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Abstract

Knowing how test takers answer items in ed-
ucational assessments is essential for test de-
velopment, to evaluate item quality, and to im-
prove test validity. However, this process usu-
ally requires extensive pilot studies with human
participants. If large language models (LLMs)
exhibit human-like response behavior to test
items, this could open up the possibility of us-
ing them as pilot participants to accelerate test
development. In this paper, we evaluate the
human-likeness or psychometric plausibility
of responses from 18 instruction-tuned LLMs
with two publicly available datasets of multiple-
choice test items across three subjects: reading,
U.S. history, and economics. Our methodol-
ogy builds on two theoretical frameworks from
psychometrics which are commonly used in
educational assessment, classical test theory
and item response theory. The results show
that while larger models are excessively confi-
dent, their response distributions can be more
human-like when calibrated with temperature
scaling. In addition, we find that LLMs tend
to correlate better with humans in reading com-
prehension items compared to other subjects.
However, the correlations are not very strong
overall, indicating that LLMs should not be
used for piloting educational assessments in a
zero-shot setting.

1 Introduction

Assessing students’ knowledge and skills repre-
sents an important part of education: admission to
universities, scholarship awards, and even political
decisions on education policy are often based on
large-scale educational assessments. Developing
such high-stakes tests is a long and expensive pro-
cess involving experts writing and reviewing test
items and repeated piloting with hundreds or thou-
sands of participants (Green, 2020; Papageorgiou
et al., 2021). Therefore, the automation of parts
of this process has been a long-standing topic in

Which of the following is the most
commonly used measure of inflation?

A) Gross domestic product

B) Index of Leading Economic Indicators

C) Consumer price index (correct)

D) Dow Jones Industrial Average
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Figure 1: Example item from the NAEP dataset and
illustration of our psychometric analyses of LLM re-
sponses. We use the first-token probabilities produced
by LLMs and analyze how well they correspond to hu-
man test taker responses. Specifically, we look at (a) the
similarity between LLM and human response distribu-
tions, (b) whether items that are difficult for humans are
also difficult for LLMs, and (c) how well response prob-
abilities in LLMs match those expected from humans.

assessment research and practice (Haladyna, 2013;
Kurdi et al., 2019). Most recently, large language
models (LLMs) have been explored for tasks like
item generation or item difficulty prediction (Attali
et al., 2022; Yaneva et al., 2024; Owan et al., 2023;
May et al., 2025).

The present work explores the possibility of us-
ing LLMs as participants of a pilot study in test
development. A pilot study involves collecting and
analyzing responses by human test takers to iden-
tify low-quality items and to measure item charac-
teristics like difficulty. The statistical analysis of
item responses most commonly follows one of two
psychometric theories, classical test theory (CTT)
or item response theory (IRT) (Chang et al., 2021).
For LLMs to be useful models of human test tak-
ers, their responses must be human-like when an-
alyzed within those theoretical frameworks – we
call this psychometric plausibility. This includes,
for example, that items that are difficult for humans
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should also be difficult for LLMs. We propose an
approach to evaluate the psychometric plausibility
of LLM response distributions in multiple-choice
test items, which is summarized in Figure 1.

Our contributions are two-fold: First, we present
methods for assessing the psychometric plausibility
of LLM responses with CTT and IRT (Section 3).
Second, we benchmark the psychometric plausi-
bility of 18 instruction-tuned LLMs across two
datasets and three test subjects, showing that none
of the models are sufficiently reliable to simulate
test takers for piloting (Section 4).

2 Related work

A growing body of research has studied the use of
natural language processing (NLP) for analyzing
or evaluating test items. Examples of specific tasks
are predicting difficulty (Yaneva et al., 2024), eval-
uating answerability or guessability (Raina et al.,
2023; Säuberli and Clematide, 2024), evaluating
the quality of generated items (Raina and Gales,
2022; Gorgun and Bulut, 2024), or predicting corre-
lations between items (Hernandez and Nie, 2022).
Some of these studies used NLP models to simu-
late test takers: Lalor et al. (2019) and Byrd and
Srivastava (2022) used “artificial crowds”, i.e., a
large number of models trained on subsampled or
partially corrupted data, to simulate test takers at
different ability levels. More recently, LLMs have
been used. For example, Lu and Wang (2024) and
Hayakawa and Saggion (2024) applied prompting
techniques to simulate multiple test takers with a
single LLM. Park et al. (2024) and Laverghetta Jr
et al. (2022) used multiple models to represent a
group of test takers, while Liusie et al. (2023) and
Zotos et al. (2025) used LLM uncertainty as a proxy
for predicting student’s response distributions.

Simulating test takers makes it easy to gener-
ate large numbers of item responses, which in turn
makes statistical item analysis feasible. For ex-
ample, Liusie et al. (2023) and Hayakawa and
Saggion (2024) used CTT to compare item dif-
ficulty between humans and LLMs, while Lalor
et al. (2019), Byrd and Srivastava (2022), and Park
et al. (2024) predicted IRT-based item character-
istics. Laverghetta Jr et al. (2022) compared both
CTT- and IRT-based item difficulty between hu-
mans and models.

Apart from the application of educational assess-
ment, the human-likeness of predicted response
distributions has also been studied in the context

of human label variation in tasks with inherent
disagreement between annotators (Plank, 2022).
Techniques like temperature scaling or fine-tuning
on soft labels have been employed to align predic-
tive probabilities with human response distributions
(Baan et al., 2022; Chen et al., 2024).

Our approach combines ideas from several of
these works. Our aim is to measure whether the
response probabilities of a single model can be a
plausible representative of a single test taker or a
group of test takers. In this study, we use tempera-
ture scaling to optimize the response distributions,
leaving other calibration methods as future work.
We draw from both CTT and IRT for evaluation.

3 Psychometric plausibility

Psychometrics is concerned with the measurement
of unobserved latent variables based on observed
responses to test items. Examples of possible latent
variables include language proficiency, intelligence,
and personality traits like introversion. In educa-
tional assessment, two theoretical frameworks are
commonly applied: classical test theory (CTT)
and item response theory (IRT). These theories
model the ability of test takers based on their ob-
served test scores, but they also allow us to analyze
characteristics of test items such as their difficulty
or discriminating power (Livingston, 2011). For
this reason, CTT and/or IRT is often used in pilot
studies during test development in order to identify
low-quality items and improve test reliability.

In our approach to evaluating psychometric plau-
sibility, we focus on item analysis, i.e., determin-
ing item characteristics based on item responses by
humans or LLMs. The key idea is that a psychome-
trically plausible LLM should give responses that
are aligned with the characteristics of the items as
measured using human responses.

In the following subsections, we introduce the
relevant basics of CTT and IRT. We then describe
how the response distributions of LLMs can be
evaluated in the context of these two theories.

3.1 Classical test theory
CTT models assume that the observed test score
achieved by a test taker is the sum of the true test
score (reflecting the test taker’s ability) and a ran-
dom error score (Hambleton and Jones, 1993). Item
analysis usually involves calculating two statistics
for each item:

• Item facility is the proportion of test takers
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who answered the item correctly. High item
facility corresponds to low item difficulty.

• Item discrimination is the correlation be-
tween a person’s score on the item and their
score in the entire test. Low discrimination in-
dicates that the item is inappropriate for mea-
suring the latent variable and might need to
be removed from the test.

3.2 Item response theory
IRT introduces a set of probabilistic models that
predict the response of a specific person to a spe-
cific item, taking into account the person’s latent
variable (e.g., ability) and the item’s characteristics
(e.g., difficulty and guessability). The definition of
the IRT model depends on the choice of item char-
acteristics involved and the response variable type.
Here we focus on the three-parameter logistic
(3PL) model for dichotomous (correct/incorrect)
responses:

P (Xp,i = 1) = ci +
1− ci

1 + e−ai(θp−bi)
(1)

Xp,i equals 1 if person p answered item i cor-
rectly and 0 otherwise. θp is the ability parameter
for person p, and ai, bi, and ci are item characteris-
tic parameters for item i.

• ai reflects discrimination, i.e., how good the
item is at distinguishing between more and
less proficient test takers, similar to the dis-
crimination parameter in CTT.

• bi is the difficulty parameter and reflects the
level of ability required for a substantial in-
crease in correct response probability.

• ci is the guessing parameter and corresponds
to the probability with which a person can
answer the item correctly even if it is much
too difficult for their ability level.

Once fitted on a large number of test taker re-
sponses, an item’s parameters define the shape of
its item characteristic curve (ICC; see Figure 1
(c) for examples), and allow us to predict the proba-
bility of a correct response given their ability level.

One important advantage of IRT over CTT is
that item characteristics are not dependent on the
sample of test takers who answered this item. Even
if not every person answered every item, the param-
eters can still be compared between items, since

they are estimated in the context of person abilities.
A disadvantage of IRT is that it generally requires
larger sample sizes (Hambleton and Jones, 1993;
Fan, 1998).

3.3 Psychometric plausibility of LLM
responses

For a LLM to be considered psychometrically plau-
sible, its response probabilities across different
items should match the response patterns expected
from humans. To evaluate this, we can use the item
characteristics estimated from human responses us-
ing CTT or IRT. In the following, we present two
examples for such evaluations.

How well does a LLM fit CTT item facility statis-
tics? To check this, we interpret the LLM’s re-
sponse probabilities as the response distribution
in a sample of test takers. Specifically, the LLM
should predict a higher probability for the correct
answer on easier items compared to more difficult
items. Therefore, we propose Pearson’s correlation
coefficient between human-based item facility and
the LLM’s probability for the correct response as
an evaluation metric.

In the present paper, we focus on facility as the
only CTT item statistic. Correlating with discrimi-
nation statistics would require response data at the
level of individual test takers or pre-computed dis-
crimination values, which are not available in the
datasets we are using.

How well does a LLM fit IRT item character-
istic curves? To evaluate this, we consider the
LLM’s response probabilities as representative of
a single imaginary test taker with a specific abil-
ity. For example, the model may be calibrated to
match the ability of an average test taker. Given
each item’s ICC, we can then compare the model’s
correct response probabilities to the ones predicted
by the IRT model.

We will demonstrate these two analysis methods
in the following experiment.

4 Experimental setup

We empirically evaluate the psychometric plausibil-
ity of 18 LLMs across two datasets and three test
subjects, comparing model and human response
distributions and applying the analyses described
in the previous section.
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4.1 Datasets

NAEP. The National Assessment of Educational
Progress (NAEP) is a nation-wide and congression-
ally mandated educational assessment program in
the United States.1 NAEP involves tests across ten
subjects at grades 4, 8, and 12. The tests include
selected response items as well as constructed re-
sponse items. A subset of items from previous
years along with student response distributions and
IRT item parameters are published and can be ac-
cessed online through the Questions Tool.2 For our
experiments, we used only four-option multiple-
choice items from Reading, U.S. History, and Eco-
nomics tests, because most items in these subjects
do not heavily rely on images, so that the LLM
input can be text-only. For items that do include im-
ages, we included the alternative text and manually
excluded items that were unanswerable without ac-
cess to the full image. For some reading items, the
full passage text was unavailable due to licensing
issues – we also excluded these items.3 This re-
sulted in a total of 549 items, namely: 252 items in
reading, 204 in history, and 93 in economics.

CMCQRD. The Cambridge Multiple-Choice
Questions Reading Dataset (CMCQRD; Mullooly
et al., 2023) contains four-option multiple-choice
reading items for proficiency levels B1, B2, C1,
and C2 in the Common European Framework of
Reference for Languages (CEFR). Unlike NAEP,
these items are targeted at L2 English learners. For
a subset of the items, student response distributions
and rescaled IRT difficulty parameters are provided.
We included all items with available response distri-
butions, resulting in a total of 504 items. Because
the dataset’s documentation does not include pre-
cise information about how the IRT parameters
have been rescaled, it is impossible to reconstruct
the original ICCs or interpret their meaning in rela-
tion to the test takers’ abilities. Thus, we exclude
the CMCQRD dataset from our IRT-based analysis.

4.2 Language models

We selected 18 recently published open-weight
instruction-tuned LLMs4 from four model fami-

1https://nces.ed.gov/nationsreportcard/about/
2https://www.nationsreportcard.gov/nqt/
3Refer to our code repository for detailed filter cri-

teria and excluded items: https://github.com/mainlp/
llm-psychometrics

4We also tested non-instruction-tuned LLMs. While the
overall results are very similar, instruction-tuned models
tended to slightly outperform base models. Therefore, we

lies: Llama 3 (Grattafiori et al., 2024), OLMo 2
(OLMo et al., 2025), Phi 3/4 (Abdin et al., 2024a,b),
and Qwen 2.5 (Qwen et al., 2024). We included
models ranging in size from 0.5B to 72B param-
eters to explore the effect of model capability on
human-likeness of the responses. We used the im-
plementations in the Hugging Face transformers
library (Wolf et al., 2020). Models with 70B or
more parameters were loaded with 8-bit quantiza-
tion.

4.3 Prompting and response extraction
We used a simple prompt with a user message in-
structing the model to select the correct answer
option and to output only the corresponding letter
(A, B, C, or D). The exact prompt template can be
found in Appendix A. We used the model’s default
system messages where applicable.

To get a probability distribution, we extracted the
first predicted token logits for the four answer op-
tion letters and applied the softmax function. Since
LLM responses are highly sensitive to the order of
multiple-choice answer options (Wang et al., 2024;
Zheng et al., 2024; Pezeshkpour and Hruschka,
2024), we prompted four times per item and re-
ordered the options such that every option appears
in every position exactly once, and averaged the
probabilities from the four permutations. Zheng
et al. (2024) showed that this “cyclic permutation”
is practically as efficient for debiasing results as
full permutation, which would require 4! = 24
model passes.

4.4 Temperature scaling
In preliminary experiments, we found that most
LLMs (especially very large ones) tend to be overly
confident compared to the human response distri-
butions, assigning almost all probability mass to a
single answer option. Temperature scaling is a com-
mon and effective approach to mitigate this issue
and bring the uncertainty in LLM responses closer
to human variability (Guo et al., 2017; Baan et al.,
2022; Chen et al., 2024). It involves increasing
the temperature parameter in the softmax calcu-
lation, essentially moving some probability mass
from highly probable to less probable options.

In our case, we find the optimal temperature that
minimizes the Kullback-Leibler (KL) divergence
between LLM and human response distributions
(see Appendix C for details). We apply this opti-
mization separately to each LLM and each subset

only report results from the instruction-tuned models here.
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Figure 2: Mean KL divergence between temperature-scaled LLM response probability distributions and human
response distributions. Models are colored by family and ordered by increasing number of parameters within
families. Error bars are bootstrapped 95% confidence intervals.

of items, i.e., each subject-grade combination in
NAEP and each proficiency level in CMCQRD.
This is important because the human response dis-
tributions are not sampled from the same popula-
tion of test takers across all subsets (e.g., 4th grade
items were only answered by 4th graders).

We perform the temperature optimization on the
same data as the evaluation (cf. Baan et al., 2022;
Liusie et al., 2023). This means that the results
should be considered an upper bound. In other
words, we are testing the best-case scenario, where
we have enough data to calibrate the LLMs per-
fectly to the human distributions as possible.

4.5 Evaluation metrics

We evaluate the human-likeness and psychometric
plausibility of LLM responses from three perspec-
tives:

Following Liusie et al. (2023) and Hayakawa
and Saggion (2024), we report the average KL
divergence between the temperature scaled LLM
and human response distributions. In addition to
comparing the probability for the correct answer
option, this metric also captures the similarity of
the distractor probabilities.

For our CTT-based analysis, we report Pear-
son’s correlation coefficient between the item fa-
cilities and the correct LLM response probabilities.
This reflects the idea that psychometrically plausi-
ble LLMs should be more confident in the correct
answer option when the item is easier.

In the IRT-based analysis, we assume that the
temperature-scaled LLM response distributions re-

flect the response behavior of an average test taker,
meaning a person with an ability parameter that is
the mean of the sample. The ability parameters in
NAEP’s IRT models are fixed to have mean zero,5

therefore we use Equation 1 to calculate the ex-
pected correct response probability for human test
takers with ability θp = 0 for each item i:

Pexpected(Xi = 1) = ci +
1− ci

1 + eaibi
(2)

We compare these values to the LLM’s observed
correct response probabilities and report Pearson’s
correlation coefficient.

5 Results

5.1 Comparison of response distributions
Figure 2 shows the average KL divergence between
LLM and human response distributions, including
two simple baselines: UniformBaseline always
predicts the same probability (25%) for all answer
options. OracleBaseline always predicts the same
probability for all distractors and a higher probabil-
ity for the correct answer option (the same for all
items). OracleBaseline is optimized using the same
temperature scaling approach as the other models,
as described in Section 4.4.

Across all model families and item subsets, we
observe that LLM responses become more similar
to the human distribution with increasing model
size. However, only a small number of very large

5https://nces.ed.gov/nationsreportcard/tdw/
analysis/scaling_est.aspx
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Figure 3: Pearson correlation between LLM correct re-
sponse probabilities and item facilities. Numbers in the
item subset labels refer to the grade level. ∗ denotes sig-
nificance (two-tailed, p < 0.05), n refers to the sample
size in each cell of the corresponding row.

models in the CMCQRD B1 item subset managed
to significantly outperform the OracleBaseline (bot-
tom row in Figure 2). This shows that the dis-
tribution of probabilities among distractors is not
accurately modeled.

5.2 CTT analysis

Correlations between the LLMs’ correct answer
probabilities and item facilities are visualized in
Figure 3. While there does not seem to be a clear
effect of model family or size, the correlations dif-
fer substantially between item subsets. The highest
correlation coefficients were achieved in the CM-
CQRD B1 reading items, ranging from 0.32 to
0.56 across models. Among items from the NAEP
datasets, most significant correlations can be found
in reading items and 8th grade history items. How-
ever, the correlations are not strong overall and
fluctuate substantially across grade levels.

5.3 IRT analysis

NAEP considers multiple different skills for each
subject (e.g., informational and literary reading
skill) and therefore separate IRT models with dif-
ferent ability scales are fitted. Some items test
multiple skills and are shared between different
scales (but with different item parameters).

In Figure 4, we report the correlations between
LLM’s correct answer probabilities and expected
human correct response probabilities across NAEP
IRT scales. As an upper bound, we also include the
human response distributions as a model, i.e., the
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Figure 4: Pearson correlation between LLM correct
response probabilities and expected correct response
probabilities based on human IRT models. Numbers in
the IRT scale labels refer to the grade level. ∗ denotes
significance (two-tailed, p < 0.05), n refers to the sam-
ple size in each cell of the corresponding row.

correlation between the response probability for
the “average” test taker in the IRT model and the
observed proportion of correct responses among
human test takers (last column in Figure 4).

Similar to the CTT results, most significant cor-
relations can be found in reading items and 8th
grade history items, and no effect of model family
or size emerged. Notably, however, we also find
significant negative correlations in some 4th grade
history items. This means that these LLMs tend
to be more confident in the correct answer when
the item is more difficult, contradicting the expec-
tations for psychometrically plausible responses.

Overall, while human correlations are consis-
tently close to 1.0, LLM correlations are rather low,
and the number of significant correlations is small
(considering that we expect 5% of results to be
type I errors with the chosen significance level).
However, given that the IRT analysis uses smaller
item subsets and puts more stringent criteria on
the LLM responses than the CTT analysis, these
results are not overly surprising.

6 Discussion

The presented method is a multi-faceted approach,
providing different perspectives on the human-
likeness of LLM responses: The response distri-
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bution can tell us about a model’s ability to model
the success of distractors; the CCT analysis can
show how well the model’s probabilities represents
a whole group of test-takers; and finally, the IRT
analysis captures the plausibility of LLMs as an
individual test taker in a specific skill.

LLMs are not easily distracted. Comparing the
response distributions between humans and LLMs
shows that especially large LLMs are good at pre-
dicting the correct answer (see Appendix B), but
bad at predicting which incorrect answer options
humans are likely to be distracted by (otherwise,
they would outperform the OracleBaseline in Fig-
ure 2). An example of this is also shown in Figure 1,
where the item contains a very successful distractor
(A), but the LLM (Qwen2.5-0.5B) assigns almost
no probability mass to it. Calibration using temper-
ature scaling cannot alleviate this issue, and reduc-
ing model size is not effective either (see Appendix
B for a more detailed analysis). This is an impor-
tant limitation in applying LLMs for evaluating
distractors.

Results are consistent across models, but incon-
sistent across subjects. While the correlations
in the CTT and IRT analyses are likely too low to
be useful for analyzing or evaluating single items,
some interesting patterns can still be observed. The
results are remarkably consistent across families
and – after calibration – model sizes, demonstrat-
ing that all models are very similar to each other,
but very dissimilar to humans in this setting (see
Appendix D for a more in-depth comparison).

At the same time, there are considerable differ-
ences between subjects and IRT scales. Correct
answer probabilities appear to be more human-like
in reading comprehension items compared to other
subjects, while history items show mixed results,
in some cases even eliciting strong negative cor-
relations (see Figure 4). This might indicate that
reading comprehension in LLMs is more compara-
ble to humans than other abilities such as long-term
memory retrieval, which is required for answering
test items in history and economics. Another possi-
ble explanation could be the fact that history and
economics items more frequently contain images,
which have to be understood from descriptions in
the alternative text. Since we used text-only LLMs,
this discrepancy in the way items were presented
was inevitable. Future work could explore whether
multimodal models are more successful with these
item types.

How to improve psychometric plausibility? To
a large degree, the lack of psychometric plausibility
is in line with previous research (Hayakawa and
Saggion, 2024; Zotos et al., 2025). The success
of attempts to make the model response distribu-
tions more human-like was very limited – including
our temperature scaling approach and Hayakawa
and Saggion’s (2024) prompting techniques for in-
jecting personas, uncertainty, or noise. Therefore,
in order to improve psychometric plausibility, we
will likely need to go beyond zero-shot prompting.
Fine-tuning on human response distributions could
be a promising direction for future research (cf.
Chen et al., 2024).

7 Conclusion

We demonstrated how LLM responses can be ana-
lyzed in the context of CTT and IRT and evaluated
the human-likeness or psychometric plausibility of
zero-shot responses. We found that neither reduc-
ing model size nor temperature scaling increased
psychometric plausibility to a sufficient degree, but
we observed slightly more human-like responses in
reading comprehension compared to other subjects.
We conclude that human-like response behavior in
educational assessments has not emerged from the
process of training instruction-tuned LLMs, call-
ing for caution in their use. Fine-tuning on human
response distributions may be necessary to create
psychometrically plausible models that could be
used for piloting.

Limitations

Available item response data. Our analysis is
limited by the type and amount of data available in
the context of educational assessment. Item banks
in high-stakes assessments are usually confidential
to avoid leaking information for future test tak-
ers, and item responses from single test takers are
generally not publicly released. Therefore, in or-
der to keep our results reproducible, we only used
publicly available datasets, where only aggregated
response distributions and IRT parameters for a rel-
atively small number of items are available. Given
a larger amount of and less aggregated data, more
fine-grained analyses would be possible (e.g., by
including item discrimination in the CTT analysis)
and more systematic patterns could be revealed.

Multimodal items. In addition, the NAEP
dataset is not ideal for text-only LLMs, because
some of the items involve extracting information
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from pictures. Although we replaced the pictures
with alternative texts and manually removed unan-
swerable items (see Section 4.1), this could still
have affected our results for this dataset.

Test-taker population. The two datasets we used
contain response data from two different popula-
tions of test takers. While NAEP is targeted at
children and adolescents (i.e., mostly L1 English
speakers) in the U.S. school system, CMCQRD
involves L2 learners of English. This difference
could have affected the results and reduce the com-
parability between the two datasets.

Ethical considerations

We see no ethical issues related to this work. All
experiments were conducted with publicly avail-
able data and open-source software, and we have
made all of our code openly available for repro-
ducibility.6 The two datasets we used only contain
highly aggregated response data and do not include
any information that could lead to the identification
of individual test takers.

We used GitHub Copilot for coding assistance in
the implementation of the experiment and the anly-
sis of the results. All generated code was manually
checked and thoroughly tested.
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A Prompt templates

The following prompt template was used for items with a reading passage (i.e., reading comprehension
items):
Based on the following text, select the correct answer to the question below.

Text: {passage}

Question:
{item stem}
A) {option 1}
B) {option 2}
C) {option 3}
D) {option 4}

Respond only with the letter of the answer (A, B, C, or D).

The following prompt template was used for items without a reading passage (i.e., history and economics
items):
Select the correct answer to the following question.

Question:
{item stem}
A) {option 1}
B) {option 2}
C) {option 3}
D) {option 4}

Respond only with the letter of the answer (A, B, C, or D).

B Response accuracy

Figure 5 shows the mode accuracy of models and humans, i.e., the proportion of items where the option
with the highest response probability is the correct one. The high accuracy of large models shows that the
items are answerable given the available information in the prompt.
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Figure 5: Mode accuracy across item subsets, models, baselines, and humans. Error bars are bootstrapped 95%
confidence intervals.
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C Details on temperature scaling

We optimized temperature parameters using KL divergence as a loss function and an Adam optimizer
(see analysis.py in the code repository). The resulting optimized temperature values are visualized
in Figure 6. Larger LLMs tend to be overly confident, assigning almost all probability mass to a single
answer option, and therefore require higher temperatures to align them with human response distributions.

The effect of temperature scaling can be seen by comparing the results without temperature scaling in
Figure 7 with Figure 2.
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Figure 6: Optimized temperature value for each model and item subset.
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Figure 7: Mean KL divergence between LLM response probability distributions without temperature scaling and
human response distributions. Error bars are bootstrapped 95% confidence intervals.

D Additional results for CTT analysis

In addition to the correlations between models and humans in Figure 3, Figure 8 shows the full correlation
matrices, including model-model correlations. This confirms that the LLMs are much more similar to
each other than to humans. In addition, models of similar sizes (but different model families) tend to be
more similar to each other compared to models of different sizes.
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Figure 8: Pearson correlation between all LLM correct response probabilities and human item facilities.
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