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Abstract

Weakly supervised learning (WSL) is a ma-
chine learning approach used when labeled data
is scarce or expensive to obtain. In such scenar-
ios, models are trained using weaker supervi-
sion sources instead of human-annotated data.
However, these sources are often noisy and
may introduce unquantified biases during train-
ing. This issue is particularly pronounced in
automated scoring (AS) of second language
(L2) learner output, where high variability and
limited generalizability pose significant chal-
lenges. In this paper, we investigate the ana-
lytical scoring of L2 learner responses under
weak and semi-supervised learning conditions,
leveraging Prediction-Powered Inference (PPI)
to provide statistical guarantees on score valid-
ity. We compare two approaches: (1) synthetic
scoring using large language models (LLMs),
and (2) a semi-supervised setting in which a
machine learning model, trained on a small
gold-standard set, generates predictions for a
larger unlabeled corpus. In both cases, PPI
is applied to construct valid confidence inter-
vals for assessing the reliability of the predicted
scores. Our analysis, based on a dataset of L2
learner conversations with an AI agent, shows
that PPI is highly informative for evaluating the
quality of weakly annotated data. Moreover,
we demonstrate that PPI can increase the effec-
tive sample size by over 150% relative to the
original human-scored subset, enabling more
robust inference in educational assessment set-
tings where labeled data is scarce.

1 Introduction

Recent advances in Natural Language Processing
(NLP) have enabled the development of intelligent
conversational agents for language learning and
teaching that are capable of producing human-like
language. In the context of computer-assisted lan-
guage learning (CALL), research-driven, dialogue-
based systems, such as task-specific conversational
agents designed to support second language (L2)

acquisition, have shown promising results in fos-
tering vocabulary and grammatical development,
while also promoting self-directed learning through
repeated, skills-focused practice (Bibauw et al.,
2019; Tyen et al., 2022; Glandorf et al., 2025).

These technological developments have signif-
icantly enhanced the ability of dialogue-based
CALL systems to guide and sustain human-like
conversational interactions, aligning them with es-
tablished proficiency guidelines and pedagogical
principles. As a result, they offer structured, reli-
able, and personalized L2 practice beyond the class-
room. This shift underscores the need for scalable,
efficient, and statistically valid assessment methods
capable of supporting such learning environments.

Automated scoring (AS) of language output,
such as written essays (Shermis and Burstein,
2013), short texts (Burrows et al., 2015), spoken
dialogues (Litman et al., 2018), and text-based
conversations (Ramanarayanan et al., 2019; Yu-
wono et al., 2019), is a mature field of research
that emerged during the 1960’s (Page, 1968) and
has accelerated its development over the past two
decades (Shermis and Burstein, 2003; Xi, 2010;
Ke and Ng, 2019) as NLP methods have evolved
significantly. However, AS methods rely on large
quantities of high-quality manually annotated data
to train models, which requires significant human
resources and time.

To overcome the difficulties and challenges of
data annotation in NLP, Weakly-supervised learn-
ing (WSL) emerged as an alternative framework
(Huang et al., 2014), leveraging weaker sources
and methods to obtain synthetic labels from tex-
tual data. Many of the strengths of WSL depend
on the availability of high-quality validation data
(Zhu et al., 2023), which in L2 assessment, is not
always possible. Assessing L2 output for learning
requires not only knowledge of the target language
but also the ability to evaluate a learner’s interlan-
guage based on established proficiency guidelines,
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making it an even more time-consuming task.
With the development of large language models

(LLMs) and their advanced language understand-
ing capabilities, researchers have begun to utilize
them in data annotation tasks (Goel et al., 2023;
Tan et al., 2024b). In L2 assessment in particular,
GPT-4 has shown to produce holistic scores that
are highly correlated to human evaluation in writ-
ten essays and have moderate to high inter-rater
reliability (Tate et al., 2024). Furthermore, experi-
ments showed that GPT-4 is capable of performing
analytic scoring of L2 texts given holistic scores
(Banno et al., 2024), however, no ground truth set
was available in this study. While state-of-the-art
LLMs such as GPT-4 have shown human-like lan-
guage capabilities that allow them to produce anno-
tations that are highly correlated with expert ones,
it is unclear how biased those annotations are. In
addition, no statistical guarantees on the validity of
the synthetic data are used in the literature.

In this paper, we investigate whether state-of-
the-art large language models (LLMs) can be used
to generate high-quality synthetic scores of lexical
complexity and grammatical accuracy from stu-
dents’ text-based conversational responses based
on the Common European Framework of Refer-
ence (CEFR) framework (Council of Europe, 2001).
These synthetic scores, along with a small set of
human-annotated gold-standard data, are used to
train machine learning models under two different
settings: a weakly supervised learning (WSL) ap-
proach that relies on LLM-generated labels, and a
semi-supervised method in which a model trained
on the gold-standard set produces predictions for a
larger unlabeled corpus. In both settings, our goal
is to increase the effective sample size and enable
valid inference. To this end, we apply Prediction-
Powered Inference (PPI) to provide statistical guar-
antees on the resulting predictions, ensuring that
the use of synthetic scores does not compromise
the validity of the conclusions.

Experimental results indicate that the proposed
method increases the effective sample size by over
150% and yields a relative gain in accuracy, both
compared to using only the gold-standard human-
annotated data in a semi-supervised setting. In
contrast, treating LLM-generated scores as if they
were human-annotated can lead to inaccurate esti-
mates and yield more modest improvements under
a WSL framework. The proposed approach helps
mitigate some of the limitations associated with
weaker supervision sources in NLP, particularly in

scenarios where predictions inform decisions with
significant consequences, such as in educational
assessment.

We also address challenges associated with using
LLMs as data annotators in NLP tasks, especially
the uncertainty inherent in their outputs. Our find-
ings show that applying a statistically valid method
such as PPI can not only improve reliability and
provide bias corrected estimates, but also quantify
the uncertainty of predictions on unlabeled data,
thereby offering a more trustworthy framework for
leveraging synthetic annotations and scores.

The main contributions of this paper are:

• We integrate Prediction-Powered Inference
into a new framework for semi-supervised and
weakly supervised learning, providing statisti-
cal guarantees for predictions on datasets with
small labeled and large unlabeled subsets.

• Unlike standard semi- and weakly supervised
learning paradigms, the proposed framework
samples and selects synthetic data based on
valid statistical conditions, imposing a data
quality requirement relative to a gold standard
set.

• This approach, in the semi-supervised setting,
produces a relative sample size gain of up to
157%, resulting in an accuracy increase of
23.2%.

2 Background

2.1 Automated L2 scoring methods
Over the past decades, computer-aided automatic
text analysis has become increasingly prevalent
in measuring L2 lexical and speaking proficiency
(Crossley et al., 2011, 2014). More recently, deep
learning approaches have achieved performance
close to that of human raters in holistic scoring
tasks (Alikaniotis et al., 2016), and Transformer-
based models have even surpassed human inter-
annotator agreement levels (Rodriguez et al., 2019).
Large language models (LLMs) such as GPT-3
have also shown promise in supporting automatic
scoring, as demonstrated by their application to
12,100 essays from the ETS Corpus of Non-Native
Written English (Mizumoto and Eguchi, 2023).

Further advancements have been observed with
GPT-4. Studies indicate that, when provided with
calibration examples, GPT-4 can reliably rate short
essay responses (Yancey et al., 2023), assess dis-
course coherence at a level comparable to expert

385



raters (Naismith et al., 2023), and generate ana-
lytical scores aligned with the CEFR proficiency
framework (Banno et al., 2024).

While NLP-based automated methods have his-
torically demonstrated the ability to assess specific
linguistic features and functions, human raters tend
to outperform them in evaluating higher-level dis-
course elements such as ideas, content, and orga-
nization (Enright and Quinlan, 2010). This diver-
gence suggests that language models may exhibit
a different type of bias compared to human raters,
particularly in tasks requiring inferential judgment.

2.2 Weaker sources of supervision
Weakly-supervised learning (WSL) has become a
practical machine learning paradigm to address the
issue of label scarcity in NLP. The major bottle-
neck for deploying machine learning models has
been the lack of access to large, high-quality train-
ing datasets. Producing manual annotations of text
data is a labor-intensive and time-consuming task.
To reduce such efforts, WSL approaches have been
proposed to offer a larger pool of weaker supervi-
sion sources to label and annotate data (Ren et al.,
2020; Zhang et al., 2021). Such sources often rely
on heuristics, knowledge bases, crowd sourcing,
labeling functions, or pre-trained models instead
of expert manual annotations (Ratner et al., 2017).
However, WSL methods also present challenges
due to the degree of noise that the generated labels
contain (Zhu et al., 2023).

More recently, a prompting-based method was
proposed to integrate LLMs into weak supervision
frameworks (Smith et al., 2024), yielding accuracy
gains on the general-purpose WRENCH weak su-
pervision benchmark. However, the effectiveness
of this approach in more specialized domains, such
as the analytical scoring of student responses, re-
mains uncertain. Moreover, the study does not
address potential biases present in the training data,
nor does it evaluate how such biases may affect
the resulting estimates. It also remains unclear
how a semi-supervised method (Søgaard, 2022)
would perform in comparison to this weakly super-
vised approach, particularly in settings where bias
is limited to the human annotations and model pre-
dictions, without introducing additional external
sources of error.

To address this gap, our study compares both
approaches, LLM-driven weak supervision and
a semi-supervised method using a small gold-
standard dataset, to investigate their effectiveness

in analytical scoring tasks. We leverage PPI in
both cases to provide statistical guarantees on the
resulting predictions and to evaluate the reliabil-
ity and calibration of the scores derived from each
approach.

3 Method

We are interested in developing a framework that
can be used to train machine learning models when
only a small labeled dataset and a large corpus of
unlabeled data are available. To leverage the un-
labeled data, synthetic scores are obtained using
a machine learning model, but instead of treating
those scores as gold standard, a provably valid sta-
tistical method is used to assess the biases con-
tained in the scores, so that estimates can be recti-
fied.

The proposed framework is evaluated in two set-
tings. In the weakly supervised learning (WSL)
scenario, a state-of-the-art LLM is used to gener-
ate synthetic scores from text-based inputs, which
are then used to train a traditional machine learn-
ing model. In the semi-supervised setting, the ML
model is trained on a small set of gold-standard
annotations and used to predict scores for a larger
unlabeled set. In both cases, a debiasing proto-
col based on Prediction-Powered Inference (PPI)
(Angelopoulos et al., 2023) is applied to estimate
prediction errors and provide statistical confidence
measures for the resulting scores.

Although LLMs have shown strong zero-shot
generative and reasoning capabilities (Kojima et al.,
2022), they still produce hallucinations (Gunjal
et al., 2024), unreliable outputs (Sclar et al., 2023),
and exhibit demographic biases (Chiang and Lee,
2023), making them unreliable for providing im-
mediate scores to students. For those reasons we
use machine learning models that can be trained
on a set of textual features and a combination of
human and weaker scoring sources to estimate a
proficiency score with a given confidence (see de-
tails on models and features in subsection 4.2).

While NLP tasks, particularly those in the so-
cial sciences, have used less reliable LLM annota-
tions in downstream tasks that require inferences
to be statistically valid to draw reliable conclusions
(Gligorić et al., 2024), the approach presented in
this paper leverages such statistical validity to de-
termine the reliability of weaker data sources to
train machine learning models.
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Figure 1: Outline of the process for scoring L2 conversation responses in a WSL setting using PPI. X and Y are
the features and human-annotated scores, and X ′

c are a subset of the textual features sampled from the unlabelled
dataset X ′ to be scored by an LLM, obtaining Ŷ ′

c scores and θ′ verbalized confidence on the scores. If the width of
CPP remains within W X ′

c will be added to the training process to further optimize the training of the ML model.

3.1 Statistical guarantees:
Prediction-powered inference

Prediction-Powered Inference (PPI) is a statisti-
cal protocol that combines predictions made on
less reliable unlabeled data with those made on a
gold-standard dataset to obtain a confidence inter-
val (CI) that is provably valid (Angelopoulos et al.,
2023). Instead of using machine learning models
to determine the validity of an unlabeled dataset
on a case-by-case basis, PPI provides model-free
estimates that are statistically valid, leveraging the
information contained in the predictions.

The goal of PPI is to estimate a quantity of in-
terest θ∗, such as the population mean. To estimate
θ∗ we have access to a set of gold-standard data
with human-annotated responses Y and features
X such that (X,Y ) = (X1, Y1), ..., (Xn, Yn), and
a much larger set of unlabeled data (X ′, Y ′) =
(X ′

1, Y
′
1), ..., (X

′
N , Y ′

N ) where Y ′ is not directly ob-
servable, and N ≫ n. For both datasets predic-
tions are obtained using a machine learning model
f(·), represented by f(X) and f(X ′). In PPI, the
predictions made on the unlabeled data are not
treated as gold-standard such as in the imputation
case. Instead, PPI uses the gold-standard set to
quantify and correct for the errors made by the
model on the unlabeled set.

The three-step process that constitutes PPI can
be summarized as follows:

1. Select the quantity of interest θ∗, such as the
mean outcome E(Yi).

2. Compute the estimate θ′ and a rectifier ∆θ,
where θ′ is computed on the unlabeled data

(X ′, Ŷ ′) such that θ′ = 1
N

∑N
i=1 f(X

′
i), and

∆θ = 1
n

∑n
i=1(f(Xi) − Yi). If f(Xi) per-

fectly matches Y , then ∆θ = 0.

3. Construct a confidence interval CPP for θ∗.

To construct CPP we need to obtain the
prediction-powered estimate θ̂PP that corrects for
the bias on θ′ due to prediction errors:

θ̂PP =
1

N

N∑

i=1

f(X ′
i)−

1

n

n∑

i=1

(f(Xi)− Yi) (1)

and then the prediction-powered confidence set
is obtained such that

CPP = (θ̂PP ± w(α)) (2)

where w(α) is a constant that depends on the
confidence level α (derivations could be found in
Angelopoulos et al. (2023)).

PPI has been used for the pairwise ranking of
models (Boyeau et al., 2024), for comparing the
performance of LLMs (Chatzi et al., 2024), for
evaluating retrieval augmented generation (RAG)
systems (Saad-Falcon et al., 2024), and some of
its variants for producing confident conclusions
from LLMs annotations (Gligorić et al., 2024). The
approach presented in this article differs from the
previous ones. In the general PPI setting, a trained
model is used to produce predictions on both sets,
and PPI is used to debias the predictions made on
the unlabeled data. In the proposed framework,
we do not have access to a trained model, and the
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training is done iteratively and sequentially using
PPI as a guarantee of statistical validity, making
decisions on what unlabeled data to include in the
training process based on a statistical measure.

3.2 Using LLMs in weak supervision with
statistical guarantees

From a dataset of conversational responses X , we
divide it into |X| responses to be scored by hu-
man annotators and |X ′| responses to be scored by
an LLM, obtaining Y and Y ′ scores respectively;
where |X| = n and |X ′| = N , and N ≫ n. We
assume that there are biases in Ŷ ′ associated with
the scoring errors made by the LLM, and use PPI
to debiase them, resulting in biased-corrected esti-
mates.

To obtain Y and Y ′, the same rubric was used for
human and LLM scorers, in an attempt to maintain
as much parity as possible between the two scoring
sources and to avoid additional biases.

The rubric used two dimensions of language
proficiency as expressed in the CEFR framework
(Council of Europe, 2001), namely vocabulary
range and grammatical accuracy for B1 and B2 lev-
els. Scores ranged from 1-3 for vocabulary range
and 1-4 for grammatical accuracy. For human scor-
ing, two annotators with extensive experience in
L2 proficiency scoring were recruited. To obtain
a single score, annotations were conducted col-
laboratively, and if consensus was not reached a
third annotator was used to resolve the disagree-
ment (Fort, 2016) (see Appendix A for details on
the rubric). GPT-4o and GPT-4o-mini were the
models of choice to produce synthetic scores Y ′

given X ′ and the rubric. A zero-shot prompting
approach was used (see Appendix C for details
on the prompts) and additionally, the models were
prompted to provide a measure of verbalized confi-
dence in the form of a probability value to assess
the correctness of the score, as presented in Tian
et al. (2023).

The following steps describe the WSL approach
with an LLM as a weak scorer and with PPI guaran-
tees: 1) taking as input the entire set of high-quality
human-labeled scores, a machine learning model
f(·) is trained such that, after training on the gold-
standard set X is completed, we obtain θ̂PP and
CPP using the verbalized confidence of the LLM
θ′ on a small sample of size c X ′

c and the predic-
tions made by the ML model Ŷ ; 2) the width of
CPP is computed in an evaluation step, such that
CPP
upper − CPP

lower ≤ W and W is a width threshold

chosen beforehand; 3) if the width is not greater
than W and the prediction-powered corrected mean
accuracy is not less than the one computed with
the gold-standard set, the sample X ′

c is added to
the training process and the model is trained on
X ⊕ X ′

c until either the CPP condition on W is
no longer met or the accuracy decreases. Figure 1
outlines the process in a block diagram.

3.3 Leveraging PPI in semi-supervised
learning

Similar to the WSL approach described in Subsec-
tion 3.2, the proposed semi-supervised method uses
PPI to establish statistical guarantees on predictions
made for the unlabeled data X ′. However, instead
of relying on an LLM as a scorer, this method em-
ploys a machine learning model to generate predic-
tions, which are then reused for fine-tuning under
the same width and accuracy gain conditions de-
fined in the WSL setting.

The method works as follows. First, the ML
model is trained only on the human-scored set, the
ground-truth data X . In an evaluation step, a sam-
ple of size c is randomly drawn from the entire
unlabeled set X ′ to compute Ŷ ′

c = f(X ′
c) and ob-

tain θ̂PP and CPP . If the width of CPP does not
exceed a threshold W , i.e., CPP

upper − CPP
lower ≤ W ,

and θ̂PP is greater than the mean accuracy of the
predictions made using the human-scored data,
then a new sample is drawn and training continues
until this condition is no longer satisfied (Figure 2
summarizes the steps involved in this process).

As we can see, PPI is used to estimate the va-
lidity of the inferences made on the unlabeled set
through an iterative process that draws samples of
size c to test whether the predictions on X ′ main-
tain the width of CPP within the threshold W . A
wider width would denote greater uncertainty, indi-
cating that the predictions made on the unlabeled
data are less reliable and potentially more biased.
In contrast, a narrower width suggests higher preci-
sion and lower variance.

In this sense, CPP serves as a valid estimate for
assessing the quality of an unlabeled dataset given a
high-quality labeled one. It also provides a basis for
estimating the effective sample size needed to ob-
tain reliable predictions when leveraging unlabeled
data, especially when considering the associated
accuracy gain.
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Figure 2: Differently from the process outlined in Figure 1, in the semi-supervised setting both the scores Ŷ ′
c and

the probability value θ′ are obtained directly from the ML model. No external scoring source is used.

4 Experiments

We conduct several experiments to evaluate the
effectiveness of our approach. The goal is to
assess the overall methodology in both weakly
and semi-supervised learning settings, aiming to
measure the quality of synthetically generated
scores derived from a smaller set of high-quality,
human-annotated data. Given the constraints of
this study, namely the limited availability of high-
quality human-labeled samples, we use machine
learning models that are well-suited to this low-
resource setting and that have shown to perform
effectively on features that can be represented as
tabular data (Shwartz-Ziv and Armon, 2022). We
make code available 1.

4.1 Data

Data was collected from text-based conversation
practice sessions completed by intermediate level
(B1-B2 levels in CEFR) English language learn-
ers (ELLs) and an AI agent (Fincham and Alvarez,
2024) over a 3-month period. A total 121 students
from 3 sessions of an undergraduate course focused
on English speaking participated in the project and
generated 1721 practice sessions. The average num-
ber of turns per session produced by students was
8.9.

To train the models, 590 sessions were manu-
ally scored following a rubric based on the CEFR
framework (Council of Europe, 2001) on vocabu-
lary range and grammatical accuracy (see section
3.2). Out of the 590 sessions, 445 were used for
training and 145 for evaluation. The remaining

1https://github.com/aitor-alvarez/Automated-L2-
Proficiency-Scoring

1131 sessions were either scored by an LLM or
by the model of choice in the semi-supervised ex-
periment. Inter-annotator agreement between hu-
man and LLM raters reached moderate levels, with
κ = 0.45 for vocabulary range and κ = 0.4 for
grammatical accuracy.

4.2 Models and features
From the students’ conversations, 9 lexical and
syntactical features were automatically extracted,
many of which have shown to be highly correlated
with linguistic proficiency descriptors based on the
CEFR framework (Banno et al., 2024). Those are:
lexical density, unique noun chunks, number of
unique words, number of unique difficult words,
Flesch Kincaid readability score (Thomas et al.,
1975), sentence length mean and standard devia-
tion, and dependency distance mean and standard
deviation.

Two tree-based boosting models, XGBoost
(Chen and Guestrin, 2016) and LightGBM (Ke
et al., 2017) were used in the weak and semi-
supervised training regimes and used as predictor
ML models. Results were compared to the base-
line scores obtained directly from the two LLMs,
GPT-4o and GPT-4o-mini.

4.3 Evaluation
The quantity of interest chosen for this study was
the mean accuracy. As described in subsections 3.2
and 3.3, width and accuracy gain are the measures
that determine the stopping condition during train-
ing and evaluation, and overall, to determine the
quality of the inference on the unlabeled data. In
addition, coverage is used to evaluate how many
times the true value θ∗ falls within the estimated
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interval with a given confidence level. The confi-
dence level for this study was set to 0.9 for α = 0.1,
which is the same level that PPI guarantees asymp-
totically (Angelopoulos et al., 2023). If coverage
does not meet the established α−level, this would
indicate that predictions are extremely biased, not
normally distributed, or that the proportion or qual-
ity of the labeled/unlabeled data is not balanced and
therefore the variance estimate may be unstable.

We estimate the effective sample size by calcu-
lating the maximum number of synthetic scores
used in relation to the labeled set for the following
inequality to hold CPP

upper − CPP
lower ≤ W and for

the mean accuracy to improve when comparing it
to the results obtained with the gold-standard set
alone. The width threshold was set at W = 0.2
and tested in the two experimental learning settings
(weakly and semi-supervised) for each of the mod-
els. This width threshold indicates that we are will-
ing to accept a CI with a maximum of 20% range
in the mean accuracy estimate CPP . Samples of
size 100 were added at each iteration to determine
the width, coverage, and effective sample size for
both conditions.

5 Results

Table 1 presents the experimental results. The semi-
supervised approach yields the highest accuracy
gains by using PPI to combine human-annotated
data with model-generated scores, selecting only
samples within the PPI confidence interval that im-
prove baseline accuracy. For vocabulary range, the
increase reaches 23.2% and for grammatical accu-
racy 21.5%, with a total effective sample size of
700. Width sizes remain relatively low, 0.13 for
vocabulary range and at around 0.148 for grammat-
ical accuracy. Coverage in this setting reaches 97%,
demonstrating the validity of this approach.

The weakly supervised learning (WSL) proto-
col, on the other hand, yields more modest accu-
racy gains when combining gold-standard data with
weakly scored data. In this setting, accuracy im-
provements range from 8.1% to 8.4% in vocabu-
lary range and reach 7.5% in grammatical accuracy,
using either boosting model with GPT-4o as the an-
notator source and an effective sample size of 200.
When GPT-4o-mini is used as the annotator model,
accuracy gain decreases to 4.2–3.4% in vocabulary
range and 3.1% in grammatical accuracy, with an
effective sample size of 100. Overall, the WSL set-
ting shows a coverage slightly above 90% (91%),

indicating an acceptable validity of this approach
when using LLMs as weak scorers (see Appendix
B for the accuracy on the gold-standard set only).

The LLM-only approach yields modest accuracy
gains, with GPT-4o achieving improvements of
1.8% in vocabulary range and 1.5% in grammat-
ical accuracy. GPT-4o-mini shows smaller gains
of 0.6% and 0.4%, respectively, under the same
setting, with an effective sample size of 100 in both
cases. However, despite these gains, the coverage
remains below 90%, failing to meet the required va-
lidity threshold. Further analysis reveals that both
LLMs exhibit overconfidence in their probability
estimates. On average, GPT-4o assigns 80% confi-
dence to incorrect predictions in vocabulary range
and 75% in grammatical accuracy. GPT-4o-mini
shows similar patterns, with 78% confidence in vo-
cabulary range and 71% in grammatical accuracy
for its incorrect predictions.

In summary, the results indicate that the method
presented in this study, when applied in a semi-
supervised setting, results in a dataset that is 157%
larger than the original. In contrast, the sample size
gain is significantly reduced, down to 22%, when
the method is used in a WSL setting with LLMs as
scorers. Moreover, the naive approach of directly
using LLM responses as gold-standard predictions
fails to produce valid results.

6 Discussion

In this study, we have presented an approach to
integrate Prediction-Powered Inference (PPI) in
semi- and weakly-supervised settings when gold-
standard data is scarce or difficult to obtain. By
using PPI, we have shown that gold-standard with
less reliable data can be combined to obtain in-
creases in predictive accuracy while maintaining
the validity of the results. This is particularly im-
portant in the context of this study, where student-
produced output, namely conversational responses
obtained from student interactions with an AI tutor,
requires assessment at scale that can provide valid
feedback to learners.

As previous studies have demonstrated (Tate
et al., 2024; Tan et al., 2024b,a), LLM outputs
show moderate to strong agreement with human
judgments. In our study, we observe a moderate
level of agreement between human raters and LLM-
based scores, as previously reported. However, this
level of agreement is insufficient for treating LLM
scores as gold-standard, as it does not yield valid
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Setting Task Model Sample Size Width Coverage Acc. Gain
Semi Vocab. range XGBoost 700 0.13 97% 23.2%
Semi Gram. accur. XGBoost 700 0.145 97% 21.5%
Semi Vocab. range LightGBM 700 0.133 97% 22.1%
Semi Gram. accur. LightGBM 700 0.148 97% 19.7%
WSL Vocab. range XGBoost + 4o 200 0.136 91 % 8.4%
WSL Gram. accur. XGBoost + 4o 200 0.144 91 % 7.5%
WSL Vocab. range XGBoost + 4o-mini 100 0.16 91 % 4.2%
WSL Gram. accur. XGBoost + 4o-mini 100 0.171 91 % 3%
WSL Vocab. range LightGBM+ 4o 200 0.14 91 % 8.1%
WSL Gram. accur. LightGBM+ 4o 200 0.145 91 % 7.5%
WSL Vocab. range LightGBM+ 4o-mini 100 0.177 91 % 3.4%
WSL Gram. accur. LightGBM+ 4o-mini 100 0.179 91 % 3.1%
LLM only Vocab. range GPT-4o 100 0.152 77% 1.8%
LLM only Gram. accur. GPT-4o 100 0.156 77% 1.5%
LLM only Vocab. range GPT-4o-mini 100 0.181 68% 0.6%
LLM only Gram. accur. GPT-4o-mini 100 0.184 68% 0.4%

Table 1: Performance metrics by setting, task, and model employed to obtain predictions and to generate synthetic
scores. Sample size indicates the maximum number of unlabeled samples used to reach the highest accuracy and
within the maximum width allowed. Acc. Gain is the maximum gain in accuracy compared to the gold-standard
(human annotated only) approach (see Appendix B for the accuracy on the gold-standard set only).

statistical conclusions.
When LLM outputs are instead used within a

weak supervision framework, acknowledged as bi-
ased but corrected through prediction-powered in-
ference (PPI), they lead to slight improvements
compared to relying solely on gold-standard data.
Nonetheless, LLMs exhibit overconfidence in their
incorrect assessments, indicating a poor under-
standing of uncertainty, a concern also noted in
a recent work (Pawitan and Holmes, 2025).

In contrast, we find that a well-calibrated ma-
chine learning model, when used in a semi-
supervised setting alongside PPI, can substantially
increase the sample size by over 157% relative to
using only human-annotated data, which results
in a dataset larger than the original and improves
training and accuracy. This suggests that simpler
models, when well-calibrated and properly inte-
grated into such frameworks, can support broader,
validity-guaranteed conclusions in educational as-
sessment settings.

The results obtained in this paper have broad im-
plications for large-scale and AI-mediated learning
environments, where many learners require assess-
ment and guidance, and human feedback is imprac-
tical (Swiecki et al., 2022). In such contexts, a
small, well-annotated dataset can be used to make
valid predictions on larger unlabeled data, reduc-
ing training requirements, improving prediction

quality, and enabling large-scale assessments with
validity guarantees.

7 Limitations

This study aimed to explore the potential of
Prediction-Powered Inference (PPI) to extend a
small set of high-quality, human-scored conversa-
tional responses using less reliable data generated
by large language models (LLMs) and simpler ma-
chine learning models. While PPI offers a statis-
tically grounded framework for leveraging such
predictions, it assumes that the labeled data are in-
dependently and identically distributed (i.i.d.) from
a normal distribution. Although our labeled sample
size (n = 445) may appear limited, each session
includes, on average, over eight student turns, pro-
viding a richer source of information per data point.
Nonetheless, larger samples of gold-standard data
should be examined in future work to validate and
generalize the findings presented here. Expanding
the dataset to include a broader range of learner pro-
ficiencies could also provide further insights into
the robustness and adaptability of the proposed ap-
proach.

8 Ethical considerations

In this study, we caution against the use of LLM-
generated outputs as ground-truth data in educa-
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tional settings, emphasizing the risks associated
with treating such predictions as authoritative. Nev-
ertheless, we acknowledge the potential of LLMs
in low-stakes educational scenarios, particularly for
generating synthetic data or instructional materials
that can support learning.

It is important to note that this work assumes
human annotations as the gold standard. However,
this assumption should be approached with cau-
tion, as human judgments are subject to both cogni-
tive (Gautam and Srinath, 2024) and socio-cultural
biases (Huang and Yang, 2023), which are often
context-dependent and may impact the reliability
of reference scores.
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A Rubric

A.1 Vocabulary Range (B1-B2)

Score Description of the proficiency level
1 Has a good range of vocabulary related to familiar topics and everyday situations.

Has sufficient vocabulary to express themselves with some circumlocutions on
most topics pertinent to their everyday life such as family, hobbies and interests,
work, travel and current events.

2 Has a good range of vocabulary for matters connected to their field and most
general topics. Can vary formulation to avoid frequent repetition, but lexical
gaps can still cause hesitation and circumlocution. Can produce appropriate
collocations of many words/signs in most contexts fairly systematically. Can
understand and use much of the specialist vocabulary of their field but has
problems with specialist terminology outside it.

3 Can understand and use the main technical terminology of their field, when
discussing their area of specialisation with other specialists.

Table 2: Vocabulary Range Rubric (B1-B2)

A.2 Grammatical Accuracy (B1-B2)

Score Description of the proficiency level
1 Uses reasonably accurately a repertoire of frequently used routines and patterns

associated with more predictable situations.
2 Communicates with reasonable accuracy in familiar contexts; generally good

control, though with noticeable mother-tongue influence. Errors occur, but it is
clear what they are trying to express.

3 Has a good command of simple language structures and some complex gram-
matical forms, although they tend to use complex structures rigidly with some
inaccuracy.

4 Good grammatical control; occasional slips or non-systematic errors and minor
flaws in sentence structure may still occur, but they are rare and can often be
corrected in retrospect.

Table 3: Grammatical Accuracy Rubric (B1-B2)

B Accuracy for gold standard set

Model Proficiency level Accuracy
XGBoost Vocabulary Range 74.1
XGBoost Grammatical accuracy 71.3
LightGBM Vocabulary Range 73.6
LightGBM Grammatical accuracy 71
GPT-4o Vocabulary Range 62.5
GPT-4o Grammatical accuracy 61.2
GPT-4o-mini Vocabulary Range 60.3
GPT-4o-mini Grammatical accuracy 58.9

Table 4: Accuracy values for each of the models used tested on the gold standard set only.
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C Prompts

Score the following text from a conversation of an intermediate English language
student (B1-B2 on CEFR).
Provide the score as an integer and the probability as a float associated with
the options in the ’ScoringTexts’ function.
Text: text

class ScoringTexts(BaseModel):
#CEFR vocabulary range.
vocabulary_range: int = Field(description="Select the option that best describes

the text."
"Option 1. Has a good range of vocabulary

related to familiar topics and
everyday situations."

"Has sufficient vocabulary to express
themselves with some circumlocutions
on most topics "

"pertinent to their everyday life such
as family , hobbies and interests ,
work , travel and current events."

"Option 2. Has a good range of
vocabulary for matters connected to
their field and most general topics.
"

"Can vary formulation to avoid frequent
repetition , but lexical gaps can
still cause hesitation"

" and circumlocution."
"Can produce appropriate collocations of

many words/signs in most contexts
fairly systematically."

"Can understand and use much of the
specialist vocabulary of their field
but has problems with "

"specialist terminology outside it."
"Option 3. Can understand and use

technical terminology when
discussing "

"areas of specialization. Have access to
specialized vocabulary in relation

to the topic.")

vocabulary_range_proba: float = Field(description="Express in the form of a
probability the confidence on the vocabulary range score given.")

#measures of grammatical accuracy as per CEFR
grammatical_accuracy: int = Field(description="Select the option that best

describes the text."
"Option 1. Uses reasonably accurately

a repertoire of frequently used
routines and patterns "

"associated with more predictable
situations. "

"Option 2. Communicates with
reasonable accuracy in familiar
contexts; generally good control ,
"

"though with noticeable mother -
tongue influence."

"Errors occur , but it is clear what
they are trying to express."

"Option 3. Has a good command of
simple language structures and
some complex grammatical forms , "

"although they tend to use complex
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structures rigidly with some
inaccuracy."

"option 4. Good grammatical control;
occasional slips or non -systematic
errors and minor flaws "

"in sentence structure may still
occur , "

"but they are rare and can often be
corrected in retrospect.")

grammatical_accuracy_proba: float = Field(description="Express in the form of a
probability the confidence on the grammatical accuracy score given.")
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