
Proceedings of the 20th Workshop on Innovative Use of NLP for Building Educational Applications, pages 202–212
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Multilingual Grammatical Error Annotation: Combining
Language-Agnostic Framework with Language-Specific Flexibility

Mengyang Qiu1,2 Tran Minh Nguyen2 Zihao Huang2 Zelong Li3 Yang Gu2

Qingyu Gao2 Siliang Liu2 Jungyeul Park2,3

1Trent University, Canada 2Open Writing Evaluation, France
3University College London, UK 4The University of British Columbia, Canada

http://open-writing-evaluation.github.io

Abstract

Grammatical Error Correction (GEC) relies
on accurate error annotation and evaluation,
yet existing frameworks, such as errant, face
limitations when extended to typologically
diverse languages. In this paper, we introduce
a standardized, modular framework for
multilingual grammatical error annotation.
Our approach combines a language-agnostic
foundation with structured language-specific
extensions, enabling both consistency and
flexibility across languages. We reimplement
errant using stanza to support broader
multilingual coverage, and demonstrate the
framework’s adaptability through applications
to English, German, Czech, Korean, and
Chinese, ranging from general-purpose
annotation to more customized linguistic
refinements. This work supports scalable and
interpretable GEC annotation across languages
and promotes more consistent evaluation in
multilingual settings. The complete codebase
and annotation tools can be accessed at https:
//github.com/open-writing-evaluation/
jp_errant_bea.

1 Introduction

Grammatical Error Correction (GEC), which aims
to automatically detect and correct errors in written
text, has emerged as one of the most important and
widely studied tasks in Natural Language Process-
ing (NLP) for educational applications, particularly
those supporting language learning and writing im-
provement. It benefits both native speakers (L1), by
enhancing clarity and fluency in their writing, and
non-native learners (L2), by providing immediate,
structured feedback that reinforces correct gram-
matical patterns, boosts writing confidence, and,
ultimately, supports language development and ac-
quisition (Marjokorpi, 2023; Van Beuningen et al.,
2012). Over the years, the lion’s share of research
has focused on advancing GEC systems—evolving
from rule-based and statistical approaches to neural

architectures, such as neural machine translation
with transformers (Zhao et al., 2019) and, more re-
cently, prompting-based approaches built on large
language models (Zeng et al., 2024; for a compre-
hensive review, see Bryant et al., 2023).

Yet, automatic error annotation and evaluation
play an equally critical role in GEC. Error anno-
tation identifies and categorizes linguistic errors,
while evaluation measures how effectively GEC
systems correct them. Together, these two com-
ponents help establish standardized benchmarks,
influencing everything from system development
to the quality of corrections eventually delivered
to users. However, despite their importance, they
have historically received less attention and are of-
ten treated as ancillary to system development and
dataset creation.

Among existing tools for automatic error anno-
tation and evaluation (e.g., M2, Dahlmeier and Ng,
2012; GLEU, Napoles et al., 2015), errant (ER-
Ror ANnotation Toolkit) has established itself as
the de facto framework for English GEC. What
makes errant stand out is its detailed linguistic
annotations, with a total of 55 possible error types
for English (Bryant et al., 2017). errant’s signif-
icance was solidified in the Building Educational
Applications 2019 Shared Task: Grammatical Er-
ror Correction (BEA-2019), where it was used to
standardize multiple datasets and served as the offi-
cial scorer (Bryant et al., 2019).

While this toolkit has proven effective for En-
glish, further refinements are needed to improve
its versatility and adaptability, especially in multi-
lingual scenarios. Recent years have seen growing
interest in multilingual GEC, as demonstrated by
initiatives like the MultiGEC-2025 Shared Task,
which brought together efforts across twelve typo-
logically diverse European languages (Masciolini
et al., 2025a,b). However, this surge in interest has
outpaced the development of consistent multilin-
gual annotation resources.

202

http://open-writing-evaluation.github.io
https://github.com/open-writing-evaluation/jp_errant_bea
https://github.com/open-writing-evaluation/jp_errant_bea
https://github.com/open-writing-evaluation/jp_errant_bea

As noted by Masciolini et al. (2025a), only
three languages in MultiGEC–namely Czech, Ger-
man, and Greek–have received errant-style an-
notation. For the remaining languages, the au-
thors acknowledge that, due to limited time and
resources, they implemented only coarse-grained
alignment between original and corrected texts to
support holistic scoring, without access to the kind
of detailed error analysis enabled by errant for
English. Even in existing adaptations of errant
for various languages, implementations vary con-
siderably in their design choices–ranging from an-
notation label schemes to tokenization and part-
of-speech (POS) tagging tools–and differ in the
level of granularity applied to language-specific
error types. Although differences in orthographies
and morphosyntactic structures across languages
are unavoidable, greater consistency in annotation
practices is highly desirable.

To address these challenges, our goal is to de-
velop a consistent and reusable framework for
grammatical error annotation that can be readily
adapted across typologically diverse languages.
Drawing inspiration from the original errant’s
dataset-agnostic design, we extend its core philoso-
phy to multilingual settings by separating the anno-
tation pipeline into two components: a shared archi-
tecture that applies across languages, and optional
extensions tailored to language-specific features.
Even within the language-specific layer, we intro-
duce structured templates for common error types,
such as spelling, word order, and word boundary
errors, which can be reused or adapted across lan-
guages with similar orthographic or syntactic pat-
terns. In addition, our implementation relies on the
stanza toolkit for tokenization and POS tagging,
which provides standardized processing pipelines
for over 70 languages (Qi et al., 2020), allowing
our framework to be readily extended to annotate
new GEC datasets of other languages when they
become available.

The rest of the paper is organized as follows: §2
reviews the original errant framework, discusses
challenges in its multilingual adaptations, and mo-
tivates the use of stanza for more consistent cross-
linguistic preprocessing. §3 introduces our pro-
posed grammatical error typology, which combines
a language-agnostic core with structured, language-
specific extensions. §4 presents our reimplementa-
tion of English errant and demonstrates the frame-
work’s applicability to multiple languages, ranging
from generic use in European languages, to minor

template refinements for Korean, and deeper cus-
tomization for Chinese. Finally, §5 summarizes
our contributions and emphasizes the framework’s
flexibility and extensibility for multilingual GEC.

2 Background and Related Work

2.1 Description of errant

errant is a unified framework for error annotation
and evaluation in English GEC. It provides a rule-
based, dataset-agnostic approach for extracting and
categorizing edits between original and corrected
sentences, making it a crucial tool for system eval-
uation and benchmarking (Bryant et al., 2017).

At the core of its annotation pipeline is a linguis-
tically enhanced alignment algorithm that identifies
edit boundaries between sentence pairs. This algo-
rithm, originally proposed by Felice et al. (2016),
extends the Damerau-Levenshtein distance with a
linguistically informed cost function that considers
part-of-speech tags, lemmas, and character similar-
ity. Unlike surface-level edit distance, this method
prioritizes alignments between tokens that are syn-
tactically or morphologically related (e.g., meet
and meeting), and handles both one-to-one edits
and multi-token reordering. A rule-based merging
strategy is then applied to combine adjacent edits
where appropriate, based on patterns frequently ob-
served in learner data, such as phrasal verb edits.
This alignment process significantly improves the
consistency and quality of extracted edits (Felice
et al., 2016).

Following alignment, errant applies a rule-
based annotation scheme to categorize edits into
fine-grained grammatical error types, enabling both
comprehensive feedback and error-type evalua-
tion. Specifically, it defines 25 primary error types
based on POS and morphological properties ob-
tained from spaCy1, and further classifies them
into three edit operations: Missing, Unnecessary,
and Replacement, resulting in a total of 55 pos-
sible error types (e.g., R:VERB:TENSE indicates a
replacement error related to verb tense). To store
annotations, errant generates output in M2 format,
the standard representation for GEC annotations
since its adoption in the CoNLL-2013 Shared Task
(Ng et al., 2013). Each annotated sentence consists
of the original tokenized text (denoted by an S line)
followed by one or more error annotation lines (A
lines). Each A line specifies the error span, the

1https://spacy.io

203

https://spacy.io

error type, the suggested correction, and additional
metadata (see Figure 1 for an example in English).

S This are a sentence .
A 1 2|||R:VERB:SVA|||is|||-REQUIRED-|||NONE|||0
A 3 3|||M:ADJ|||good|||-REQUIRED-|||NONE|||0

Figure 1: Example of an annotated sentence in M2 format
from BEA-2019.

With edits extracted and categorized in a stan-
dardized format, errant can then be used to sys-
tematically evaluate GEC system outputs against
gold-standard references. It calculates precision
and recall between system-generated edits and
gold-standard corrections and utilizes a harmonic
mean F0.5 score, which weights precision twice as
much as recall to prioritize accurate and contextu-
ally appropriate corrections over excessive edits.
Thanks to its detailed annotation schema, errant
supports multi-granularity evaluation–analyzing
system effectiveness not only at the overall level but
also across specific error types and edit operations,
enabling a fine-grained and transparent assessment
of GEC models.

In BEA-2019, errant was used to standardize
multiple datasets, some of which were annotated
using different error type frameworks, while others
lacked annotations entirely. This allowed for error
distribution comparisons across datasets that were
previously hindered by these annotation discrep-
ancies. In addition, errant facilitated multi-level
system evaluation by supporting error-type analysis
across 24 main categories for all 21 participating
teams2. This enabled a detailed assessment of each
system’s strengths and weaknesses and made it
easier to identify which error types were the most
challenging to correct (Bryant et al., 2019).

While errant provides a linguistically informed
foundation for GEC annotation and evaluation, it
is not without limitations. One minor issue is its
tendency to overuse the OTHER category (i.e., un-
specified errors), leading to less precise error cate-
gorization. For instance, certain errors that could
be classified as specific grammatical types (e.g.,
verb tense or prepositions) are instead grouped un-
der OTHER (Korre and Pavlopoulos, 2020).

Another issue, as discussed in Wang et al. (2025),
arises in end-to-end evaluation scenarios. errant
assumes pre-defined sentence boundaries, and mis-

2errant defines 25 categories, including UNKnown (error
detected but unable to be corrected; Bryant et al., 2017). In
BEA-2019, this category was not included.

alignment can result in an inability to generate eval-
uation results between gold-standard references
and system outputs. However, in real-world GEC
applications, such as learner essays, inconsisten-
cies in sentence segmentation are a common issue,
often caused by differences in preprocessing steps.
To address this, Wang et al. (2025) introduced joint-
preprocessing errant, incorporating an alignment-
based approach to detect and resolve segmentation
discrepancies before evaluation.

2.2 Challenges in existing multilingual
adaptations of errant

Given its demonstrated success in English, errant
has been adapted to multiple languages, includ-
ing Arabic (Belkebir and Habash, 2021), Chi-
nese (Hinson et al., 2020; Zhang et al., 2022; Gu
et al., 2025), Czech (Náplava et al., 2022), Ger-
man (Boyd, 2018), Greek (Korre et al., 2021),
Hindi (Sonawane et al., 2020), and Korean (Yoon
et al., 2023). While these adaptations have enabled
broader use of errant-style annotation, they also
reveal several challenges that arise when extend-
ing the framework to languages with a range of
orthographic and morphosyntactic characteristics.

Inconsistent annotation labels A minor issue
in multilingual adaptations of errant is inconsis-
tent annotation labels for similar error types. The
original errant for English defines three edit op-
erations: Missing, Unnecessary, and Replacement,
while treating word order (WO) as a main error cate-
gory, similar to NOUN or VERB errors. In errant_zh,
an adaptation for Chinese, these operations were
denoted as insertion, deletion, substitution, and
transposition (Hinson et al., 2020). Meanwhile,
ChERRANT, another Chinese adaptation, later re-
vised them to Missing, Redundant, Substitute, and
Word-order (Zhang et al., 2022). While these dif-
ferences do not affect core functionality, the lack
of consistent labeling across adaptations can cre-
ate confusion. Nevertheless, this issue is relatively
straightforward to address, as it primarily involves
terminology standardization.

Inconsistent preprocessing tools A moderate
challenge in multilingual GEC annotation lies in
linguistic preprocessing tools, particularly word
segmentation and POS tagging. While spaCy, the
default NLP library in errant for English, sup-
ports multiple languages, its effectiveness varies
across linguistic systems, prompting many adap-
tations to incorporate alternative tools. For exam-

204

ple, German errant retained much of the spaCy
pipeline but found its lemmatization insufficient,
replacing it with TreeTagger for better accuracy
(Boyd, 2018). For non-European languages, en-
tirely different tools are used, such as Kkma POS
Tagger for Korean KAGAS (Yoon et al., 2023) and
LTP (Language Technology Platform) for Chinese
ChERRANT (Zhang et al., 2022).

Although these variations allow for language-
specific optimizations, different tokenization strate-
gies and POS tagging schemes can lead to discrep-
ancies in how errors are identified and classified.
This is particularly problematic for multilingual
GEC models, where standardized evaluation across
multiple languages is crucial. Since a system’s
measured performance is inherently tied to how its
errors are annotated, such variations can obscure
true system similarities or differences and compro-
mise the reliability of multilingual benchmarks.

Inconsistent annotation granularity A more
significant challenge in multilingual GEC anno-
tation involves the varying levels of granularity for
language-specific errors. While errant provides
detailed error categories for English, adaptations
to other languages, especially non-European lan-
guages, often fail to maintain this level of detail.
For instance, errant_zh uses only four basic edit
operations at the character level, without POS in-
formation (Hinson et al., 2020).

Recent work has begun addressing this limitation
by introducing more fine-grained annotations tai-
lored to specific linguistic properties. For example,
Gu et al. (2025) propose a refined error typology
for Chinese that accounts for phonetic similarity,
visual similarity, and other structural errors specific
to Chinese. While this framework was developed
for Chinese, many of its principles can be read-
ily applied to languages with similar logographic
orthographies.

2.3 stanza as a multilingual alternative to
spaCy

The original errant framework relies on spaCy
for preprocessing tasks such as tokenization and
POS tagging. However, spaCy’s multilingual ca-
pabilities are relatively limited, covering only a
small number of languages and exhibiting incon-
sistent performance across linguistic families. This
has contributed to the fragmented landscape of
language-specific adaptations in prior errant vari-
ants.

To promote cross-lingual consistency, our imple-
mentation adopts stanza (Qi et al., 2020), a fully
neural pipeline trained on Universal Dependencies
(UD) and other multilingual corpora. stanza sup-
ports over 70 languages and applies a consistent ar-
chitecture and UD-based annotation scheme across
its modules—including tokenization, multi-word
token expansion, POS and morphological tagging,
dependency parsing, and named entity recogni-
tion3. Benchmark evaluations indicate strong per-
formance across typologically diverse languages.

Crucially, our aim is not to promote a specific
tool, but to align the preprocessing stage with
the same linguistic principles that underlie our er-
ror typology. Like UD, our taxonomy adopts a
cross-linguistically consistent core structure with
optional language-specific extensions. Using a UD-
compatible parser such as stanza ensures that all
languages are analyzed under a shared morphosyn-
tactic framework, which is essential for scalable
and comparable multilingual grammatical error an-
notation. In this sense, it is the UD standard, rather
than any particular NLP library, that provides the
conceptual and practical foundation for our ap-
proach.

3 Multilingual Error Typology

An error typology provides a systematic framework
for identifying, classifying, and analyzing errors
in written text. We propose a two-tiered typology
consisting of a language-agnostic foundation and a
set of structured, language-specific extensions. The
first level includes the widely adopted MRU (Missing,
Replacement, Unnecessary) framework, ensuring
consistency in annotation and evaluation across lin-
guistic systems. The second level provides a struc-
tured template for language-specific extensions, al-
lowing related languages to share annotation strate-
gies and avoid redundant reimplementation. By
designing this layered approach, we promote stan-
dardization across languages while allowing flexi-
bility for language-specific refinements.

3.1 Language-agnostic error annotation

The MRU framework classifies errors into three core
operations: Missing (M), where essential elements
are omitted; Replacement (R), where an incorrect el-
ement substitutes the correct one; and Unnecessary
(U), where superfluous elements cause redundancy.

3https://stanfordnlp.github.io/stanza/

205

https://stanfordnlp.github.io/stanza/

Each error is further specified with POS tags for
precise categorization.

Missing (M) An essential linguistic element is
omitted from a sentence, leading to incomplete
or ungrammatical structures. These errors typically
involve the absence of words or phrases necessary
for grammaticality or semantic clarity, such as miss-
ing determiners. In annotation, missing errors are
further categorized based on POS tags or syntactic
functions. For example, M:NOUN indicates a miss-
ing noun.

Replacement (R) An incorrect linguistic element
is used in place of the correct one. These errors
frequently involve incorrect word forms or inap-
propriate lexical choices (e.g., R:VERB denotes an
erroneous verb substitution). To further reduce am-
biguity in annotation, we implement the R:P1→P2
pattern, where P1 is replaced by P2.

Unnecessary (U) A superfluous linguistic element
is present in a sentence, resulting in redundancy or
ungrammaticality. These errors often involve ex-
traneous words or phrases that disrupt sentence
structure or meaning. Similar to missing and re-
placement errors, unnecessary errors are annotated
with POS information to specify the redundant ele-
ment. For example, U:DET denotes an unnecessary
determiner.

3.2 Language-specific error annotation

To accommodate language-specific characteristics,
we introduce a set of structured extensions to the
MRU core. Our approach maintains consistency with
established annotation schemes such as errant
while capturing morphological and syntactic errors
unique to different languages. Algorithm 1 presents
our proposed classification routine for Replacement
errors. Given a pair of word sequences—the source
(S) and the target (T)—the algorithm classifies
the error into one of the following types: spelling
errors (R:SPELL), word order errors (R:WO), or
word boundary errors (R:WB). Spelling similarity
is computed using two metrics: phonetic similarity
and visual (shape-based) similarity. The thresholds
α1 and α2 govern sensitivity to phonetic and visual
matches, respectively.

The classification uses the following notation:

• S, T : word sequences in the source and target
sentences.

• SIM(phonetic) and SIM(shape): similarity
functions comparing pronunciation and visual
form.

• SET(S): returns a bag-of-words representa-
tion of S, disregarding word order.

• MERGE(S): reconstructs a character sequence
from the tokenized input (i.e., merging tokens
without spaces) to test for boundary align-
ment.

This structured yet extensible framework al-
lows consistent error categorization across lan-
guages, while also accommodating language-
specific scripts and segmentation conventions.

Algorithm 1 Pseudo-code for error classification
1: function ERRORCLASSIFICATION (S, T):
2: if (SIM (phonetic) > α1) ∧ (SIM (shape) > α2) then
3: return R:SPELL:PHONOGRAPHIC
4: else if (SIM (phonetic) > α1) then
5: return R:SPELL:PHONETIC
6: else if (SIM (shape) > α2) then
7: return R:SPELL:SHAPE
8: else if (SET (S) == SET (T)) then
9: return R:WO

10: else if (MERGE(S) == MERGE(T)) then
11: return R:WB
12: end if
13: return {R}

Spelling errors We classify spelling errors by
their underlying cause: sound-based phonetic sim-
ilarity (R:SPELL:PHONETIC), visual resemblance
in orthographic shape (R:SPELL:SHAPE), or a com-
bination of both (R:SPELL:PHONOGRAPHIC). For
sound-based phonetic errors, we introduce a tran-
scription system to represent pronunciation, such
as a pronouncing dictionary for English, pinyin
for Chinese, or romanization for other languages.
This allows us to compare words based on their
phonetic similarity and identify errors caused by
mispronunciation or phoneme substitution. For
orthographic shape errors, we assess visual similar-
ity by converting characters into font images and
applying similarity metrics. This approach helps
detect errors caused by visually similar characters,
such as mistyped letters in Latin-based scripts or
miswritten strokes in logographic writing systems
like Chinese and Japanese. By combining these
methods, we systematically classify and analyze
spelling errors across different languages.

Word order errors Word order errors are
flagged when the source sequence (S) and the tar-
get sequence (T) contain the same set of words

206

but differ in arrangement. In such cases, all words
from the original sequence are retained, but their
relative positions are altered. These errors are par-
ticularly common in languages with flexible word
order, where reordering affects grammaticality or
readability. Identifying and categorizing such er-
rors enables more structured syntactic analysis and
improves grammatical error correction.

Word boundary errors Word boundary errors
occur when the source sequence (S) and the target
sequence (T) yield the same sequence after merg-
ing their respective word components. These errors
typically involve incorrect spacing, where words
that should remain separate are mistakenly merged,
or conversely, a single word is improperly split into
multiple tokens. Since the fundamental content re-
mains unchanged but the segmentation differs, such
errors impact readability, syntactic structure, and
lexical integrity. Addressing these errors ensures
accurate word segmentation and proper grammati-
cal representation.

Figure 2 illustrates representative examples of
the three major subtypes of Replacement errors
classified by our algorithm.

R:SPELL:PHONETIC their → there
R:WO You can help me → Can you help me
R:WB ice cream → icecream

Figure 2: Examples of Replacement error types: pho-
netic spelling error (R:SPELL:PHONETIC), word order
error (R:WO), and word boundary error (R:WB).

4 Implementation of Multilingual Error
Annotation

Our implementation demonstrates how grammati-
cal error annotation can be consistently extended
across typologically diverse languages. We be-
gin by reimplementing errant for English using
stanza and validating its performance. We then ap-
ply the same system to other European languages
without language-specific modules. For Korean,
we introduce targeted refinements using language-
specific templates. Finally, for Chinese, we show
how deeper customization can be incorporated by
modifying segmentation and retraining the stanza
pipeline.

4.1 Reimplementing errant for English
We reimplemented errant using stanza for POS
tagging and dependency parsing, as described in
§2.3. This enables our annotation system to be

more consistent across languages while preserv-
ing the linguistic precision required for English-
specific grammatical labels.

We integrated the English-specific classification
module from the original errant, which iden-
tifies detailed grammatical error types, such as
NOUN:POSS for possessive noun suffix errors. This
module relies on universal POS tags (Petrov et al.,
2012) and dependency relation tags to categorize
errors. For instance, if the first token in an edit
is tagged as PART and its dependency relation is
case:poss, the classifier assigns the NOUN:POSS
label accordingly.

A key distinction between the original errant
and our implementation lies in error categorization.
As illustrated in Figure 3, errant originally an-
notates that is as a missing OTHER error, whereas
our implementation classifies it more precisely
as a missing PRON error. Additionally, we refine
verb annotation by distinguishing auxiliary verbs
in passive constructions, categorizing is played as a
Replacement error from VERB to AUX VERB. These
refinements enhance interpretability by providing
more specific and linguistically meaningful labels
for complex constructions.

Original errant:
S Volleyball is a sport play every place ...
A 4 4|||M:OTHER|||that is|||REQUIRED|||-NONE-|||0
A 4 5|||R:VERB:FORM|||played|||REQUIRED|||-NONE-|||0

Our implementation:
S Volleyball is a sport play every place ...
A 4 4|||M:PRON|||that|||REQUIRED|||-NONE-|||0
A 4 5|||R:VERB → AUX VERB|||is played|||REQUIRED|||-NONE-|||0

Figure 3: Differences between errant and our imple-
mentation

To evaluate the overall alignment, we compared
both implementations using outputs from the state-
of-the-art GEC system, T5 (Rothe et al., 2021).
The results in Table 1 support that our implementa-
tion reproduces errant’s scores, with only minor
variations.

TP FP FN Prec Rec F0.5

errant 2589 1639 4030 0.6123 0.3911 0.5501
Ours 2565 1613 4028 0.6139 0.3890 0.5503

Table 1: GEC results for English using T5

4.2 Applying universal annotation to
European languages

Without language-specific classification modules,
our grammatical error annotation system remains
capable of generating generic error annotations us-
ing the core MRU framework combined with POS

207

Czech S Mám velkou rodinu , tak nemohla jsem mít naději , že něco dostanu .
Náplava et al. (2022) A 5 7|||R:WO|||jsem nemohla|||REQUIRED|||-NONE-|||0

Ours A 5 7|||R:VERB AUX -> AUX VERB|||jsem nemohla|||REQUIRED|||-NONE-|||0
(‘I have a big family, so I couldn’t hope to get anything.’)

German S Dagegen wieder , bekommen BA Studenten die ein extra Jahr oder mehr studiert haben , leichter Jobs .
Boyd (2018) A 0 3|||R:OTHER|||Dahingegen|||REQUIRED|||-NONE-|||0

A 4 5|||U:PNOUN||||||REQUIRED|||-NONE-|||0
A 5 6|||R:NOUN|||BA-Studenten|||REQUIRED|||-NONE-|||0

Ours A 0 2|||R:ADV ADV -> ADV|||Dahingegen|||REQUIRED|||-NONE-|||0
A 2 3|||U:PUNCT||||||REQUIRED|||-NONE-|||0
A 5 5|||M:PUNCT|||-|||REQUIRED|||-NONE-|||0
(‘On the other hand, BA students who have studied an extra year or more find jobs more easily again.’)

Figure 4: Examples of grammatical error annotation for Czech and German

labels. We applied this approach to German (Boyd,
2018) and Czech (Náplava et al., 2022) to assess
whether structured, interpretable annotations could
still be produced in the absence of custom heuris-
tics.

As shown in Figure 4, our system improves clar-
ity by attaching POS information to word order
and punctuation errors, allowing more consistent
cross-lingual comparisons. For Czech, the example
highlights differences in word order (WO) annota-
tion: our method distinguishes between auxiliary
and main verbs by incorporating POS information,
whereas prior work generally treated such cases
as generic WO errors. By capturing the syntactic
function of the words involved, our method en-
ables more precise and interpretable annotation. A
similar improvement is seen for German, where
our universal framework avoids language-specific
categories while maintaining clear and consistent
labeling.

Compared to previous implementations, our an-
notation outputs remain broadly consistent in terms
of overall operation counts, with only minor vari-
ations, as shown in Table 2. This suggests that
our universal framework based on the MRU scheme
can replicate established annotation distributions.
Table 3 lists the most frequent error annotations
produced by our system alongside those from pre-
vious implementations. Our system makes the syn-
tactic categories involved in each replacement edit
explicit (R:P1 → P2), reflecting a different an-
notation choice rather than a direct re-labeling of
existing tags.

Future work could explore how to map between
these representations to support compatibility and
facilitate comparative evaluations. Another direc-
tion is to extend this annotation scheme to addi-
tional languages: because our framework leverages
universal POS tags and dependency labels from
stanza, it can be readily applied to the ten other
languages in the MultiGEC dataset (Masciolini

et al., 2025a) without additional customization.

Missing Replacement Unnecessary Total
Czech

Náplava et al. (2022) 693 3707 515 4915
Ours 695 3672 530 4897

German
Boyd (2018) 1341 4406 638 6385

Ours 1310 4348 612 6270

Table 2: Comparison of operation counts (Missing,
Replacement, Unnecessary) on the development sets of
Czech (first 1000 sentences; Náplava et al., 2022) and
German (Boyd, 2018).

4.3 Refining language-specific annotations for
Korean

Previous research on Korean grammatical error an-
notation has relied on extensive linguistic resources
(Yoon et al., 2023). However, grammatical errors
in Korean often manifest at the morpheme level, as
observed in L2 writing from the National Institute
of Korean Language (NIKL) corpus. In contrast,
prior error annotation approaches primarily operate
at the word level, which aligns with our methodol-
ogy. To ensure consistency in annotation, previous
work established two priority rules for assigning a
single error type to each word because of the poten-
tial ambiguity in error classification, particularly
when multiple error types could apply to the same
token: (i) INSERTION > DELETION > others, and
(ii) WS (word segmentation = WB) > WO > SPELL

> SHORTEN (incorrect contraction of a word) >
PUNCTUATION > OTHERS.

Building on these foundations, we implement
language-specific error types based on Algorithm 1
and refine the WB (word boundary) category by in-
troducing two subtypes: WB:M for missing spaces
and WB:U for extraneous spaces. The former oc-
curs when spaces are absent between words, caus-
ing multiple words to merge into a single unit,
which can obscure meaning and hinder readabil-
ity. The latter arises when superfluous spaces are
inserted between or within words, disrupting the

208

Czech German
Náplava et al. (2022) Ours Boyd (2018) Ours
Annotation Count Annotation Count Annotation Count Annotation Count

DIACR 989 NOUN → NOUN 760 PUNCT 942 DET → DET 832
OTHER 834 VERB → VERB 465 SPELL 816 NOUN → NOUN 814
PUNCT 487 PUNCT 396 DET:FORM 693 PUNCT 800
SPELL 457 ADJ → ADJ 299 OTHER 670 ADJ → ADJ 466
VERB 271 PRON 161 ORTH 529 VERB → VERB 305

WO 227 DET → DET 101 ADP 348 DET 241
NOUN:INFL 209 ADV → ADV 100 ADJ:FORM 277 ADP → ADP 170

PRON 187 NOUN → ADJ 98 PRON 273 PRON 170
MORPH 177 PUNCT → PUNCT 95 NOUN:FORM 260 PRON → PRON 144

ORTH:CASING 124 ADP → ADP 94 DET 242 AUX → AUX 143

Table 3: Comparison of the top 10 most frequent error annotations on the development sets of Czech (first 1000
sentences; Náplava et al., 2022) and German (Boyd, 2018).

natural flow of the text.
Additionally, we extend grammatical error an-

notation to functional morphemes, categorizing
errors into (i) postposition errors (ADP), (ii) ver-
bal ending errors (PART), and (iii) honorific suf-
fix errors (HON). These errors are further classified
into missing (M), unnecessary (U), and incorrect
usage (R). Figure 5 illustrates corrections from
two annotators: the noun phrase음식이 eumsig-i
(‘food.NOM’) is replaced with음식을 eumsig-eul
(‘food.ACC’), annotated as R:NOUN -> NOUN:ADP,
reflecting a case marker correction. Similarly,막였
습니다 magyeossseubnida is replaced with먹었습
니다 meogeossseubnida (‘ate’), which constitutes
a spelling error due to phonetic and orthographic
similarity.4

S 비행기 1음식이 안 3막였습니다 .
A 1 2|||R:NOUN -> NOUN:ADP|||음식을|||REQUIRED|||-NONE-|||0
A 3 4|||R:Orthographic|||먹었습니다|||REQUIRED|||-NONE-|||0
A 3 4|||R:VERB -> VERB|||맞았습니다|||REQUIRED|||-NONE-|||1

Figure 5: Examples from the Korean M2 file: I didn’t
eat the airplane food (Annotator 0), and The airplane
food didn’t agree with me (Annotator 1)

4.4 Integrating deeper customization for
Chinese

Chinese grammatical error annotation presents
unique challenges due to the lack of explicit word
boundaries (Qiu et al., 2025). Previous systems
(Zhang et al., 2022; Gu et al., 2025) adopt segmen-
tation schemes based on different linguistic assump-
tions: for instance, LTP5 emphasizes compound
words as cohesive lexical units, whereas stanza,
trained on the Chinese GSD treebank6, adopts a

4Annotator 1 annotates a replacement with 맞았습니다
maj-assseubnida (‘agree’), altering the meaning of the sen-
tence. This highlights a potential challenge in grammatical
error annotation—distinguishing between true errors and al-
ternative valid expressions that change sentence semantics.

5https://github.com/HIT-SCIR/ltp
6https://github.com/UniversalDependencies/UD_

Chinese-GSD

finer-grained, morpheme-level segmentation strat-
egy that tends to split compound expressions into
smaller units.

These design choices reflect distinct philoso-
phies rather than flaws. However, segmentation
differences can affect downstream grammatical er-
ror annotation, including both the token spans and
the syntactic interpretation of the correction. For
example, whether a multi-character expression like
为什么 wèishéme (‘why’) is treated as one token
or multiple (为 什么) influences how missing or
replacement errors are classified.

To illustrate the flexibility of our framework, we
adopt an LTP-style segmentation approach, which
aligns more closely with native speaker intuitions
about lexical units in Chinese. While the default
stanza pipeline uses GSD-style morpheme-level
segmentation, our framework allows researchers
to substitute this with alternative schemes, such as
LTP’s compound-word-based segmentation. This
optional customization demonstrates that language-
specific preprocessing decisions, such as tokeniza-
tion granularity, can be adapted within our frame-
work to better support accurate and interpretable
error annotation.

We achieve this integration by re-annotating the
Chinese GSD treebank with LTP-informed word
boundaries and retraining stanza on this revised
corpus. This ensures compatibility with our pre-
ferred segmentation standard while preserving the
benefits of stanza’s POS tagging and parsing
pipeline. As shown in Figure 6, the resulting anno-
tations show more consistent edit spans and error
categories, especially in contexts where compound
expressions are frequent.

Ultimately, this customization demonstrates the
modularity of our framework: rather than enforcing
a one-size-fits-all solution, we allow researchers
to tailor tokenization to fit linguistic expectations,
making the system more robust and adaptable

209

https://github.com/HIT-SCIR/ltp
https://github.com/UniversalDependencies/UD_Chinese-GSD
https://github.com/UniversalDependencies/UD_Chinese-GSD

Chinese GSD-based WB (Gu et al., 2025):
S ... 解释 为 10什幺 这样 的 情况 ...
A ...
A 10 11|||R:PROPN -> PRON VERB AUX|||什么 出现 了|||REQUIRED|||-NONE-|||0
Correction: ... 解释为什么出现了这样的情况 ...

Our LTP-based WB:
S ... 解释 7为 8什幺 这样 的 情况 ...
A ...
A 7 8|||R:ADP -> ADV VERB|||为什么 出现|||REQUIRED|||-NONE-|||0
A 8 9|||R:PROPN -> AUX|||了|||REQUIRED|||-NONE-|||0
Correction: ... 解释为什么出现了这样的情况 ...
Correction: ... jiěshì wèishéme chūxiàn le zhèyàng de qíngkuàng ...
Correction: (‘... explain why this kind of situation has occurred ...’)

Figure 6: Fragments of grammatical error annotation examples in Chinese with different word boundaries. Incorrect
GSD-based segmentation of为什么 wèishéme (‘why’) leads to misleading annotation什么出现了 shénme chūxiàn
le (‘what has occurred’), while LTP-based segmentation为什么出现 wèishéme chūxiàn (‘why occurred’) provides
an accurate representation.

across languages and segmentation conventions.

5 Conclusion

This work advances grammatical error annotation
and evaluation by introducing a standardized, mod-
ular framework for multilingual grammatical er-
ror typology. Building upon the foundations of
errant, we designed a two-tiered system that sep-
arates language-agnostic annotation from struc-
tured language-specific extensions. This approach
supports consistency across typologically diverse
languages while allowing targeted customizations
when needed.

We reimplemented errant using stanza to pro-
vide broader multilingual support, and demon-
strated that our system produces accurate and inter-
pretable annotations in English. We then demon-
strated how our framework can be applied to
other languages with varying levels of customiza-
tion. For European languages, we showed that our
POS- and dependency-based system can generate
reliable annotations without requiring language-
specific classification modules. For Korean, we
applied minor refinements to capture morphologi-
cally salient features such as postpositions and spac-
ing errors. Finally, for Chinese, we demonstrated
how deeper customization–through the integration
of language-specific tokenization and retraining
of NLP components–can be incorporated into our
framework to support fine-grained, linguistically
coherent error annotation.

By balancing consistency and flexibility, our
framework enables scalable, interpretable, and
reusable grammatical error annotation across lan-
guages. This supports more consistent evaluation

and clearer cross-linguistic comparison in multilin-
gual GEC research.

Limitations

While our framework presents a unified and ex-
tensible approach to multilingual grammatical er-
ror annotation, the implementations described in
this paper are primarily intended to demonstrate its
adaptability across different languages and levels
of customization. A detailed analysis of annota-
tion improvements, including task-specific gains
and downstream evaluation effects, is left to future
work.

Although we rely on existing NLP tools such as
stanza for tokenization and parsing, which offer
broad multilingual coverage and consistent anno-
tation schemes, these tools are not explicitly op-
timized for processing noisy or learner-generated
text. This may introduce variability in some edge
cases, particularly in languages with complex mor-
phosyntax or ambiguous word segmentation.

References
Riadh Belkebir and Nizar Habash. 2021. Automatic

Error Type Annotation for Arabic. In Proceedings of
the 25th Conference on Computational Natural Lan-
guage Learning, pages 596–606, Online. Association
for Computational Linguistics.

Adriane Boyd. 2018. Using Wikipedia Edits in Low
Resource Grammatical Error Correction. In Proceed-
ings of the 2018 EMNLP Workshop W-NUT: The
4th Workshop on Noisy User-generated Text, pages
79–84, Brussels, Belgium. Association for Computa-
tional Linguistics.

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 Shared

210

https://doi.org/10.18653/v1/2021.conll-1.47
https://doi.org/10.18653/v1/2021.conll-1.47
https://doi.org/10.18653/v1/W18-6111
https://doi.org/10.18653/v1/W18-6111
https://doi.org/10.18653/v1/W19-4406

Task on Grammatical Error Correction. In Proceed-
ings of the Fourteenth Workshop on Innovative Use
of NLP for Building Educational Applications, pages
52–75, Florence, Italy. Association for Computa-
tional Linguistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic Annotation and Evaluation of Error
Types for Grammatical Error Correction. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 793–805, Vancouver, Canada. Association for
Computational Linguistics.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.
2023. Grammatical Error Correction: A Survey
of the State of the Art. Computational Linguistics,
49(3):643–701.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
Evaluation for Grammatical Error Correction. In
Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 568–572, Montréal, Canada. Association for
Computational Linguistics.

Mariano Felice, Christopher Bryant, and Ted Briscoe.
2016. Automatic Extraction of Learner Errors in
ESL Sentences Using Linguistically Enhanced Align-
ments. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguis-
tics: Technical Papers, pages 825–835, Osaka, Japan.
The COLING 2016 Organizing Committee.

Yang Gu, Zihao Huang, Min Zeng, Mengyang Qiu,
and Jungyeul Park. 2025. Improving Automatic
Grammatical Error Annotation for Chinese Through
Linguistically-Informed Error Typology. In Proceed-
ings of the 31st International Conference on Compu-
tational Linguistics, pages 2781–2798, Abu Dhabi,
UAE. Association for Computational Linguistics.

Charles Hinson, Hen-Hsen Huang, and Hsin-Hsi Chen.
2020. Heterogeneous Recycle Generation for Chi-
nese Grammatical Error Correction. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 2191–2201, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Katerina Korre, Marita Chatzipanagiotou, and John
Pavlopoulos. 2021. ELERRANT: Automatic gram-
matical error type classification for Greek. In Pro-
ceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP
2021), pages 708–717, Held Online. INCOMA Ltd.

Katerina Korre and John Pavlopoulos. 2020. ERRANT:
Assessing and improving grammatical error type clas-
sification. In Proceedings of the 4th Joint SIGHUM
Workshop on Computational Linguistics for Cultural
Heritage, Social Sciences, Humanities and Litera-
ture, pages 85–89, Online. International Committee
on Computational Linguistics.

Jenni Marjokorpi. 2023. The relationship between
grammatical understanding and writing skills in
finnish secondary l1 education. Reading and Writing,
36(10):2605–2625.

Arianna Masciolini, Andrew Caines, Orphée De Clercq,
Joni Kruijsbergen, Murathan Kurfalı, Ricardo Muñoz
Sánchez, Elena Volodina, and Robert Östling. 2025a.
The MultiGEC-2025 shared task on multilingual
grammatical error correction at NLP4CALL. In Pro-
ceedings of the 14th Workshop on Natural Language
Processing for Computer Assisted Language Learn-
ing, pages 1–33, Tallinn, Estonia. University of Tartu
Library.

Arianna Masciolini, Andrew Caines, Orphée De Clercq,
Joni Kruijsbergen, Murathan Kurfalı, Ricardo
Muñoz Sánchez, Elena Volodina, Robert Östling,
Kais Allkivi, Špela Arhar Holdt, et al. 2025b. To-
wards better language representation in natural lan-
guage processing: A multilingual dataset for text-
level grammatical error correction. International
Journal of Learner Corpus Research.

Jakub Náplava, Milan Straka, Jana Straková, and
Alexandr Rosen. 2022. Czech Grammar Error Cor-
rection with a Large and Diverse Corpus. Transac-
tions of the Association for Computational Linguis-
tics, 10:452–467.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground Truth for Grammatical
Error Correction Metrics. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 588–593, Beijing, China. Asso-
ciation for Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 Shared Task on Grammatical Error Correction.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared
Task, pages 1–12, Sofia, Bulgaria. Association for
Computational Linguistics.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A Universal Part-of-Speech Tagset. In Proceedings
of the Eighth International Conference on Language
Resources and Evaluation (LREC-2012), pages 2089–
2096, Istanbul, Turkey. European Language Re-
sources Association (ELRA).

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D Manning. 2020. Stanza: A Python
Natural Language Processing Toolkit for Many Hu-
man Languages. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 101–108,
Online. Association for Computational Linguistics.

Mengyang Qiu, Qingyu Gao, Linxuan Yang, Yang Gu,
Tran Minh Nguyen, Zihao Huang, and Jungyeul Park.
2025. Chinese grammatical error correction: A sur-
vey. arXiv.

211

https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.1162/coli{_}a{_}00478
https://doi.org/10.1162/coli{_}a{_}00478
https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067
https://www.aclweb.org/anthology/C16-1079
https://www.aclweb.org/anthology/C16-1079
https://www.aclweb.org/anthology/C16-1079
https://aclanthology.org/2025.coling-main.189/
https://aclanthology.org/2025.coling-main.189/
https://aclanthology.org/2025.coling-main.189/
https://doi.org/10.18653/v1/2020.coling-main.199
https://doi.org/10.18653/v1/2020.coling-main.199
https://aclanthology.org/2021.ranlp-1.81/
https://aclanthology.org/2021.ranlp-1.81/
https://aclanthology.org/2020.latechclfl-1.10/
https://aclanthology.org/2020.latechclfl-1.10/
https://aclanthology.org/2020.latechclfl-1.10/
https://doi.org/10.1007/s11145-022-10405-z
https://doi.org/10.1007/s11145-022-10405-z
https://doi.org/10.1007/s11145-022-10405-z
https://aclanthology.org/2025.nlp4call-1.1/
https://aclanthology.org/2025.nlp4call-1.1/
https://doi.org/10.1075/ijlcr.24033.mas
https://doi.org/10.1075/ijlcr.24033.mas
https://doi.org/10.1075/ijlcr.24033.mas
https://doi.org/10.1075/ijlcr.24033.mas
https://doi.org/10.1162/tacl{_}a{_}00470
https://doi.org/10.1162/tacl{_}a{_}00470
https://doi.org/10.3115/v1/P15-2097
https://doi.org/10.3115/v1/P15-2097
https://www.aclweb.org/anthology/W13-3601
https://www.aclweb.org/anthology/W13-3601
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.48550/arXiv.2504.00977
https://doi.org/10.48550/arXiv.2504.00977

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A Sim-
ple Recipe for Multilingual Grammatical Error Cor-
rection. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 702–707, Online. Association for Computa-
tional Linguistics.

Ankur Sonawane, Sujeet Kumar Vishwakarma, Bhavana
Srivastava, and Anil Kumar Singh. 2020. Generating
Inflectional Errors for Grammatical Error Correction
in Hindi. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing: Stu-
dent Research Workshop, pages 165–171, Suzhou,
China. Association for Computational Linguistics.

Catherine G Van Beuningen, Nivja H De Jong, and
Folkert Kuiken. 2012. Evidence on the effectiveness
of comprehensive error correction in second language
writing. Language Learning, 62(1):1–41.

Junrui Wang, Mengyang Qiu, Yang Gu, Zihao Huang,
and Jungyeul Park. 2025. Refined Evaluation for
End-to-End Grammatical Error Correction Using an
Alignment-Based Approach. In Proceedings of the
31st International Conference on Computational Lin-
guistics, pages 774–785, Abu Dhabi, UAE. Associa-
tion for Computational Linguistics.

Soyoung Yoon, Sungjoon Park, Gyuwan Kim, Jun-
hee Cho, Kihyo Park, Gyu Tae Kim, Minjoon Seo,
and Alice Oh. 2023. Towards standardizing Korean
Grammatical Error Correction: Datasets and Annota-
tion. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 6713–6742, Toronto,
Canada. Association for Computational Linguistics.

Min Zeng, Jiexin Kuang, Mengyang Qiu, Jayoung Song,
and Jungyeul Park. 2024. Evaluating Prompting
Strategies for Grammatical Error Correction Based
on Language Proficiency. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 6426–6430,
Torino, Italy. ELRA and ICCL.

Yue Zhang, Zhenghua Li, Zuyi Bao, Jiacheng Li,
Bo Zhang, Chen Li, Fei Huang, and Min Zhang.
2022. MuCGEC: a Multi-Reference Multi-Source
Evaluation Dataset for Chinese Grammatical Error
Correction. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 3118–3130, Seattle, United States.
Association for Computational Linguistics.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving Grammatical Error
Correction via Pre-Training a Copy-Augmented Ar-
chitecture with Unlabeled Data. In Proceedings of

the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 156–165, Minneapolis, Min-
nesota. Association for Computational Linguistics.

212

https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://aclanthology.org/2020.aacl-srw.24
https://aclanthology.org/2020.aacl-srw.24
https://aclanthology.org/2020.aacl-srw.24
https://doi.org/10.1111/j.1467-9922.2011.00674.x
https://doi.org/10.1111/j.1467-9922.2011.00674.x
https://doi.org/10.1111/j.1467-9922.2011.00674.x
https://aclanthology.org/2025.coling-main.52/
https://aclanthology.org/2025.coling-main.52/
https://aclanthology.org/2025.coling-main.52/
https://aclanthology.org/2023.acl-long.371
https://aclanthology.org/2023.acl-long.371
https://aclanthology.org/2023.acl-long.371
https://aclanthology.org/2024.lrec-main.569
https://aclanthology.org/2024.lrec-main.569
https://aclanthology.org/2024.lrec-main.569
https://doi.org/10.18653/v1/2022.naacl-main.227
https://doi.org/10.18653/v1/2022.naacl-main.227
https://doi.org/10.18653/v1/2022.naacl-main.227
https://www.aclweb.org/anthology/N19-1014
https://www.aclweb.org/anthology/N19-1014
https://www.aclweb.org/anthology/N19-1014

