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Abstract

Evaluation of Grammatical Error Correction
(GEC) systems is becoming increasingly chal-
lenging as the quality of such systems increases
and traditional automatic metrics fail to ade-
quately capture such nuances as fluency ver-
sus minimal edits, alternative valid corrections
compared to the ‘ground truth’, and the dif-
ference between corrections that are useful in
a language learning scenario versus those pre-
ferred by native readers. Previous work has sug-
gested using human post-editing of GEC sys-
tem outputs, but this is very labor-intensive. We
investigate the use of Large Language Models
(LLMs) as post-editors of English and Swedish
texts, and perform a meta-analysis of a range
of different evaluation setups using a set of re-
cent GEC systems. We find that for the two
languages studied in our work, automatic eval-
uation based on post-editing agrees well with
both human post-editing and direct human rat-
ing of GEC systems. Furthermore, we find
that a simple n-gram overlap metric is suffi-
cient to measure post-editing distance, and that
including human references when prompting
the LLMs generally does not improve agree-
ment with human ratings. The resulting eval-
uation metric is reference-free and requires
no language-specific training or additional re-
sources beyond an LLM capable of handling
the given language.

1 Introduction

Grammatical Error Correction (GEC) is an im-
portant technology for supporting native and non-
native writers, and supporting the development of
language learners (for a recent survey see, for in-
stance, Bryant et al., 2023). In recent years, neural
networks and in particular Large Language Models
(LLMs) have led to rapid improvements in the accu-
racy of such systems, but these developments have

made apparent the difficulty of efficiently evaluat-
ing such systems.

For the most part, reference-based metrics have
been used for the evaluation of GEC. These met-
rics depend upon human-created reference correc-
tions and either rely on text similarity measures
similar to those used in Machine Translation – ex-
amples include GLEU (Napoles et al., 2015) and
GREEN (Koyama et al., 2024) – or on comparing
the edits made by the GEC system with those by
the human; for instance, M2 (Dahlmeier and Ng,
2012) and ERRANT (Bryant et al., 2017). These
reference-based metrics have been shown to cor-
relate less well with human quality estimates than
other approaches, in particular with recent neural
GEC systems (Kobayashi et al., 2024). In addi-
tion, the manual process of creating references is
time-consuming.

Reference-free metrics, typically based on neural
models, have been proposed as an alternative, but
these tend to either be complex and requiring addi-
tional (language-specific) training data (Yoshimura
et al., 2020; Maeda et al., 2022), or to be simplis-
tic but may correlate relatively poorly with human
preferences (Islam and Magnani, 2021).

Östling et al. (2024) proposed using human post-
editing to create one reference per GEC system
output, and then use a text similarity metric be-
tween the system output and its post-edited version
as a measure of GEC system quality. This was
evaluated on a small number of GEC systems in
Swedish, so it is unclear to what extent the resulting
scores correlate with human preferences. In addi-
tion, human post-editing of every system output is
a very time-consuming task. Our goal in this work
is to investigate whether the human post-editing
step can be performed by an LLM, and how the
evaluation setup can be modified to achieve max-
imal correlation with human evaluation by either
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post-editing, ranking, or direct scoring.
Our main research questions are:

• RQ1: does LLM-based post-editing provide a
scoring of GEC systems that aligns with hu-
man preferences?
(Answer: yes, there is a high level of agree-
ment with different types of human quality
assessments.)

• RQ2: how does the choice of text similarity
metric affect post-editing based GEC evalua-
tion?
(Answer: Levenshtein distance as used in pre-
vious work is sub-optimal, chrF++ is good but
overkill; use character bag-of-6-gram overlap
instead.)

• RQ3: what difference does it make if human
references are provided to the LLMs while
performing post-editing?
(Answer: in general the best method is to use
only the original sentence + system output,
but peculiarities in some datasets affect this
outcome.)

• RQ4: how does LLM-based post-editing com-
pare to human post-editing for GEC system
evaluation?
(Answer: they generally agree very well, but
LLMs make somewhat more changes and
have a considerably lower proportion of com-
pletely unchanged sentences.)

2 Related Work

Grammatical error correction has a long history as
an area of research (Bryant et al., 2023). It has also
featured in various shared tasks over the years (e.g.,
Ng et al., 2014; Bryant et al., 2019; Masciolini
et al., 2025). Since statistical approaches to GEC
were widely adopted, the best-performing systems
involve supervised models trained on annotated
corpora: usually involving sequence-to-sequence
models (e.g., Rothe et al., 2021) or pipeline sys-
tems based on sequence tagging (e.g., Omelianchuk
et al., 2020).

According to recent research, LLMs do not out-
perform these supervised GEC systems on every
benchmark, at least for English (Loem et al., 2023;
Davis et al., 2024). Instead, it has been shown
that they can potentially improve the recall of GEC
models in an ensemble setting (Omelianchuk et al.,
2024). Moreover, given the increasing use of LLMs

as judges, in this work we investigate to what ex-
tent LLMs can be used for GEC evaluation which,
along with the availability of high quality annotated
data, is a bottleneck to progress in GEC (Kobayashi
et al., 2024).

Current metrics are either reference-based or
reference-free, meaning that they do or do not, re-
spectively, depend upon ‘ground truth’ corrections.
The most widely-used reference-based metrics are
precision, recall and F0.5 – most often obtained
from the M2 scorer (Dahlmeier and Ng, 2012) or
with ERRANT (Bryant et al., 2017) – along with
GLEU, derived from the BLEU score commonly
used in machine translation (Napoles et al., 2015).
However, there is often more than one possible
way to correct a grammatical error, and even with
multiple annotations it is difficult to cover all pos-
sibilities in reference-based approaches.

Examples of reference-free metrics include the
Scribendi Score (Islam and Magnani, 2021) and
IMPARA (Maeda et al., 2022). The former may
involve any LLM, in principle, whilst the latter was
implemented using BERT (Devlin et al., 2019).
However, the reliance on language models for
reference-free metrics means that they tend to be
biased towards fluency corrections over minimal
edits which stay closer to the original text formu-
lation but may not be recognized as improvements
by the language models. Fluent corrections are usu-
ally preferable from a readability and naturalness
perspective, but it is arguable from a pedagogical
standpoint that it is better to in fact offer minimal
edits as feedback to human learners rather than er-
ror avoidance strategies (Sakaguchi et al., 2016;
Caines et al., 2023; Mita et al., 2024).

Nevertheless, the reliance on ground truth ref-
erences remains a limiting factor in evaluation of
GEC systems on new data. If it can be shown
that LLMs can be reliably put to use as GEC post-
editors, for the purpose of evaluation, correlating
well with human judgements, it would release the
pressure on the GEC bottleneck somewhat. Östling
et al. (2024) examine the feasibility of post-editing
based evaluation with Swedish GEC data and per-
form direct scoring as well as post-editing of the
outputs of three different GEC systems and two
fluency-edited references. They find that post-
editing distance correlates strongly with the scores
assigned by the annotator, but the small sample of
GEC systems limits the range of conclusions that
they are able to draw. Additionally, their annotation
procedure is fully manual and would be difficult to

214



scale up.

3 Data

Kobayashi et al. (2024) performed a meta-
evaluation of 12 recent English GEC systems, and
published the SEEDA dataset of GEC system out-
puts and human rankings of sentences from these
outputs. We use this dataset because it contains
a sufficient number of GEC systems to compute
reasonably reliable correlations between a given
GEC evaluation metric and the human assessments.
In addition to system outputs of 12 modern GEC
systems, it also includes the original uncorrected
sentences (INPUT) and two human-created refer-
ence, one with minimal edits (REF-M) and one
edited for fluency (REF-F).

Östling et al. (2024) published human annota-
tions with post-edited versions of 3 Swedish GEC
systems as well as the original uncorrected sen-
tences (INPUT) and three human-created references,
one with minimal edits (REF-M) and two edited
for fluency. The GEC system outputs and the
fluency-edited references are annotated with scores
for grammaticality, fluency and meaning preser-
vation, and post-edits to achieve perfect scores in
these three assessment dimensions. We include
the Swedish data for two main purposes: to allow
direct comparisons between human and LLM post-
edits, and to verify that the proposed method can
be applied to languages other than English given a
suitable LLM.

4 Method

We have several different recent LLMs perform
post-editing of GEC system outputs from the
datasets of Kobayashi et al. (2024) in English,
and Östling et al. (2024) in Swedish.1 We use
Gemma 2 in several sizes (2 billion parameters,
9B, 27B) (Gemma Team et al., 2024), Gemma 3
27B (Gemma Team et al., 2025), Llama 3.1 8B
(Grattafiori et al., 2024), Mistral Small 24B (Jiang
et al., 2023), Qwen 2.5 32B (Bai et al., 2023), and
Command A-111B (Cohere, 2025).

For each LLM, we try each combination of the
following two parameters:

• Semantic grounding. In order to ensure that
the post-editing does not diverge from the se-
mantics of the original text, we include four

1Prompts are given in Appendix A.

(English) or three (Swedish) types of seman-
tic grounding. In all cases the GEC system
output is provided in the prompt.

– None. Only the system output is pro-
vided in the prompt.

– INPUT. The GEC system input (original
text) is included.

– REF-M. A human minimal edits refer-
ence is included.

– REF-F. A human fluency edited refer-
ence is included (English data only).

• Similarity metric. Following Östling et al.
(2024) we use Normalized Levenshtein dis-
tance as one metric, and add two n-gram-
similarity-based metrics.

– Normalized Levenshtein Similarity,
which is identical to Normalized Leven-
shtein Distance apart from the direction
(higher is better):

S(a, b) = 1− L(a, b)/max(|a|, |b|)

– chrF++ (Popović, 2017), which in our
setting computes the mean F2 score over
word bigram and character 6-gram preci-
sion and recall. Unlike the other metrics,
this is asymmetric and we treat the post-
edited text as the reference.

– Character 6-gram bag-of-n-grams over-
lap, a symmetric measure of similarity:

S(a, b) = |N6
a ∩N6

b |/|N6
a ∪N6

b |

where N6
s is the set of character 6-grams

(including spaces) for string s.

Because it is difficult to justify a full parame-
ter search using the very largest model (GPT-4o2),
we obtain post-edits only for the setting where the
original sentence is used as semantic grounding
(INPUT), since this was the most promising configu-
ration in preliminary experiments. For the Swedish
part we also restrict the set of LLMs used to some
of the models that obtained the most promising
results on the English data, due to time and data
licensing constraints.3

2The actual number of parameters has not been published
for it or its smaller version GPT-4o-mini, but we see a limited
value in exploring the full set of parameters for these models.

3The current license of the Swedish data does not permit
the use of OpenAI API.
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Post-editor r ρ

Gemma 2-2B 0.69 0.77
Gemma 2-9B 0.95 0.92
Gemma 2-27B 0.79 0.56
Gemma 3-27B 0.82 0.67
Llama 3.1-8B 0.90 0.83
Mistral Small 24B 0.95 0.91
Qwen 2.5-32B 0.81 0.68
Command A-111B 0.95 0.89

Table 1: System-level correlations between post-edit
distance and human ratings, averaged over all similarity
metrics, semantic grounding options, and human ratings.
Here and below boldface is used as a visual aid to iden-
tify the highest values.

Similarity metric r ρ

Levenshtein 0.74 0.63
6-gram overlap 0.92 0.85
chrF++ 0.91 0.85

Table 2: Mean system-level correlations between post-
edit distance and human ratings, averaged over all LLM
post-editors, semantic grounding options, and human
ratings.

For English, we follow Kobayashi et al. (2024)
and compute correlations (Pearson r and Spear-
man ρ) to human annotations on the system level.4

These are derived in two different types of anno-
tation (edit-based or sentence-based comparisons),
using two different methods (TrueSkill and Ex-
pected Wins) of summarizing the rankings into
numeric scores, resulting in four different system-
level references. To avoid making arbitrary deci-
sions on which of these to prefer, and to increase
the reliability of the results, we consistently use
means over all of these four except in Table 4 where
we investigate the effect of the human system-level
score type and find that it is relatively small. For
the sentence level evaluations we use Kendall τ , as
computed by the software published by Kobayashi
et al. (2024), for comparing to human sentence-
level rankings.

For the Swedish data the available annotations
are different, compared to English. Instead of rank-
ings of system outputs, each system output has
been annotated for grammaticality, fluency and
meaning preservation. If any of these are anno-
tated with less than a perfect score (4 on a scale

4Sentence 22 of the REF-M file in the SEEDA dataset is
empty. We handle this by arbitrarily giving this sentence a
score of 0 for all similarity metrics.

Semantic grounding r ρ

None 0.83 0.66
INPUT 0.88 0.87
REF-M 0.83 0.76
REF-F 0.88 0.82

Table 3: Mean system-level correlations between post-
edit distance and human ratings, averaged over all LLM
post-editors, similarity metrics, and human ratings.

Human rating r ρ

EW/edit 0.84 0.77
EW/sentence 0.85 0.79
TS/edit 0.87 0.77
TS/sentence 0.87 0.79

Table 4: Mean system-level correlations between post-
edit distance and human ratings, averaged over all LLM
post-editors, similarity metrics, and semantic grounding
options. The four human rating references are com-
puted using Expected Wins (EW) or TrueSkill (TS)
from sentence-level rankings that are either edit-based
or sentence-based.

1–4), there is also a post-edited version of the sys-
tem output with the goal of performing minimal
editing to achieve full scores on all three properties.
Since there are only three GEC system outputs and
two human references included in the data, we do
not consider it meaningful to perform a system-
level evaluation as in the English data. Instead, we
use Spearman’s ρ to compare the post-edit score
between the human annotator and each LLM. We
also compare the LLM post-edit scores to the mean
of the human annotator’s grammaticality, fluency
and meaning preservation scores, which we use as
a general measure of the quality of that particular
correction.

5 Results and Discussion

5.1 Overall agreement with human rankings

In order to see whether LLM-based post-editing
provides a scoring of GEC systems that aligns with
human preferences (RQ1), we begin by applying
the meta-evaluation framework of Kobayashi et al.
(2024). Because our proposed evaluation setup
has several hyperparameters and only 15 system
outputs5 to measure correlations with, we search

5Whenever the semantic grounding uses one of the human
references (REF-M or REF-F), that reference is excluded from
computing the correlation and only the remaining 14 system
outputs are used. Note that unless stated otherwise, we use
the term “system output” to also include the human-created
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Spearman ρ Pearson r
LLM Base None INPUT REF-M REF-F Base None INPUT REF-M REF-F

Gemma 2-2B -0.28 0.94 0.61 0.74 0.93 -0.64 0.97 0.58 0.72 0.96
Gemma 2-9B 0.35 0.91 0.95 0.94 0.94 -0.18 0.96 0.97 0.97 0.96
Gemma 2-27B 0.55 0.68 0.92 0.83 0.60 0.05 0.87 0.97 0.90 0.83
Gemma 3-27B 0.46 0.42 0.94 0.83 0.89 -0.15 0.76 0.97 0.91 0.93
Llama 3.1-8B 0.14 0.95 0.93 0.92 0.92 -0.41 0.97 0.95 0.98 0.98
Mistral Small 24B 0.29 0.91 0.96 0.94 0.95 -0.27 0.97 0.98 0.98 0.95
Qwen 2.5-32B 0.56 0.44 0.94 0.89 0.83 -0.00 0.75 0.96 0.89 0.92
Command A-111B 0.48 0.87 0.95 0.93 0.93 -0.06 0.95 0.98 0.98 0.94
GPT-4o – – 0.96 – – – – 0.98 – –
GPT-4o-mini – – 0.96 – – – – 0.97 – –

Table 5: Mean system-level correlations between post-edit distance and human ratings, per LLM and semantic
grounding option, always using 6-gram overlap and averaging over human ratings.

Sentence-based Edit-based
LLM Base None INPUT REF-M REF-F Base None INPUT REF-M REF-F

Gemma 2-2B -0.21 0.32 0.18 0.23 0.32 -0.13 0.35 0.21 0.27 0.33
Gemma 2-9B 0.10 0.36 0.54 0.41 0.38 0.15 0.35 0.52 0.41 0.39
Gemma 2-27B 0.21 0.18 0.42 0.25 0.15 0.26 0.18 0.41 0.25 0.20
Gemma 3-27B 0.11 0.14 0.47 0.28 0.29 0.20 0.11 0.45 0.27 0.24
Llama 3.1-8B -0.01 0.33 0.36 0.30 0.31 0.06 0.35 0.39 0.34 0.34
Mistral Small 24B 0.08 0.35 0.48 0.38 0.39 0.18 0.33 0.50 0.38 0.33
Qwen 2.5-32B 0.21 0.14 0.45 0.23 0.26 0.24 0.16 0.45 0.22 0.23
Command A-111B 0.19 0.38 0.46 0.37 0.38 0.22 0.37 0.47 0.37 0.39
GPT-4o – – 0.54 – – – – 0.55 – –
GPT-4o-mini – – 0.46 – – – – 0.46 – –

Table 6: Mean sentence-level Kendall τ between post-edit distance and human ratings, per LLM and semantic
grounding option, always using 6-gram overlap.
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through each parameter independently taking the
averages over all other parameters in order to avoid
overfitting. Averaged system-level correlations are
presented in Table 1 (per LLM), Table 2 (per simi-
larity metric), and Table 3 (per semantic grounding
option). Additionally, we also present the averaged
correlations per human rating setup (Table 4) and
see that these are in general agreement with each
other. In all other system-level evaluation results,
we present averages over all four human rating set-
ups to obtain more reliable estimates.

5.2 Effect of text similarity metric

Next, we turn to the question of how the text
similarity metric used to compare the system out-
put with its post-edited version affects the results
(RQ2). Östling et al. (2024) used Normalized Lev-
enshtein Distance with manual post-edits. We com-
pute the its negated version (Normalized Leven-
shtein Similarity) along with two other options.
The results are shown in Table 2, averaged over all
other parameters. It is clear that Normalized Lev-
enshtein Similarity is in fact sub-optimal, and that
both of the other two metrics obtain correlations
with human ratings that are considerably higher. In
the following analysis we use 6-gram overlap, as it
is simple and efficient to compute.

5.3 Effect of semantic grounding

To investigate whether the type of semantic ground-
ing affects post-editing based evaluation (RQ3), we
compute the correlations separately for the differ-
ent types of semantic grounding (Table 5). There
are pronounced differences between the various
LLMs with respect to which type works best, but
the overall trend is that adding human-written ref-
erences typically does not improve the outcomes,
and in most cases results in lower correlation with
human ratings.

We have included a baseline (Base) consisting
of a reference generated by the same LLM with-
out access to the system output, using the LLM
as a GEC system with access to the original text
only.6 This is done to exclude the possibility that
the LLMs generate high-quality references and that
post-editing is an unnecessary complication. How-
ever, the low correlation values for the baseline
indicate that including the system output and per-
forming post-editing is essential to the success of

references.
6Prompts are given in Appendix A.

LLM S.G. HP HS
Gemma 2-9B None 0.39 0.39
Gemma 2-9B INPUT 0.28 0.26
Gemma 2-9B REF-M 0.55 0.51
Mistral Small 24B None 0.40 0.38
Mistral Small 24B INPUT 0.30 0.30
Mistral Small 24B REF-M 0.55 0.51
Qwen 2.5-32B None 0.35 0.34
Qwen 2.5-32B INPUT 0.34 0.34
Qwen 2.5-32B REF-M 0.49 0.45
Command A-111B None 0.49 0.46
Command A-111B INPUT 0.40 0.39
Command A-111B REF-M 0.58 0.53

Table 7: Spearman ρ between LLM post-edit score, and
each of human post-edit (HP) and human score (HS,
mean of grammaticality, fluency and meaning preserva-
tion scores). Scores from post-edits are defined as the
6-gram similarity to their respective system output. The
correlation between HP and HS is 0.81. S.G. = semantic
grounding.

our method. Manual inspection indicates that REF-
F and GPT-3.5, both of which contain a consider-
able amount of fluency edits, are generally rated
poorly by the baseline.

It is also noteworthy that some of the highest
system-level correlations are obtained by letting
the smallest of the evaluated LLMs (Gemma 2-2B)
post-edit the system output with only the system
output and no semantic grounding, thus ignoring
any possible semantic errors. In line with previous
work (Yoshimura et al., 2020) which found that
meaning preservation is not an important factor
when trying to achieve high correlation to human
ratings, this indicates that having even a modest-
sized LLM perform conservative correction of the
system output brings us to close agreement with
human system-level ratings.

5.4 Sentence-level evaluation

We now turn from system-level to sentence-level
evaluations. Following Kobayashi et al. (2024), we
present the sentence-level agreement with human
rating as Kendall τ values in Table 6. At this finer
level of granularity, the differences between differ-
ent metric parameters become apparent. Adding
the original sentence as semantic grounding consis-
tently improves the correlation with human assess-
ments, while adding a human reference (REF-M

or REF-F) shows no such tendency. Again, the
baseline consistently has very low correlations.
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Figure 1: Scatter plot of character 6-gram overlap scores derived from human (x-axis) and LLM (y-axis) post-edits,
in both cases using REF-M for semantic grounding. A score of 1 indicates that no changes were made during
post-editing. The points are one-third transparent to avoid over-plotting.

5.5 Human vs. LLM post-edits

In order to investigate the relationship between
post-edits made by humans and LLMs (RQ4), we
use the Swedish data from Östling et al. (2024),
where three GEC system outputs and two human
references have been post-edited as well as rated
for grammaticality, fluency and meaning preserva-
tion. We used a subset of the most promising LLMs
to replicate the post-editing and allow direct com-
parisons between LLM and human post-edits. Ta-
ble 7 presents correlations between LLM post-edit
scores (using character 6-gram overlap) and human
post-edit scores (also using character 6-gram over-
lap) as well as to the mean of the grammaticality,
fluency and meaning preservation scores. The lat-
ter is used to approximate a direct assessment by
the human annotator of the GEC system’s output
of that particular sentence.

In the human post-editing of Östling et al. (2024),
a minimal edits reference (REF-M) was used for se-
mantic grounding. As expected, we find that using
this reference in the LLM prompt leads to higher
correlation to both the human post-edit distance
and the human annotated scores. Unlike for the En-
glish SEEDA data, using only the original sentence
for semantic grounding (INPUT) leads to consid-

erably lower correlations. We believe this to be
due to the fact that the Swedish data consists of
individual sentences in random order, and that only
the creator of the REF-M reference has access to
a wider context, while both the human and LLM
post-editors lack any such context.

Figure 1 shows the 6-gram overlap scores as-
signed to each sentence from both the human post-
editing and LLM post-editing. The LLM used was
the one with the highest correlation to human post-
editing scores (Cohere Command A-111B). We
see that there is generally high agreement, as the
ρ = 0.58 correlation indicates, but that there are
some clear differences. The human post-editor
frequently (46%) leaves the sentence unchanged,
whereas the LLM does this less often (27%). The
same tendency of the human post-editor being more
reluctant to change is reflected in the mean overlap
scores: 0.81 (SD 0.22) for the human, compared
to 0.74 (SD 0.22) for the LLM, meaning that on
the whole the human annotators post-edited less
of the system output than the LLMs did. A sig-
nificant part of this difference is due to the cases
where humans leave sentences unchanged, which is
demonstrated by considering only sentences where
both the human and the LLM actually perform
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some edits. In this case, the correlation between
the 6-gram overlap scores increases to ρ = 0.67
for the same model.

5.6 LLMs as GEC systems and post-editors

An important question7 is whether LLMs can be
expected to post-edit the output of LLM-based sys-
tems, and if it would not be better to simply use the
LLMs as GEC systems to begin with.

Our method is based on the assumption that an
LLM is capable enough to post-edit the output of
even the best GEC systems under evaluation. We
have found this to be the case in our evaluation
where even the best LLM-based systems undergo
significant post-editing during evaluation. Further-
more, we argue that the availability of an LLM
with sufficiently high capability is a realistic as-
sumption in a practical setting, since considerably
more computation can be spent on GEC evaluation
(which will be run once or a few times) than on
actual deployed GEC systems.

It is also important to note that GEC evalua-
tions will also be needed for non-LLM based sys-
tems. Kobayashi et al. (2024) worked with 12 sys-
tems to carry out English GEC for the SEEDA
dataset. Östling et al. (2024) worked with 3 sys-
tems for Swedish GEC of essays in the SweLL
dataset (Volodina et al., 2019). In both cases the
systems include both supervised and unsupervised
approaches, for instance involving machine transla-
tion, sequence tagging and few-shot prompting of
LLMs. That is, we do evaluate both non-LLM and
LLM systems for GEC in this work.

6 Conclusions

We find that LLMs can be used as very effective
evaluation tools for GEC systems, by asking them
to post-edit system outputs and using a simple
string similarity metric (character 6-gram overlap)
to measure the amount of editing needed to go from
the GEC system’s output to a version considered by
the LLM to be fully grammatical and fluent, while
completely preserving the meaning expressed in
the original. Even relatively small LLMs (such as
Gemma 2-2B) can perform this task well enough
to achieve nearly perfect correlation with human
ratings at the system level. However, the picture is
different when the GEC system output is assessed
on the level of individual sentences, with consid-
erable variation between LLMs in the ability to

7Raised by one of the anonymous reviewers.

predict the human assessment of that sentence.
While we use the most recent publicly avail-

abe GEC meta-evaluation dataset (Kobayashi et al.,
2024), LLM-based GEC systems improve rapidly
and an important question is to what extent LLM-
based post editing is able to evaluate the output
of the most capable LLMs. Answering this would
require additional annotations that go beyond the
scope of this work.

To summarize, we see several advantages of eval-
uation based on post-editing GEC system outputs
by LLMs:

• High correlations with human direct assess-
ment of GEC system quality, both at the sys-
tem level and sentence (or document) level.

• Analyzing the post-edits provides an inter-
pretable indication of the weaknesses of a par-
ticular GEC system, and this can be partly
automated by tools such as ERRANT (Bryant
et al., 2017). This contrasts with ranking-
based evaluations like that recently proposed
by Goto et al. (2025).

• Given a multilingual LLM, post-editing can
handle multiple languages without requiring
any additional language-specific resources or
training.

• Unlike metrics that depend on having a large
number of data points to average over (e.g.,
Islam and Magnani, 2021; Goto et al., 2025),
post-editing distance can be estimated even
on a single document without a sentence-
aligned system output. It is thus suitable for
document-level evaluations, as in Masciolini
et al. (2025).

Fully exploring document-level multilingual
evaluation would be an interesting direction of fu-
ture work (Piotrowska, 2025). Note that in this
work we have only worked at the sentence level,
as has been conventional in GEC for the most part.
However, in recent years there has been growing
interest in document-level GEC, as well as evi-
dence that the additional context can aid system
performance on certain error types which relate to
linguistic features above the sentence level (Yuan
and Bryant, 2021; Mita et al., 2024; Masciolini
et al., 2025).
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Limitations

This paper on GEC is limited in the sense that we
work with only 2 languages (English and Swedish)
and findings for other languages may vary from
those reported here. Annotated data for GEC are
costly to build and therefore hard to come by: the
datasets we work with in this paper are relatively
small, compared to some corpora used in other
areas of NLP. In addition the correction of gram-
matical errors is to some extent subjective, and an
estimation without full access to the authors’ origi-
nal intentions. However, this limitation is a factor
for all working on GEC.

LLMs have proven to be highly effective for
a number of NLP tasks. In this paper we show
that they are not necessarily state-of-the-art at the
GEC task itself, but may be sufficiently accurate on
the GEC post-editing task. This finding is limited
by the continued availability of high quality open-
weights LLMs, sufficient computing resources for
those conducting research to be able to use the
LLMs for inference, and the fact that we have
only evaluated their performance on two languages.
However, in principle, many LLMs have highly
multilingual capabilities, and we expect that the
outcomes reported here will hold for many other
languages.
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A Prompts

In this appendix, we present the prompts used
across different experiments. We use a total of
three prompt templates: one for the baseline results
where LLMs are applied to GEC tasks, and two
for the post-editing experiments—one without a
semantic grounding sentence and one with. The
same prompt structure is used for all three types of
semantic grounding.

Prompt for GEC baseline

Reply with a corrected version of the input sen-
tence with all grammatical and spelling errors
fixed. If there are no errors, reply with a copy of
the original sentence.

Instructions:

1. Return ONLY the corrected sentence.
2. Wrap the corrected sentence in

<corrected> and </corrected>
tags.

3. Do NOT include any explanations, extra
text, or formatting.

Example:

<corrected>This is your corrected
sentence.</corrected>

Input sentence: {sentence}
Output:

Prompt for post-editing without semantic
grounding

Please make minimal modifications to the given
sentence to achieve all of the properties below:

• Perfect grammaticality: The sentence is
native-sounding. It has no grammatical er-
rors, but may contain very minor typograph-
ical and/or collocation errors.

• Perfect fluency: The sentence sounds ex-
tremely natural and native-like.

• Same language: The sentence must remain
in the same language as the original (do not
translate or change language).

Instructions:

1. Return ONLY the corrected sentence.
2. Wrap the corrected sentence in

<corrected> and </corrected>
tags.

3. If the original sentence is already perfect, re-
turn it AS IS inside the <corrected> tags.

4. Do NOT include any explanations, extra
text, or formatting.

Example output format:

<corrected>Your corrected sentence
here.</corrected>

Sentence: {sentence}
Output:

Prompt for post-editing with semantic ground-
ing

Please make minimal modifications to the given
sentence to achieve all of the properties below:

• Perfect grammaticality: The sentence is
native-sounding. It has no grammatical er-
rors, but may contain very minor typograph-
ical and/or collocation errors.

• Perfect fluency: The sentence sounds ex-
tremely natural and native-like.

Instructions:

1. Return ONLY the corrected sentence.
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2. Wrap the corrected sentence in
<corrected> and </corrected>
tags.

3. Ensure that the corrected sentence pre-
serves the meaning of the reference sen-
tence provided below. The reference may
contain grammatical errors — it is for se-
mantic grounding only.

4. If the original sentence is already perfect, re-
turn it AS IS inside the <corrected> tags.

5. Do NOT include any explanations, extra
text, or formatting.

Example output format:

<corrected>Your corrected sentence
here.</corrected>

Sentence: {sentence}
Reference (for meaning preservation only): {ref-
erence sentence}
Output:
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