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Abstract

Large language models (LLMs) are increas-
ingly used to generate distractors for multiple-
choice questions (MCQs), especially in do-
mains like math education. However, existing
approaches are limited in ensuring that the gen-
erated distractors are consistent with common
student errors. We propose LOOKALIKE 3 ,
a method that improves error–distractor con-
sistency via preference optimization. Our two
main innovations are: (a) mining synthetic pref-
erence pairs from model inconsistencies, and
(b) alternating supervised fine-tuning (SFT)
with Direct Preference Optimization (DPO) to
stabilize training. Unlike prior work that re-
lies on heuristics or manually annotated prefer-
ence data, LOOKALIKE uses its own generation
inconsistencies as dispreferred samples, thus
enabling scalable and stable training. Evalu-
ated on a real-world dataset of 1,400+ math
MCQs, LOOKALIKE achieves 51.6% accuracy
in distractor generation and 57.2% in error gen-
eration under LLM-as-a-judge evaluation, out-
performing an existing state-of-the-art method
(45.6% / 47.7%). These improvements high-
light the effectiveness of preference-based reg-
ularization and inconsistency mining for gener-
ating consistent math MCQ distractors at scale.

1 Introduction

Multiple-choice questions (MCQs) are used in edu-
cational assessments (Nitko, 1996; Airasian, 2001;
Kubiszyn and Borich, 2016) to evaluate student
understanding across various subjects and grades
(Thomas et al., 2025). An MCQ consists of a ques-
tion stem and a set of options, including a correct
answer and multiple incorrect alternatives, referred
to as distractors (Fernandez et al., 2024; Feng et al.,
2024). Distractors are incorrect answers that stu-
dents reach by making an error while answering the
question. It can be rooted in many ways, e.g., the

*Equal Contribution.
3Code: https://github.com/umass-ml4ed/LookAlike

student overgeneralizing to a new context, exhibit-
ing an ingrained misconception, or simply slipping
and being careless. Designing effective distractors
can be crucial to the assessment and pedagogical as-
pects of MCQs (Simkin and Kuechler, 2005), since
they help us identify student errors and prepare
ways to mitigate them.

Hand-crafting high-quality distractors requires
extensive human effort by content designers and
teachers since it requires them to anticipate com-
mon student errors, which can be difficult in sub-
jects like math. Therefore, recent works have
leveraged artificial intelligence, especially large
language models (LLMs), to automate this pro-
cess. Previous works on distractor generation for
MCQs have attempted to prompt LLMs to gener-
ate distractors (Feng et al., 2024), as well as fine-
tune LLMs to generate possible student errors and
then distractors caused by such errors, as shown
in DiVERT (Fernandez et al., 2024). As noted in
these works, the bottleneck in distractor generation
performance is consistency: LLMs are often capa-
ble of identifying mathematically feasible errors,
but struggle at following such erroneous instruc-
tions to arrive at the corresponding distractor (a
similar finding was also made in (Sonkar et al.,
2024a)). As shown in Table 1, both fine-tuned
LLMs and the LLMs in DiVERT sometimes fail
to follow the input error explanation to arrive at a
consistent distractor. In the second example, the
fine-tuned LLM fails to follow the error, “finds
13% of an amount rather than the percentage being
asked”, arriving at an inconsistent distractor (12)
rather than the consistent distractor (5.2).

To address this limitation, one natural solution
is to regularize an LLM-based distractor generator,
which takes the question stem and an error as input,
to enforce that the generated distractor matches
the input error. To this end, we resort to prefer-
ence optimization, specifically direct preference
optimization (DPO) (Rafailov et al., 2023). DPO
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Question stem: Calculate: 130% of 40 = □
Error Distractor

Plausible error, plausible and consistent distractor.

Added the values together instead of finding
the percentage.

170

Plausible error, plausible but inconsistent distractor.

Finds 13% of an amount rather than the per-
centage being asked.

12

Implausible error, plausible but inconsistent distractor.

When solving a problem that requires an in-
verse operation (e.g. missing number prob-
lems), does the original operation.

90

Implausible error, implausible and inconsistent distractor.

Does not understand that 100% is the whole
amount.

20

Table 1: Examples of inconsistent error-distractor pairs
generated by SFT (second and fourth pairs), and a state-
of-the-art method, DiVERT (Fernandez et al., 2024)
(third pair). LOOKALIKE mines generation inconsisten-
cies for scalable preference optimization.

training requires preference pairs among outputs,
i.e., a distractor that matches the input error and a
distractor that does not. However, we empirically
find two main challenges in using DPO to promote
error-distractor consistency:

• Acquiring high-quality preference data typ-
ically requires costly manual annotation or
unreliable synthetic heuristics (Li et al., 2023;
Tan et al., 2024), which is difficult due to the
nature of the distractor generation task.

• Models trained with DPO may deteriorate in
quality after a few epochs (Pal et al., 2024;
Liu et al., 2024b; Yan et al., 2025; Xu et al.,
2024), showing training instability.

Contributions
In this paper, we introduce LOOKALIKE, propos-
ing two methods to tackle these challenges and im-
prove error-distractor consistency in math MCQs
For the first challenge, we create preference pairs
by generating synthetic negative samples: we evalu-
ate LLM-generated errors, in addition to distractors,
and use inconsistently generated errors and distrac-
tors as informative negative samples. This method
creates meaningful signals that, when used in con-
junction with consistent errors and distractors in
DPO training, improve the consistency of LLMs
in distractor generation. For the second challenge,
we employ a regularization method in DPO train-
ing, which performs supervised finetuning (SFT)

and DPO alternatively in consecutive training it-
erations, which performs better than combining
them both into a single objective, as done in recent
works (Liu et al., 2024b; Pal et al., 2024).

We conduct extensive experiments on a real-
world dataset containing math MCQs used by hun-
dreds of thousands of students, with human-written
error descriptions behind each distractor. Results
show that LOOKALIKE, compared to state-of-the-
art baselines, improves distractor generation perfor-
mance by up to 6%. We also show that LOOKA-
LIKE improves error generation by up to 10%, us-
ing an LLM-as-a-Judge evaluation. We also pro-
vide qualitative examples and an error analysis
highlighting the improved consistency of generated
errors and distractors.

2 Background

In this section we formally introduce the tasks of
error and distractor generation in math MCQs. We
also detail a baseline for preference pair creation
and a baseline for DPO regularization, combining
preference alignment with supervised learning.

2.1 Task Definition
We consider an MCQ Q defined by its textual com-
ponents: a question stem s, (optionally) its cor-
rect answer or key k, (optionally) an explanation
of the key f , (optionally) question topic/concept
tags t, and a set of incorrect answer options called
ground truth distractors D. Each di ∈ D is (option-
ally) associated with a corresponding ground truth
human-written error explanation or error ei ∈ E.
All textual components above are represented as
sequences of words and math symbols. We aim to
model the space of plausible student errors E and
their corresponding distractors D. We define two
primary tasks:

1. Error Generation: Learn an LLM parameter-
ized model, LLM err(s, k, f, t, di) → êi, that
outputs an error description êi consistent with
the given input distractor di and MCQ.

2. Distractor Generation: Learn an LLM param-
eterized model, LLMdis(s, k, f, t, ei) → d̂i,
that outputs a distractor d̂i consistent with the
given error description ei and MCQ.

2.2 Baseline: Preference Pairs from
Ground-truth Error-Distractor Pairs

As a natural starting point, following a similar
method from (Scarlatos et al., 2024b), one can
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construct preference pairs for DPO as follows:
For each question, there are multiple distractors
(D = d1, d2, . . . , dn) and their corresponding er-
rors (E = e1, e2, . . . , en). As a baseline, for the
error behind the ith distractor, ei, we can use di
itself as the preferred response, and use the remain-
ing distractors (dj ∈ D \ {di}) as dispreferred
responses. We use a similar procedure for the er-
rors. We dub this method for preference pair con-
struction as DPO-GT (ground truth). However,
the number of dispreferred responses is limited by
the number of human-written error-distractor pairs
for the question. LOOKALIKE, on the other hand,
creates preference pairs by generating synthetic
negative samples, allowing for an arbitrary number
of dispreferred responses for scalable preference
optimization, resulting in improved consistency in
both error and distractor generation (Section 3.1).

2.3 Baseline: DPO Regularization

Models trained with DPO have been shown to
deteriorate in quality after a few epochs due to
training instability (Pal et al., 2024; Liu et al.,
2024b; Yan et al., 2025; Xu et al., 2024). Ex-
isting regularization techniques to improve DPO
training stability include Regularized Preference
Optimization (RPO) (Liu et al., 2024b), and DPO-
Positive (DPOP) (Pal et al., 2024). RPO optimizes
both the DPO loss and the SFT loss jointly, i.e.,
LRPO = LDPO + λβLSFT . The SFT loss uses
the preferred response as the ground-truth com-
pletion. RPO suffers from conflicting gradient di-
rections (Shi et al., 2023; Liu et al., 2024a), es-
pecially when the preference-based signal (DPO)
incentivizes ranking decisions that are misaligned
with the next-token prediction signal (SFT). DPOP
uses the SFT objective as a penalty but their im-
provement is limited to preference pairs with high
edit distances between them. LOOKALIKE, on the
other hand, proposes an alternating optimization
approach to stabilize DPO training, interleaving
SFT and DPO training either at the per-batch or
per-epoch level, resulting in improved consistency
in both error and distractor generation compared to
RPO and DPOP (Section 3.2).

3 Methodology

We now detail our framework, LOOKALIKE, which
a) creates preference pairs by generating synthetic
negative samples, and b) employs a DPO regular-
ization technique of alternating optimization be-

tween SFT and DPO for better training stability,
leading to improved error and distractor generation
consistency.

3.1 Mining Preference Pairs via
Inconsistencies for DPO

Prior work (Fernandez et al., 2024) has highlighted
a significant issue of consistency in distractor gen-
eration performance, with LLMs struggling to fol-
low error descriptions to arrive at corresponding
distractors, examples of which are shown in Ta-
ble 1. LOOKALIKE mines these generation incon-
sistencies as synthetic negative samples to create
preference pairs for DPO training.

We visualize our preference pair creation in
LOOKALIKE in Figure 1. For distractor generation,
LLMdis overgenerates a set of distractors for an
input question stem and a ground-truth error. Each
generated distractor is then compared against the
ground-truth distractor. In our preference dataset,
generated distractors that match the ground-truth
distractor exactly are preferred responses, while
those that do not exactly match the ground-truth
distractor are dispreferred responses. A similar pro-
cess is applied to create preference pairs for error
generation, with exact string match4 used to com-
pare generated errors against the ground-truth error
to form preference pairs.

Formally, given an MCQ dataset with samples,
(s, e, d), where s is the question stem, e is the er-
ror description, and d is the corresponding distrac-
tor, we first train a distractor generation model,
LLMdis, to output the corresponding distractor
through SFT. To create preference pairs, we then
overgenerate multiple distractors d̂ ∈ D̂ from the
fine-tuned LLMdis for each (s, e) pair. For each
generated distractor d̂, we check if d̂ matches the
ground-truth distractor d exactly. If yes, we add
d̂ as a preferred response, and if no, we add d̂ as
a dispreferred response in our distractor genera-
tion preference dataset. Having constructed the
preference dataset, we further train our fine-tuned
LLMdis through DPO (Rafailov et al., 2023). A
similar process is applied to form our error gen-
eration preference dataset which is then applied
for DPO training of LLM err. Creating preference
pairs from the static ground-truth dataset is limited
by the number of human-written annotations (Sec-
tion 2.2). LOOKALIKE, on the other hand, uses
generations from the currently fine-tuned LLM to

4LLM-as-a-Judge using GPT-4o-mini as a similarity mea-
sure led to lower performance.
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Distractor Generator

Question
Q GT Error GT Distractor Preferred Distractor Dispreferred Distractor

+ Error

Preference Dataset for DPO

Matches
Ground Truth
Distractor?

Yes No

What is 72? Confuses squaring
with doubling

Output:
{9,14}

(14) (9)(14)

Figure 1: LOOKALIKE creates preference pairs by overgenerating a set of distractors for a question and error, and
preferring those that match the ground-truth distractor exactly. An analogous process for error generation.

Error Generator 
(to generate 
explanations)

Dispreferred 
Error

Ground-truth 
Error

Ground-truth 
Error

Training 
with SFT

Training 
with DPO

Inputs:   Question    Distractor

Target
Outputs: <

Target
Output:

Inputs:   Question    Distractor

Repeat

Figure 2: LOOKALIKE employs an alternating opti-
mization strategy, switching between SFT and DPO
objectives to regularize DPO training.

create an arbitrary number of dynamic preference
pairs, with negative preference signals being more
aligned with the inconsistency failure modes of the
fine-tuned LLM.

3.2 DPO Regularization Through Alternating
Optimization

We empirically observe that models trained with
DPO deteriorate in quality after a few epochs due to
training instability. We show examples of degrada-
tion in error generation quality over three training
epochs in Table 2. We observe errors become more
verbose with an increase in length and are out-of-
distribution from the human-written errors as the
number of DPO training epochs increases, as also
shown in prior work (Park et al., 2024).

To mitigate this issue, we introduce a regu-

larization strategy that trains the error/distractor-
generation LLM by alternating optimization, i.e.,
by switching between SFT and DPO objectives dur-
ing training, as shown in Figure 2. This alternating
optimization allows the LLM to periodically re-
calibrate to the ground-truth distribution (via SFT)
while remaining faithful to learning ranking pref-
erences of consistent generations (via DPO). After
each SFT optimization, the preference dataset is
recomputed (Section 3.1) for the subsequent DPO
optimization, using the currently trained LLM for
better alignment, allowing for dynamic and scal-
able preference pair creation. We experiment with
alternating between SFT and DPO optimization
at two different levels: per-batch and per-epoch,
picking the one giving better performance empir-
ically. For both levels, the preference dataset is
recomputed after every epoch.

Alternating Optimization Per-Batch. At each
training step t, the LLM parameters θ are updated
using a learning rate of η following:

θt+1 = θt − η∇L(θt), (1)

where the loss function L alternates based on a
batch-level schedule:

L(θt) =

{
LSFT (θt), if batch t is even
LDPO(θt), otherwise

(2)

Alternating Optimization Per-Epoch. As a
coarser alternative, the loss function L alternates
based on an epoch-level schedule:

L(θt) =

{
LSFT (θt), if epoch t is even
LDPO(θt), otherwise

(3)
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Question 3
7

of a group of students are boys. What would be a possible ratio of boys to girls?

Key 3 : 4

Ground-truth Distractor 3 : 10

Ground-truth Error Uses the denominator when converting from fractions to ratio, rather than numerator.

Generated Error (Epoch 1) Includes the denominator when converting a fraction to a ratio.

Generated Error (Epoch 2) When converting a fraction to a ratio, puts the other side of the ratio as the denominator.

Generated Error (Epoch 3)
When converting a fraction to a ratio, thinks you just use the numerator and denominator
as the numbers in the ratio. Additionally, thinks you can use the denominator on its own
as the total number of parts in a ratio.

Table 2: Error generation quality deteriorates over DPO training epochs without using regularization.

4 Experimental Evaluation

In this section, we detail our experiments on a real-
world math MCQ dataset, evaluating the efficacy
of LOOKALIKE in comparison with state-of-the-art
baselines for both distractor generation and error
generation.

4.1 Dataset
We conduct our experiments on a real-world math
MCQ dataset from a large learning platform used
by hundreds of thousands of students. The dataset
consists of 1, 434 math MCQs, each containing
a question stem, key, explanation of the key,
topic/concept tags, and 3 distractors along with
their respective teacher-written error descriptions
explaining why a student might select that distrac-
tor. The MCQs are designed for students aged
between 10 to 13 and span 41 distinct mathemati-
cal subtopics, including Arithmetic, Fractions, and
Solving Equations. We split the dataset into train-
ing, validation, and test by questions to ensure no
overlap across splits using a 72%-16%-12% pro-
portion. See Appendix E for math MCQ examples.

4.2 Baselines
We compare LOOKALIKE with 3 baselines. The
SFT baseline, used as a baseline in (Fernandez
et al., 2024), fine-tunes an LLM to generate the
corresponding distractor (or error) given the ques-
tion and the error (or distractor) as input. The
DiVERT (Fernandez et al., 2024) baseline employs
a variational approach to learn an interpretable
error space behind distractors. Post variational
training, we use the error generation and distrac-
tor generation LLMs from DiVERT as baselines.
We also compare against forming preference pairs
from the ground-truth error-distractor pairs; we
continue training the SFT baseline on this prefer-
ence dataset using DPO and refer to the resulting

model as DPO-GT (Section 2.2). For fairness, we
regularize DPO training for DPO-GT by exploring
all techniques (RPO, DPOP, our alternating per-
batch optimization, and our alternating per-epoch
optimization), and choose the regularization (per-
epoch) that results in the best performance.

4.3 Metrics
Distractor Evaluation. Following prior work on
distractor generation (Fernandez et al., 2024; Feng
et al., 2024), we use Exact match as our eval-
uation metric to measure alignment between the
generated distractor and the ground-truth distractor
corresponding to a question and error.

Error Evaluation. Automated text similarity
metrics like exact string match, ROUGE-L F1 (Lin,
2004), or BERTScore F1 (Zhang et al., 2020)
are unsuitable for error evaluation given the open-
ended and mathematical nature of errors. We there-
fore adopt an LLM-as-Judge (Liu et al., 2023;
Zheng et al., 2023) evaluation, prompting GPT-4o-
mini to evaluate if the generated error is mathemat-
ically equivalent to the ground-truth error given the
question and corresponding distractor. We show
our prompt in Appendix B.

4.4 Implementation Details
Following prior work (Fernandez et al., 2024),
all methods use MetaMath-Mistral 7B (Yu et al.,
2024b) as their base LLM, as we found it provides a
suitable prior within the 7B parameter size models
for mathematical reasoning. At test time, we use
standard beam search with 10 beams for distractor
generation, and diverse beam search (Vijayakumar
et al., 2018) with 10 beams for error generation.
Detailed hyperparameter settings for all methods
are provided in Appendix A.

To ensure fair comparison, we limit LOOKA-
LIKE ’s synthetic generation to 3 distractors and 3
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Distractor Gen
(Exact Match ↑)

Error Gen
(LLM-as-Judge ↑)

SFT 44.76 46.68
DiVERT 45.64 47.72
DPO-GT 51.44 57.02
LOOKALIKE 51.56 57.18

Table 3: Cross-validation performance on distractor
generation and error generation for all methods across 5
folds. LOOKALIKE outperforms SFT and the prior state-
of-the-art method DiVERT (Fernandez et al., 2024), and
is comparable to DPO-GT.

errors per training sample per epoch, resulting in
a similar order of magnitude of training samples
as DPO-GT. We also use the same training budget
and regularization for both methods. All fine-tuned
models, including SFT and DPO-based variants,
were trained with LoRA to ensure parameter effi-
ciency and consistency in comparison.

5 Results, Analysis and Discussion

In this section, we detail our experimental results.
We quantitatively evaluate the quality of gener-
ated errors and distractors, qualitatively evaluate
the consistency of generated errors through human
evaluation, conduct an ablation study on DPO regu-
larization techniques, and perform an error analysis
on failed cases of error generation.

5.1 Quantitative Evaluation

Table 3 shows the average performance on dis-
tractor generation and error generation, across 5
cross-validation folds, for all methods. DPO-based
methods, DPO-GT and LOOKALIKE, are trained
using our alternating optimization technique for
DPO regularization, choosing the alternating level
(per-batch or per-epoch) that works best for down-
stream task performance. DPO-GT works best with
per-epoch for both tasks, while LOOKALIKE works
best with per-epoch for distractor generation, and
per-batch for error generation.

Preference optimization using inconsistent
error-distractor pairs improves consistency.
LOOKALIKE outperforms SFT and the previ-
ous state-of-the-art baseline DiVERT (Fernandez
et al., 2024), by a wide margin of 6.8% and
5.92% on distractor generation, and 10.5% and
9.46% on error generation performance, respec-
tively. The improvement is statistically significant
with p-values < 0.05 measured using a one-sample
Wilcoxon signed-rank test (Rey and Neuhäuser,

Dis Gen
(Exact M. ↑)

Error Gen
(LLM-as-Judge ↑)

DPO-GT w/o Reg. 47.68 53.96
+ DPOP 47.80 52.74
+ RPO 49.14 52.44
+ Per-batch 49.66 55.74
+ Per-epoch 51.44 57.02

LOOKALIKE w/o Reg. 47.98 49.34
+ DPOP 49.38 49.44
+ RPO 49.60 49.66
+ Per-batch 50.84 57.18
+ Per-epoch 51.56 56.64

Table 4: Ablation study of various DPO regularization
techniques. Our alternating (per-batch/epoch) optimiza-
tion performs best for both DPO-GT and LOOKALIKE.

2011). This result validates our idea of mining
error-distractor inconsistencies as preference pairs
for DPO training to improve both error and distrac-
tor generation consistency. Further, LOOKALIKE,
although using synthetic negative samples drawn
from its own inconsistent generations as preference
pairs, is comparable in performance to DPO-GT,
which uses human-written annotations as prefer-
ence pairs, demonstrating the potential and flexibil-
ity of LOOKALIKE for scalable, domain-agnostic
preference optimization.

Although the performance difference between
LOOKALIKE and DPO-GT appears small (0.12%
and 0.16% on distractor and error generation re-
spectively), it is important to note that LOOKA-
LIKE achieves this using automatically mined pref-
erence pairs from inconsistent generations, without
relying on ground-truth labels, highlighting its scal-
ability. Moreover, the improvement over DiVERT
(5.9-10.5%) is substantial and statistically signifi-
cant.

Alternating optimization is an effective DPO
regularization. Table 4 shows an ablation study
comparing different DPO regularization techniques
to combat deterioration in generation quality (Pal
et al., 2024) during DPO training. Existing ap-
proaches like DPOP (Pal et al., 2024) and RPO (Liu
et al., 2024b) provide marginal gains up to 1.62%
for distractor generation and 0.32% for error gen-
eration. Our alternation optimization, switching
between SFT and DPO objective, at either the per-
batch or per-epoch level, leads to the best perfor-
mance for both, DPO-GT and LOOKALIKE, with
performance gains up to 1.96% on the distractor
generation task and 7.52% on the error generation
task. These results show that alternating optimiza-
tion effectively guides the LLM to periodically re-
calibrate to the ground-truth distribution (via SFT)
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while remaining faithful to learning ranking prefer-
ences of consistent generations (via DPO).

5.2 Qualitative Case Studies

LOOKALIKE generates more consistent errors.
Table 5 shows errors from LOOKALIKE compared
to errors generated from SFT on two math ques-
tions. For the question on finding factors, SFT
generates an overly generalized error applicable to
many potential distractors, “Does not understand
the term factor”. On the other hand, LOOKALIKE

generates a more specific error, “When asked for
factors of an algebraic expression, thinks any part
of a term will be a factor”, consistent with the dis-
tractor. Similarly, for the question on simplifying
algebraic terms, SFT generates an abstract error
applicable to many distractors, “Tries to add or sub-
tract unlike terms”. On the other hand, LOOKA-
LIKE generates a more specific and consistent error
leading to the input distractor, “When collecting
like terms, treats subtractions as if they are addi-
tions.” We see similar patterns across other topics,
with errors generated by LOOKALIKE being more
specific and consistent with the input question and
distractor. We also show qualitative examples of
generated errors across all methods in Appendix D.

Error Analysis of LOOKALIKE. While
LOOKALIKE outperforms SFT in generating more
consistent errors and distractors, we observe some
examples of generated errors that are inconsistent
with the input question-distractor pair. One failure
pattern observed is of template overfitting, where
LOOKALIKE generates an error by overfitting to
the error-distractor template of a similar question
seen during training, generating errors that are
consistent with other distractors from similar
questions but not the input distractor. Table 8
in the Appendix shows two examples. We see
that the generated error, “Has multiplied by
the root power”, is inconsistent with the input
distractor 64, but upon inspection, is present as
a ground-truth error and consistent with another
question-distractor pair on the same topic.

5.3 Human Evaluation

Setup. We conduct a human evaluation on the
quality and consistency of generated errors. We in-
struct two independent annotators with teaching ex-
perience to evaluate whether an error is consistent
with a given input math question and correspond-
ing distractor, choosing between a) yes, b) partially,

and c) no. Our instructions to human annotators
are provided in Appendix F.

We randomly select 40 math questions from our
test set spanning a diverse range of topics. For
each question, we include its ground-truth human-
written error, the error generated by SFT, and the
error generated by LOOKALIKE, for human evalua-
tion. This process results in 120 errors, along with
their corresponding questions and distractors, for
human evaluation. We shuffle the 120 samples to
avoid annotator bias.

Results. Table 6 shows the average of annota-
tors’ ordinal ratings on error explanations from
the ground truth, SFT, and LOOKALIKE models.
Ground truth errors scored the highest (mean =
0.812), followed by LOOKALIKE (0.587), and
SFT (0.400). While LOOKALIKE does not match
the human-authored ground truth, it significantly
outperforms SFT on average, suggesting that
preference-based regularization leads to more ped-
agogically consistent explanations.

We also measured agreement between annota-
tors using quadratic-weighted Cohen’s kappa, and
found that error labels generated by LOOKALIKE

led to the highest agreement (0.740), surpassing
both SFT (0.659) and even the inter-annotator
agreement on ground truth labels (0.415). This re-
sult suggests that errors generated by LOOKALIKE

are easier for humans to interpret consistently, even
if they are not always as plausible as ground truth
explanations. We see a lower agreement on ground
truth errors because their pedagogical nuance and
potential generality made consistency judgments
more subjective for annotators compared to the
often more literal AI-generated errors.

Finally, we compared agreement between evalu-
ations from human annotators to evaluations from
GPT-4o-mini-based LLM-as-Judge, our reference
metric for error generation. Agreement varied be-
tween annotators, with the first annotator showing
moderate agreement (linear Kappa) with GPT-4o-
mini (0.556 for LOOKALIKE-generated errors and
0.505 for SFT-generated errors), and the second an-
notator showing low agreement (0.314 for LOOKA-
LIKE-generated errors and 0.409 for SFT-generated
errors).

6 Related Work

Error-Distractor Generation for Math MCQs.
Automated generation of math MCQs, and par-
ticularly their distractors, has progressed from
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Topic Finding factors Simplifying terms

Question Stem Which of the following is a factor of: 6n2 − 9? Simplify the following expression by col-
lecting like terms: 6x− 2y − x+ 3y.

Key 3 5x+ y

Ground-truth Distractor 9 7x+ 5y

Ground-truth Error When asked for factors of an algebraic expres-
sion, thinks a term will be a factor.

When collecting like terms, treats subtrac-
tions as if they are additions.

SFT-Generated Error Does not understand the term factor. Tries to add or subtract unlike terms.

LOOKALIKE-Generated
Error

When asked for factors of an algebraic expres-
sion, thinks any part of a term will be a factor.

When collecting like terms, treats subtrac-
tions as if they are additions.

Table 5: Examples showing errors generated from LOOKALIKE are more consistent than errors generated by SFT.

Human SFT LOOKALIKE

Avg. Rating 0.812 0.400 0.587

Table 6: Average error consistency rating by human
evaluators. LOOKALIKE generates more consistent er-
rors than SFT.

template-based (rule-based and constraint-based)
methods (Shin et al., 2019; Liang et al., 2018; Luo
et al., 2024) to Large Language Model (LLM) ap-
proaches (Fernandez et al., 2024; Feng et al., 2024;
Scarlatos et al., 2024a; Bitew et al., 2023; Chung
et al., 2020). A critical challenge, however, remains
the generation of high-quality distractors that accu-
rately reflect common student errors and miscon-
ceptions (Alhazmi et al., 2024; Stasaski and Hearst,
2017). Current methods advance error representa-
tion using variational techniques (Fernandez et al.,
2024), RAG-based methods (Yu et al., 2024a), and
knowledge-bases (Ren and Q. Zhu, 2021).

Preference Optimization in Education. Prefer-
ence learning techniques, including Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022) and its more stable, computationally
efficient alternative Direct Preference Optimization
(DPO) (Rafailov et al., 2023), are vital for align-
ing AI outputs with human judgments in education
(Fahad Mon et al., 2023). Many recent approaches
have used DPO (Lee et al., 2025; Sonkar et al.,
2024b; Team et al., 2024; Ashok Kumar and Lan,
2024; Scarlatos et al., 2024b, 2025) but they do not
handle some known failure modes of DPO related
to inconsistent or out-of-distribution generation
which the synthetic data generation of LOOKA-
LIKE utilizes and the regularization of LOOKA-
LIKE addresses. Other works mitigate these is-
sues by providing regularization by using entropy

(Shekhar et al., 2024), length-based rewards (Park
et al., 2024), or the SFT objective (Liu et al., 2024b;
Pal et al., 2024), LOOKALIKE improved on these
by providing a simpler SFT-based regularization
approach which requires less hyperparameter tun-
ing and is easier to apply.

Challenges in Erroneous Instruction Following.
Generating distractors from error descriptions, is an
instance of the broader challenge of AI instruction
following(Lou et al., 2024). AI systems, including
LLMs, struggle with complex reasoning (Heo et al.,
2024; Son et al., 2024), multi-step tasks (Chen
et al., 2024; Wang and Lu, 2023; Fujisawa et al.,
2024), and adhering to multiple constraints simul-
taneously (Wen et al., 2024), sometimes exhibiting
a "curse of instructions" where performance de-
grades as complexity increases (Jang et al., 2022;
Son et al., 2024). Generalization also poses a
significant hurdle; models often fail to apply in-
structions to new tasks or in novel combinations
(compositional generalization) (Cohen et al., 2025;
Dan et al., 2021). These challenges can lead to in-
consistencies where the generated output does not
faithfully reflect the nuances of the input instruc-
tion (Jang et al., 2022; Son et al., 2024; Heo et al.,
2024), a problem LOOKALIKE aims to mitigate in
the context of error-distractor generation through
targeted preference optimization.

7 Conclusion

In this paper, we introduced LOOKALIKE, a
method that improves error-distractor consis-
tency in math MCQs via preference optimization.
LOOKALIKE uses two main innovations: a) min-
ing synthetic preference pairs from model genera-
tion inconsistencies and b) alternating optimization
by switching between SFT and DPO objectives to
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stabilize training. Through extensive experiments
on a real-world math MCQ dataset, we showed
that LOOKALIKE outperforms the previous state-
of-the-art method by a wide margin on both error
generation and distractor generation. These im-
provements highlighted the potential of inconsis-
tency mining and preference-based regularization
for generating consistent math MCQ distractors
at scale. We identify several limitations and av-
enues for future work. First, while LOOKALIKE

improves error and distractor generation consis-
tency, examples of inconsistent generations remain.
Ideas for creating preference pairs using error gen-
eration and distractor generation models together
could be a promising direction. Second, testing
the generalizability of LOOKALIKE to math MCQs
from unseen topics remains unexplored.
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Limitations

While LOOKALIKE demonstrates improvements
in generating consistent error-distractor pairs, it
currently operates within the domain of middle-
school mathematics. Extending the approach to
other subjects like science or language arts may
require minor modifications to the error and dis-
tractor representations.

Additionally, the current preference mining
strategy relies on model-generated inconsisten-
cies, which assumes the base model is sufficiently
trained to surface pedagogically meaningful con-
trastive samples. In practice, we find that models
pretrained on math data (e.g., MetaMath) meet this
assumption, suggesting this is a broadly applicable
approach rather than a bottleneck.

Our use of exact match to label non-matching
outputs as dispreferred is conservative and inten-
tionally strict; it helps emphasize high-confidence
inconsistencies. Nonetheless, exploring softer
similarity-based criteria or human judgments to
refine preference mining is a valuable future direc-
tion.

Ethical Considerations

Our goal is to reduce educator workload by au-
tomating the generation of plausible distractors and
their associated misconceptions, ultimately sup-
porting teachers in providing more personalized
feedback. However, we acknowledge a potential
concern around over-reliance on AI-generated con-
tent in educational settings. While our system is
designed to assist, not replace, educators, thought-
ful deployment practices and educator-in-the-loop
designs are encouraged.

The use of large language models (LLMs) intro-
duces the standard risks of inherited biases or arti-
facts from pretraining data. In our case, these risks
are minimal, as the domain of application (mathe-
matical misconceptions) is highly constrained and
less prone to sociolinguistic biases. Nevertheless,
we encourage ongoing validation and periodic au-
dits as best practices when deploying AI systems
in learning environments.
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A Baselines and their Hyperparameters

We describe LOOKALIKE’s baselines, as well as
the hyperparameters used by LOOKALIKE and its
baselines. We use MetaMath-Mistral 7B (Yu et al.,
2024b) as our base LLM backbone for error and
distractor generation across methods. For memory
efficiency, we quantize the model weights into 8-bit
integer representation and enable gradient check-
pointing throughout training. Our implementation
utilize the HuggingFace ecosystem, specifically the
transformers (Wolf et al., 2020), peft, and trl
libraries for finetuning. We perform training on
NVIDIA L40 GPUs.

SFT. For the supervised finetuning (SFT) base-
line we train the base model with Low-Rank Adap-
tation (LoRA) modules (Hu et al., 2022). LoRA is
configured with a rank r = 128, α = 256, and a
dropout rate of 0.05. We perform SFT training for
5 epochs, with early stopping based on validation
loss. We use the AdamW optimizer (Loshchilov
and Hutter, 2019) with a learning rate of 2e-5. We
use a batch size of 6.

DPO-based Baselines. For all DPO training, we
set the hyperparameter β = 0.5 and the learning
rate as 5e-6. We use a batch size of 6.

DPO-GT. As specified in 2.2 we have multiple
errors and distractors associated with all questions,
to create preference pairs for each pair of error and
distractor, we place all the non-associated sample
of either in the dispreferred pair while placing the
specified samples in the preferred pairs.

RPO. For RPO (Section 2.3), we use λ = 0.005
as reported by them. We use the default implemen-
tations of RPO as provided in the trl library.

DPOP DPO-Positive (DPOP) (Pal et al., 2024)
enhances DPO by preventing the model from
merely reducing the likelihood of rejected exam-
ples where the edit distance in all pairs is large by
using the SFT objective as a penalty. It introduces
a constraint term to balance learning:

LDPOP = LDPO − λ ·max(0, log
πref (yw|x)
πθ(yw|x)

).

(4)
Here, we use λ = 0.1.

LOOKALIKE (Synthetic Data Generation).
For the LOOKALIKE prefrence pairs (in Section
3.1) we generate 3 errors and distractors for each
epoch of training to create negative preference sam-
ples, while considering the ground truth errors and
distractors as the positive preference samples. We
consider the top-k completions returned by beam
search to get a set of êi which augments the set
of dispreferred responses further. We note that for
all DPO training we use the SFT trained model as
a warm start as with previous literature (Rafailov
et al., 2023).

LOOKALIKE (Per-epoch and Per-batch Regu-
larization). With the per-epoch and per-batch
modes of LOOKALIKE (Section 3.2), we use the
learning rate of 5e-6 for both DPO and SFT. For the
per-epoch setting we perform one entire epoch of
SFT after one epoch of DPO. Whereas for the per-
batch setting if we run out of SFT batches while
DPO training hasn’t finished we rollback to the
beginning of the SFT training data.

B LLM-as-a-judge

To assess whether two error explanations ex-
press the same underlying misconception, we use
GPT-4o-mini as an automated judge. The model
is provided with the question, distractor, and two
error explanations, and asked to determine whether
they are mathematically equivalent (Table 7), that
is, whether they arise from the same conceptual
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misunderstanding, regardless of wording. Below,
we present an example of the prompt used in this
evaluation.

This template was used for all pairwise compar-
isons of error explanations in the LLM-as-a-Judge
evaluation.

C Error Analysis

While LOOKALIKE generally produces more spe-
cific and grounded error explanations, Table 8 also
reveals some notable limitations. In the cube root
example, the explanation “Has multiplied by the
root power” reflects a plausible arithmetic confu-
sion but doesn’t clearly connect to the distractor
value of 64, which results from cubing rather than
misunderstanding cube roots. Similarly, in the num-
ber ordering case, the generated error implies digit-
level misordering but lacks clarity on how this leads
specifically to choosing “Only Katie.” These exam-
ples suggest that while LOOKALIKE often captures
fine-grained misconceptions, it can occasionally
overgeneralize or introduce speculative reasoning
not fully aligned with the distractor. This under-
scores the need for further refinement to ensure
tighter alignment between the error explanation
and the underlying choice.

D Comparing Errors across LOOKALIKE
and its Baselines

Table 9 illustrates how different training meth-
ods produce qualitatively distinct reasoning errors
across representative math questions. We observe
a clear progression in the nature of these errors, re-
flecting the underlying supervision strategies. Mod-
els trained with SFT often generate surface-level
mistakes indicative of limited conceptual under-
standing. In contrast, DiVERT tends to produce
more structured but still incorrect procedural rea-
soning. Errors from DPO-GT reveal partial appli-
cation of mathematical heuristics, suggesting more
sophisticated—though still flawed—mental mod-
els. Finally, LOOKALIKE models (both per batch
and per epoch) consistently produce errors that re-
semble common student misconceptions, such as
overgeneralizing valid procedures or subtly misap-
plying familiar rules. This progression supports our
claim that LOOKALIKE encourages more pedagog-
ically meaningful error patterns, aligning closely
with authentic human reasoning.

E Example MCQs from Real-world Math
MCQ Dataset

We show example MCQs from the dataset in Ta-
ble 10.

F Human Analysis Instructions

To evaluate the consistency of error explanations
with corresponding distractor choices in multiple-
choice math questions, we provided annotators
with detailed guidelines, shown in Table 11. An-
notators were instructed to examine each question
item, which included a correct answer, a step-by-
step solution, a distractor (incorrect answer), and
an explanation for why a student might choose that
distractor.

Annotators were asked to judge whether the ex-
planation was:

• Yes: Clearly consistent with the distractor and
plausibly explains the student error.

• Partially: Somewhat consistent, but vague,
generic, or only loosely related to the distrac-
tor.

• No: Inconsistent or misleading; does not plau-
sibly explain the choice of the distractor.

The instructions included concrete examples for
each category to help calibrate judgment and en-
sure consistent annotation. These annotations were
later used to analyze the quality of generated error
explanations.
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System Prompt.
You are a math education expert.
Given a question and a distractor (an incorrect student answer), determine whether two error
descriptions are mathematically equivalent.

Definitions.

• An incorrect answer or distractor is a plausible but incorrect answer choice to the specified
question.

• An error explanation or error is the misconception a student might make that leads them to
choosing the specified distractor.

• Two error explanations are mathematically equivalent if they stem from the same core misun-
derstanding, regardless of wording.

Your response should include a brief justification (1–2 sentences) for whether the errors reflect the
same or different misconceptions.
Always conclude with: “Answer: Equivalent or Answer: Not Equivalent”.

Question and Metadata.
The question is: <Question>
The question topic is: <Topic>
The question concept is: <Concept>
The solution is: <Solution from question to Correct Answer>
The correct answer is: <Correct Answer>

Distractor (incorrect answer): <Ground Truth Distractor>

Error explanation 1: <Ground Truth Error>
Error explanation 2: <Generated Error>

Table 7: System prompt used to evaluate the mathematical equivalence of error explanations for a given distractor.
The prompt positions the model as a math education expert tasked with identifying whether two misconceptions
arise from the same underlying error.
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Field Cube Root Indices, Powers and Roots

Question 3
√
8 =? 3.52 + 2.75 =

Distractor 64 5.27
Correct Answer 2 6.27
SFT Error Explanation Divides by the order of the root. Does not understand place value

within a number.
LOOKALIKE Error Explanation Has multiplied by the root power. When adding decimals with a dif-

ferent number of decimal places,
lines up the digits incorrectly.

Table 8: Comparison of error explanations for two different math topics. Examples show that LOOKALIKE also has
some failure modes, discussed in greater depth in Section 5.2.

Improper Fraction Conversion Gradient of a Line

Question Convert this into an improper fraction: 4 2
3 What is the gradient of this line? 5x + 3y = 15

Correct Answer 14
3 − 5

3

Ground-truth Distractor 12
3

5
3

Ground-truth Error Forgetting to add the numerator to the whole part. Applying the same operation instead of the inverse when solv-
ing.

SFT Does not add the whole to the numerator when converting a
mixed number to an improper fraction.

Believes a downward line has a positive gradient.

DiVERT Thinks you add the number of wholes to the numerator when
converting a mixed number to an improper fraction.

When solving an equation, uses the same operation rather than
the inverse.

DPO-GT + Per batch Does not include the whole amount when converting a mixed
number to an improper fraction.

Believes the gradient of a line is given by the coefficient of x,
even when the equation is not in the form y = mx + c.

LOOKALIKE + Per batch Thinks you add the number of wholes to the numerator when
converting a mixed number to an improper fraction.

When solving an equation, uses the same operation rather than
the inverse.

DPO-GT + Per epoch Thinks you can ignore the whole amount when converting a
mixed number to an improper fraction.

When finding the gradient from the equation of a line in the
form ax + by = c, believes b/a is the gradient.

LOOKALIKE + Per epoch Thinks you add the number of wholes to the numerator when
converting a mixed number to an improper fraction.

When finding the gradient from the equation of a line in the
form ax + by = c, believes b/a is the gradient.

Table 9: Comparison of typical errors generated by each method for two representative math questions.
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Question stem Add brackets to this calculation to make the answer 7. 16− 6 + 4÷ 2

Topic BIDMAS
Concept Insert brackets to make a calculation correct
Solution Inside the bracket we work left to right, so we get 14÷ 2 which is 7.
Correct answer (16− 6 + 4)÷ 2

Distractor 1 16− (6 + 4)÷ 2

Error 1 With order of operations brackets are done first, then division is done before subtrac-
tion. This would give us 16− 10÷ 2 = 16− 5 = 11 NOT 7.

Distractor 2 (16− 6) + 4
2

Error 2 With order of operations brackets are done first, then division is done before subtrac-
tion. This would give us 10 + 4÷ 2 = 10 + 2 = 12 NOT 7.

Distractor 3 16− 6 + (42)

Error 3 With order of operations brackets are done first, then division is done before
subtraction. Putting the brackets around the division, will not change the order.
16− 6 + (4÷ 2) = 16− 6 + 2 = 12 NOT 7.

Question stem Which of the following answers gives the correct solutions to the quadratic expression
below? (x+ 2)(x− 7) = 0

Topic Algebra
Concept Solve quadratic equations using factorisation in the form (x + a)(x + b)
Solution Setting each bracket equal to 0 we have x + 2 = 0 and x - 7 = 0. This tells us that x =

-2 and x = 7.
Correct answer x = −2, x = 7

Distractor 1 x = 2, x = −7

Error 1 Believes the solutions of a quadratic equation are the constants in the factorised form

Distractor 2 x = 2, x = 7

Error 2 Believes the solutions of a quadratic equation are the absolute values of the constants
in the factorised form

Distractor 3 x = −2, x = −7

Error 3 Believes the solutions of a quadratic equation are the negative of the absolute values
of the constants in the factorised form

Table 10: Example MCQs from the real-world math MCQ dataset.
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In this task, you’ll evaluate error explanations for student errors in math multiple-choice questions.
For each item, you’ll see:

1. The question

2. The correct answer choice

3. A solution which shows how a student can reach the correct answer choice

4. A distractor (an incorrect answer choice)

5. An error explanation describing why a student might choose the distractor

Your Task
Annotate if each error explanation is consistent with the distractor (mark Yes), is generic, vague, or
partially consistent (mark Partially) or has nothing to do with the distractor, or is misleading (mark
No).
Use your best judgment when assigning ratings. Some examples are:

Example 1 (Marking Yes):
Question: Add brackets to this calculation to make the answer 7. 16− 6 + 4÷ 2

Correct Answer:(16− 6 + 4)÷ 2

Solution: Inside the bracket we work left to right, so we get 14 ÷ 2 which is 7.
Distractor: 16− (6 + 4)÷ 2

Error: Carries out operations from left to right regardless of priority order.
Mark Yes

Example 2 (Marking Partially):
Question: 3

7 of a group of students are boys. What would be a possible ratio of boys to girls?

Correct Answer: 3 : 4

Solution: For every 7 students, 3 are boys and 4 are girls. The ratio is then 3:4.
Distractor: 3 : 7

Error: Uses the denominator when converting from fractions to ratio, rather than numerator.
Mark Partially

Example 3 (Marking No):
Question:When h = 5 h2 =

Correct Answer: 25
Solution: If h = 5, h2 = h× h = 5× 5 = 25.
Distractor: 7
Error: Multiplies by the index.
Mark No

Table 11: Instructions provided to human annotators used to evaluate the consistency of error explanations for a
given distractor.
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