64 4.67
The answer is correctly written in numerical format 0.00 0.00 0.00 0.00
The answer is written in a way that can be easily understood 0.50 0.01 0.47 0.52
The answer shows a correct calculation of a quantity 0.00 0.00 0.00 0.00
The answer correctly identifies the value 0.00 0.00 0.00 0.00
The answer shows a correct understanding of the question 0.00 0.00 0.00 0.00
The answer explains why a character is wrong 0.12 0.01 0.10 0.13
The answer is accompanied by an explanation 0.00 0.01 0.00 0.03
Exist a number in the answer 0.27 0.01 0.24 0.30
Frequency of character ’g’ in the answer 0.00 0.00 0.00 0.00
Frequency of character ’h’ in the answer 0.00 0.00 0.00 0.00
Frequency of character ’k’ in the answer 0.00 0.00 0.00 0.00
Frequency of character ’w’ in the answer 0.00 0.00 0.00 0.00
Frequency of character ’x’ in the answer 0.03 0.01 0.02 0.04
Frequency of character ’y’ in the answer 0.11 0.02 0.07 0.14
Number of characters of the answer 0.14 0.12 0.00 0.35
Number of tokens in answer 0.00 0.00 0.00 0.00
Length of the negation of the answer 0.00 0.06 0.00 0.21
Length of the longest number in the answer 0.11 0.01 0.08 0.13
Maximum number of consecutive non- vowel characters in a token 0.15 0.01 0.12 0.17
Number of digits in the answer 0.00 0.00 0.00 0.00
Number of mathematical punctuation marks in the answer 0.00 0.01 0.00 0.02
Number of tokens that do not contain numbers 0.35 0.18 0.00 0.59
Number of numerical values in the answer 0.00 0.00 0.00 0.00
Number of tokens in the answer 0.00 0.00 0.00 0.00
Proportion of alphabetic characters that are vowels 0.43 0.04 0.35 0.52
Proportion of punctuation characters in the answer 0.00 0.00 0.00 0.00
Proportion of punctuation and non- vowel characters in the answer 0.14 0.01 0.10 0.16
Proportion of vowels in the answer 0.21 0.05 0.10 0.30
Ratio of non-numeric tokens to the total number of tokens 0.00 0.02 0.00 0.05
Ratio of punctuation marks to the total number of tokens 0.00 0.00 0.00 0.00

Table 9: Coefficients of the Linear Regression with Signal Filtering using EF+NLLF features in the ASAG dataset.
[0.025, 0.975] refers to the 95% confidence interval of the coefficient.

F Human validation of the NLLFs

F.1 NLLFG Classifiers

Here we analyze how accurate were the NLLF gen-
erated by the BERT-like model, and also the weak
labels by the LLM. We took 190 examples from
the validation set used to train the NLLFG of the
ASAP task, and asked an expert to manually label
them regarding the labels of a BSQ. More precisely,
we manually annotated 10 examples sampled uni-
formly per BSQ having non-zero weights in the lin-
ear regressions (approximately 2-3 BSQs per essay
set) across 8 essay sets. We compare the labeling
of the expert with the outputs of the NLLFG and
LLM models, using classical classification metrics
such as precision, recall and F1-score.

The results for both the models are available in
Table 10. The LLM obtained a better F1-score
than the smaller transformer model, which was
expected. It is interesting to note that the accuracy
of the NLLFG model is 0.78, close to the ones of
the LLM (0.86). The macro F1-scores are more
divergent as the LLM reaches 0.84 and the NLLFG
0.74, which is still better than random.

Model Label Prec. Rec. F1 Acc.

Mixtral
Yes 91 88 89

86
No 76 82 79

NLLFG
Yes 90 78 84

78
No 57 76 65

Table 10: Performance of NLLFG and Mixtral on a
manually annotated set of 190 examples. The dataset
consists of 10 uniformly selected examples per BSQ
(approximately 2-3 BSQs per essay set) across 8 essay
sets.

F.2 NLLFs Before the Linear Regression

We designed another experiment to assess the re-
liability of the NLLF with respect to human an-
notation, showing pairs of examples to a human,
and asking which should have the highest value in
NLLF and what is the distance in values between
the examples of the pair. As the NLLF are normal-
ized before the linear regression, hence each score
depends on the whole group and becomes relatives
to the other examples (the best has a highly positive
score and the worst has a highly negative score).

Pairs of examples with various distances in-
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Figure 9: Metrics between the human annotation and the real values of the NLLFs, for the AES task.
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Figure 10: Examples were picked from bins with high,
medium and low distance between each others. For
a pair of examples, the annotator has to find which
example has the highest value, and what is the distance
between the examples.

between the examples were randomly selected re-
garding their places in the distributions: pairs from
the first and last deciles of the distribution, pairs
from the 3rd and 8th, and pairs from the 5th and
6th. We ask a human to tell for each pair, which
example is the highest in the distribution, and how
large is the distance between them. It gave us a
classification problem with 6 ordinal classes: First-
High (1H), First-Medium (1M), First-Low (1L),
Second-Low (2L), Second-Medium (2M), Second-
High (2H).

We focused on the 19 BSQs having non-zero
weights in the linear regressions, and randomly
selected 3 examples of High, Medium and Low
distances between the pairs, which gave us a total
of 171 pairs to annotate coming from 6 classes.
Figure 10 shows the bins of the examples from the
different categories.

The results overall are shown in Figure 9, with
the confusion matrix and the We report a Krippen-
dorff (2013)’s alpha of 0.63, an Accuracy of 0.43

Method Weak Signal Signal Filt. Text EF NLLF EF + NLLF
Length None - 0.0015 - - -
Jaccard Sim. None - -0.1335 - - -
Jaccard Sim. None - 0.3170 - - -

ULRA
LF - 0.4562 - - -
EF - 0.3713 - - -
EF+LF - 0.3902 - - -

Z-score None - 0.4346 - - -
LLM None - 0.5629 - - -
LLM-CoT None - 0.4631 - - -

Linear Regression

Z-score ✗ - 0.4472 0.3627 0.4167
LLM-based signal ✗ - 0.4212 0.2984 0.3772
Z-score ✓ - 0.4471 0.3435 0.4915
LLM-based signal ✓ - 0.3682 0.2925 0.4115

BERT

Z-score ✗ 0.3965 - - -
LLM-based signal ✗ 0.3867 - - -
Z-score ✓ 0.2451 - - -
LLM-based signal ✓ 0.3848 - - -

Human None - 0.7403 - - -

Table 11: Results on ASAG using the QWK

(random is 0.17) and an accuracy with a tolerance
of 1 (Gaudette and Japkowicz, 2009) of 0.77 (ran-
dom is 0.44). This shows that human rank the ex-
amples in an order similar to the ones of the NLLF
values 77% of the time using a tolerance of 1 in the
ordinal classification.

G Others

Table 11 shows the results on the ASAG dataset
using QWK. The results are very similar: LLM is
better than our method, which is itself better than
ULRA.
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