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Abstract
Heterogeneity in student populations poses a
challenge in formal education, with adaptive
textbooks offering a potential solution by tai-
loring content based on individual learner mod-
els. However, creating domain models for text-
books typically demands significant manual ef-
fort. Recent work by Chau et al. (2021) demon-
strated automated concept extraction from dig-
ital textbooks, but relied on costly domain-
specific manual annotations. This paper in-
troduces a novel, scalable method that mini-
mizes manual effort by combining contextu-
alized word embeddings with weakly super-
vised machine learning. Our approach clusters
word embeddings from textbooks and identi-
fies domain-specific concepts using a machine
learner trained on concept seeds automatically
extracted from Wikipedia. We evaluate this
method using 28 economics textbooks, com-
paring its performance against a tf-idf baseline,
a supervised machine learning baseline, the
RAKE keyword extraction method, and human
domain experts. Results demonstrate that our
weakly supervised method effectively balances
accuracy with reduced annotation effort, offer-
ing a practical solution for automated concept
extraction in adaptive learning environments.

1 Introduction

In formal education, the incremental mastery of
concepts and the knowledge and competencies that
build on them is essential for students to success-
fully read and understand texts in a specific school
subject. Students often struggle to comprehend
the relevant concepts within educational materials,
leading to difficulties in understanding and apply-
ing the knowledge effectively. Many schoolbooks
therefore contain a glossary with a list of the key
concepts which are manually compiled by the re-
spective schoolbook authors, providing a somewhat
subjective list of the relevant concepts.

In the digital counterpart to traditional school-
books, computer-based learning platforms, a sim-

ilar challenge arises: modelling the domain for
which the platform provides learning materials and
exercises. Most digital systems rely on handcrafted
ontologies (or related domain representations) that
have been designed by domain experts. They com-
pile a list of domain-specific vocabulary, a very
resource-intensive, costly, inefficient, and time-
consuming process. In the worst case, such domain
ontologies have to be newly constructed for ev-
ery adaptive learning platform from scratch even if
other systems already exist in the same domain. To
reduce the effort required, Chau et al. (2021) pre-
sented an approach automating concept extraction
from digital textbooks. While they demonstrate
that such extraction can be successfully carried out,
the approach still requires an extensive, domain-
specific, manual annotation effort of the textbook as
a basis for a supervised machine learning approach.
Another particular challenge exists for concept ex-
traction in the educational domain: textbooks not
only contain specific vocabulary from one subject
domain. In particular, school books usually contain
content domain specific words, school domain spe-
cific words (homework, teacher, exercise, ...) and
example specific words.

Keyword extraction (or concept extraction), a
fundamental task in natural language processing
(NLP) and information retrieval, aims to identify
and extract the most important terms or phrases that
best represent the content of a document. These
extracted keywords can play a crucial role in var-
ious applications, such as document summariza-
tion, information retrieval, text classification, and
topic modeling, but usually not in the educational
domain. Nevertheless, the progress in automatic
keyphrase extraction has produced methods that
are also useful for the related area of automatic
concept extraction from textbooks.

This work focuses on the core task of extracting
domain-specific vocabulary. It introduces an ap-
proach supported by distributional semantics that
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uses contextualized word embeddings, moving be-
yond simple keyword extraction. Recent methods
have explored using word embeddings for concept
extraction. However, these methods often have
low precision or rely on supervised training with
large amounts of labeled data and only use static
word embeddings. Some very recent approaches
to keyword extraction, such as (Qian et al., 2021),
use contextualized word embeddings provided by
BERT, which shows improved performance. Nev-
ertheless, these approaches primarily focus on key-
word extraction in the scientific domain. This
means they aim to extract a few specific keywords
from documents that mostly cover one particular
topic domain, as noted by (Sammet and Krestel,
2023). These methods still use labeled data and
treat contextual word embeddings merely as a more
advanced embedding type. This work explores
whether the improved performance of contextual-
ized word embeddings also applies to the broader
task of glossary extraction in the educational do-
main. This domain presents a unique challenge due
to its multi-theme vocabulary. The approach uses
contextualized word embeddings, such as BERT, to
select domain-specific expressions in educational
texts through a clustering method. Supervision is
only required in the form of a small seed list of
domain-relevant words. This list can be easily com-
piled from Wikipedia articles and helps separate
clusters of words relevant to the specific domain
from those that are specific to the text but belong
to a different domain.

Our approach for glossary extraction from struc-
tured textbooks could support both glossary build-
ing for traditional schoolbooks, domain modeling
for adaptive learning platforms, and potentially also
student modeling in digital learning environments.
Our goal is to create a domain-specific glossary ex-
traction method that accurately reflects the concept
annotations made by expert users at the section
level. This method can then be used to build both
domain and student models for more advanced per-
sonalization. To evaluate our method, we assess
how closely it matches external expert annotations
and internal expert annotations (i.e., glossaries com-
piled by the schoolbook authors).

2 Related Work

There is a broad number of research strands related
to keyword extraction. However, there is little work
within the educational field. Therefore, we will

focus on approaches with components similar to
those in our own method. To present only the main
ideas, we will discuss one or two approaches for
each method. More detailed overviews are avail-
able in (Chau et al., 2021) and (Khan et al., 2022).

Keyword extraction Automatic keyphrase ex-
traction (AKE) has been extensively studied using
different approaches, such as rule-based learning,
supervised learning, unsupervised learning, or deep
neural networks. Since AKE systems are designed
to only extract a very small list of relevant key-
words, most systems consist of two parts: (1) pre-
processing data and extracting a list of candidate
keyphrases using lexical patterns and heuristics;
and then (2) determining which of these candi-
dates are correct keyphrases. Methods for find-
ing the relevant keyphrases are: statistical meth-
ods or frequency-based methods, clustering-based
methods, graph-based methods, embedding-based
methods, and machine learning methods.

The most basic frequency-based approach is the
statistical measure tf-idf (term frequency-inverse
document frequency (Jones, 2004)). This method
effectively finds relevant terms within a document
(high recall) but often includes many irrelevant
terms (low precision). Therefore, most approaches
combine tf-idf with other measures to narrow down
the list of potential keywords.

In graph-based approaches, an entire document
is modeled as a graph of semantic relationships be-
tween the terms and a ranking approach then selects
the terms with the highest number of relationships.
Prominent approaches are (i) RAKE (Rose et al.,
2010) in which a graph of word co-occurrences is
constructed and the top ranked words in this graph
are extracted as key words, (ii) TextRank (Mihal-
cea and Tarau, 2004) in which documents are rep-
resented as undirected and unweighted graphs and
(iii) PositionRank (Florescu and Caragea, 2017),
a fully unsupervised, graph-based model, that si-
multaneously incorporates the position of words
and their frequency in a document to compute a
PageRank score for each candidate word. The most
recent graph-based approaches employ contextual-
ized word embeddings for calculating the ranking,
cf. KPRank (Patel and Caragea, 2021).

In clustering-based approaches, clustering algo-
rithms group candidate phrases into topic clusters
and the most representative ones from each clus-
ter are selected as key phrases. Liu et al. (2009)
employ cooccurrence-based term relatedness, and
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a Wikipedia-based term relatedness for clustering.
Grineva et al. (2009) develop a graph-based ap-
proach for identifying domain specific terms in
multi-theme documents - an unsupervised topic-
based clustering method that partitions a graph into
thematically cohesive groups of terms.

In supervised statistical learning approaches, all
terms in a document must be classified as either pos-
itive or negative instances of relevant keyphrases.
This classification is based on patterns learned from
annotated training sets. For example, Hulth (2003)
define manual rules combined with frequency mea-
sures to extract all potential keyword expressions
from a text. A classifier then determines which
of these are actual keyword expressions. Current
methods use word embeddings to represent words.
For instance, Wang et al. (2014) examine word
embeddings to measure the relationships between
words in graph-based models. Recent methods also
use neural networks (cf. Zhang et al., 2016).

In approaches that view AKE as a sequence
labelling task, Alzaidy et al. (2019) predict a se-
quence of labels where the two labels are keyphrase
word or non-keyphrase word. The recent availabil-
ity of contextualized word embeddings has enabled
further improvement in AKE as sequence labelling,
as in (Sahrawat et al., 2019) or (Sammet and Kres-
tel, 2023) where a fine-tuned BERT labels relevant
keyphrases in abstracts from economics articles.

Concept extraction In concept or term extrac-
tion approaches, the goal is to extract not only a
small list of the most general candidates but also
extract more specific terms that can be used in ap-
plications such as domain ontology construction,
text classification, or information extraction. The
two possible approaches here are constructing a
domain model from scratch or using contrastive
corpora to identify domain-relevant terms.

Bordea et al. (2013) propose a domain-
independent method for extracting terms. They find
general terms in a document, similar to keyphrase
extraction, and then use these to build a domain
model. Based on this model, they identify other
semantically similar terms in the document. The
method’s performance varies across domains but is
more stable than basic term extraction approaches
like TermExtractor.

Only a few methods address concept extraction
in education. One method, proposed by Chau et al.
(2021), uses a supervised feature-based machine
learning approach to automatically extract concepts

from digital textbooks. This method trains a super-
vised learning model to classify whether a term or
phrase is a concept. It bases this classification on a
detailed set of features. One of the few approaches
that explicitly aims at constructing domain-specific
glossaries, presented by Park et al. (2002), focuses
on building domain-specific glossaries. This is sim-
ilar to the goal of this article. This method uses a
tf-idf-based approach.

Ontology extraction Textbooks and the educa-
tional domain play a greater role in the domain of
ontology extraction, i.e, building concept hierar-
chies for textbooks or ontologies from textbooks.

(Wang et al., 2015) present an approach that
uses Wikipedia as an external resource to build a
concept hierarchy for textbooks. The goal is to
extract keyphrases for each chapter of a given book.
First, they extract a set of related and important
Wikipedia concepts for each book chapter. Second,
they use local features to extract related concepts
for each chapter separately, utilizing measures such
as textual similarity between a book chapter and
candidate concepts. The resulting candidate set
consists of the top N candidates based on their co-
sine similarity score and those candidates whose
title appears in the chapter title (i.e., titleMatch
equals 1). These two simple but powerful features
can capture most of the related and important con-
cepts for each book chapter.

A similar approach is described in (Conde et al.,
2016). This paper introduces LiTeWi, a method
that combines term extraction techniques (like lin-
guistic filters and tf-idf) with Wikipedia. It uses
Wikipedia as a knowledge base to improve term
extraction accuracy by removing terms not related
to Wikipedia entries within the specified domain.

Summing up, to the best of our knowledge, cur-
rent automatic term and concept extraction meth-
ods perform unexpectedly poorly and are not tai-
lored for the educational field. Improving auto-
matic extraction of domain-specific concepts would
be beneficial for immediate tasks such as student
modeling and content recommendation in learn-
ing platforms or tutoring systems. Furthermore, it
would advance the automatic extraction of domain,
i.e. specific glossaries and the construction of on-
tologies, both of which are crucial for developing
learning platforms that currently rely heavily on
manual domain models.

For documents with multiple themes, clustering
seems to be the most promising approach. This
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method has been mainly used for extracting key-
words. To encode the domain-specific meaning
of concepts that require clustering, contextualized
word embeddings seem to be the most promising
approach. However, these embeddings have only
been used for supervised single-word or sequence
labeling of keywords in scientific documents. Our
work combines these two methods for domain-
specific vocabulary extraction. Our method out-
performs other methods and does not require large
amounts of labeled data for training and testing.

3 Method

In our approach, called GlossEx, we extract con-
cepts specific to a given domain from text. We do
not just extract a small list of keyphrases. Instead,
we extract all phrases or words that represent the
main concepts of that text. This creates a special-
ized vocabulary list, which is similar to manually
compiling a glossary for a specific text.

3.1 Task formulation and dataset

We are trying to solve the following technical task:
Given a document D that represents a specific do-
main, our goal is to extract the specialized vocab-
ulary V of that domain from D. We are explor-
ing this task within the domain of teaching eco-
nomics in schools. For our dataset, we selected
28 economics textbooks used for the economic
curriculum in German secondary schools. We ex-
pect our method to identify domain-specific con-
cepts such as “workforce”, “consumption”, “en-
trepreneur”, and similar terms. In order to extract
the domain-specific vocabulary, we propose the
following pipeline:

1. Document preprocessing, i.e. tokenization,
lemmatization, POS-tagging, . . .

2. Extract salient vocabulary S contained in D

3. Cluster vocabulary items in S based on their
contextualised embeddings

4. Obtain V by filtering S using limited domain
knowledge

This pipeline is based on the following observa-
tions: Because D represents a specific domain, it
features specialized vocabulary. Conversely, this
specialized vocabulary is particularly prominent in
D compared to general, non-domain-specific doc-
uments. The second step of the pipeline uses this

observation. However, economic textbooks contain
three distinct types of salient vocabulary in addi-
tion to the general vocabulary found in any text:
(i) specialized vocabulary (which is the extraction
target), (ii) education-specific vocabulary (such as
instructions like “write” or “analyze”), and (iii) ex-
ample vocabulary (which appears prominently due
to its presence in running or repeated examples).

Therefore, we need to exclude education spe-
cific vocabulary and example vocabulary from S
in order to obtain V . This is done through Items 3
to 4. The clustering step in Item 3 serves to sta-
bilise the filtering method in Item 4: We observe
that contextual embeddings form useful clusters,
so that specialized and non-specialized vocabulary
form local clusters in embedding space. Therefore,
we exploit this property to include or exclude com-
plete clusters in V instead of single lemmas. Item 4
accesses limited domain knowledge to differentiate
between the 3 salient categories described above.
We use the limited domain knowledge to label each
cluster with one of the three categories listed above,
and eventually only return lemmas in clusters la-
beled as specialised vocabulary.

Next, we describe in detail how to implement
each step of the proposed pipeline. The focus is
on German economics textbooks, but the general
method applies to various domains and languages,
provided the necessary models are available. We
also present the specific German processing tools.

3.2 Preprocessing
The NLTK library (Bird et al., 2009) is used
for splitting sentences and tokenizing text. The
Hanover Tagger (Wartena, 2019), which is specif-
ically designed for German, is used for sentence-
level lemmatization and POS tagging. All subse-
quent steps are applied to the lemmatized document
D, unless stated otherwise.

3.3 Extracting Salient Vocabulary
We extract the salient vocabulary S from D using
the method proposed by Lemay et al. (2005). This
method calculates scores for all lemmas. These
scores show whether a lemma appears more often
in D than is typical for the language in general.
Thus, this method distinguishes the salient vocabu-
lary of D from general vocabulary. For evaluation,
we use two general German word frequency lists:

1. A frequency list1 derived from the DeReKo
1DeReKo-2014-II-MainArchive-STT.100000 obtained
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(Lüngen, 2017). DeReKo is a very large cor-
pus that is representative of contemporary Ger-
man.

2. The SUBTLEX-DE frequency list (Brysbaert
et al., 2011), which has been shown to better
explain cognitive saliency of words in deci-
sion time experiments.

We only consider nouns and verbs, and we dis-
card stopwords and lemmas that appear less than
four times in D, as well as tokens that contain spe-
cial characters. Note, that the method described
in (Lemay et al., 2005) differs from tf-idf. Specif-
ically, tf-idf calculates frequencies only within a
single corpus, whereas our method compares fre-
quencies between two corpora.

3.4 Clustering Vocabulary

We cluster lemmas in S by agglomerative cluster-
ing of contextualised embeddings. To compute em-
beddings, we use the bert-base-german-cased
BERT model provided by Chan et al. (2020). We
embed each (non-lemmatized) sentence individu-
ally (after subword tokenization). Then, embed-
dings of subword tokens are mean-pooled to derive
embeddings of the original tokens. Finally, lemma
embeddings are the mean of all token embeddings
associated with the respective lemma.

Agglomerative clustering is computed by the
respective scikit-learn implementation (Pedregosa
et al., 2011) using default parameters. In prelim-
inary experiments, we found agglomerative clus-
tering to perform better for our task than k-means
clustering or spectral clustering methods. We set
the number of clusters (which is a required parame-
ter of agglomerative clustering) to |S|

4 . This means
the expected number of words in a cluster is 4.

This approach differs from graph-based algo-
rithms, such as the one proposed by Grineva et al.
(2009). We do not use graph topology to find clus-
ters. Instead, we directly cluster lemmas in the em-
bedding space. In the graph paradigm, this means
we are working with a fully connected graph where
edge weights are determined by a distance metric
in the embedding space.

3.5 Filtering by Domain Knowledge

In the last step, we select clusters that contain spe-
cialized vocabulary from a specific domain. How-

from https://www.ids-mannheim.de/digspra/kl/
projekte/methoden/derewo/

ever, obtaining this information directly from em-
beddings is difficult. Therefore, we create two lists:
Vedu and Veco. Vedu contains seed words related
to the education domain, and Veco contains seed
words related to the economics domain. These lists
inject a limited amount of domain knowledge into
our method, which helps us determine if a clus-
ter contains terms associated with the education
domain, the economics domain, or neither.

Application of seed lists Each cluster C (repre-
senting a set of lemmas in D) receives two scores:
an association score for educational vocabulary
(σedu) and an association score for economics vo-
cabulary (σeco). The scores for a cluster are cal-
culated by taking the average of the 10 smallest
pairwise distances between any word in that cluster
and any word in either the educational vocabulary
(Vedu) or the economics vocabulary (Veco). The dis-
tances between words are measured using the Eu-
clidean distances of fastText embeddings2 (Grave
et al., 2018). It is important to note that this method
uses static word embeddings, which differs from
the approach in Section 3.4 where contextualized
embeddings from a German BERT model (Chan
et al., 2020) are used. fastText embeddings are cho-
sen because their model can create embeddings for
any string based on its character n-grams. This
avoids the problem of out-of-vocabulary words.
Specifically, clusters are kept if they meet one of
the following conditions:

σeco + 0.03 < σedu (1)

σeco < min{0.3, σedu} (2)

In simpler terms, this means that clusters are se-
lected if they are generally close to the economics
vocabulary (Veco) or if they are significantly closer
to Veco than to the educational vocabulary (Vedu).
These thresholds are specific to the embedding
space used and are set manually. The thresholds
were determined before any labeled data was avail-
able, so their manual setting does not affect the
validity of the results. With a small amount of la-
beled data, it would be possible to automatically
adjust these thresholds.

Construction of seed lists The lists are created
independently from the evaluation data to avoid cir-
cularity. With the PetScan interface we extracted
Wikipedia article titles and wikidata entity names

2obtained from https://fasttext.cc/docs/en/
crawl-vectors.html
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with the following hyperparameters: To populate
Vedu, we run one query on the “Bildung” (engl.:
education) category with maximum depth 6 and re-
quire the found pages to link to the Wikipedia page
“Schule” (engl.: school). To populate Veco, we
run two queries on the “Wirtschaftswissenschaft”
(engl.: economics) category with maximum depth
6. For the first query, we require found pages to
link to the Wikipedia page “Markt” (engl.: mar-
ket). For the second query, we require found pages
to link to the Wikipedia page “Bedarf” or to the
Wikipedia page “Bedürfnis” (both engl.: need). We
combine the results of both queries.

To create the final seed lists, which contain only
single lemmas, the preprocessing method described
in Section 3.2 is applied to every page title returned
by PetScan. The resulting lemmas are then saved.
Consequently, Vedu contains 562 unique lemmas,
and Veco contains 677 unique lemmas. Although
these lists may seem large, they contain a signif-
icant amount of noise. Additionally, as shown in
Section 4.3, extracting specialized vocabulary us-
ing only the words in the seed lists, without our
GlossEx method, leads to poor performance.

4 Results and Evaluation

The main evaluation metrics are precision and re-
call. The goal is to assess how much of the spe-
cialized vocabulary the proposed method finds and
how many lemmas it returns are actually special-
ized vocabulary.

4.1 Data

To evaluate the GlossEx method, we use 28
partially digitized German economics textbooks,
which cover various school types and years. Nine-
teen of these textbooks also have paired OCR-
scanned glossaries. For all lemmas that appear
at least four times in the corpus, we collect ex-
pert judgments whether each lemma is domain-
specific vocabulary in the field of economics. One
expert (not an author of this paper) labeled all
3,458 unique lemmas with binary labels. Out of
these, 469 lemmas (13.56%) are labeled as domain-
specific vocabulary. To assess inter-annotator
agreement, another expert (also not an author of
this paper) independently labeled a subset of 510
lemmas. Cohen’s κ (Cohen, 1960) between both
annotators is 0.66, which is considered substantial
agreement according to Landis and Koch (1977).
Furthermore, the f1-score between both annotators

is 0.79, which sets an upper bound on the models’
performance. However, this bound is not specific
to any particular textbook.

4.2 Baselines

We compare our method GlossEx described in Sec-
tion 3 to several baselines. The first set of base-
lines comprises methods that are widely used for
keyword extraction, namely tf-idf (Jones, 2004),
Rapid Automatic Keyword Extraction (RAKE)
(Rose et al., 2010), and supervised learning on
static word embeddings. Note, that the supervised
baseline requires labels and therefore uses strictly
more information than is available to our method.
Thus, the supervised baseline serves as an upper
bound to see how much worse methods that do not
require explicit labels perform.

A second set of baselines evaluates how well we
can extract keywords using two methods: either by
simply using the seed lists from Section 3.5 or by
using the glossaries included in textbooks. By com-
paring two seed lists as a baseline, we ensure that
our algorithm can discover domain-specific vocab-
ulary beyond the initial input. By comparing two
glossaries as a baseline, we confirm the relevance
of our problem. This comparison shows that text-
book glossaries do not contain all the vocabulary
that experts consider domain-specific.

tf-idf measures how relevant a term is to a spe-
cific document within a collection of documents
(corpus). A term is more relevant if it appears often
in the document (high term frequency) but less rel-
evant if it appears in many other documents (high
inverse document frequency). To apply tf-idf in
our context, given a textbook D: Term frequency is
the frequency ft of term t in D. Inverse document
frequency is the logarithm of the inverse ratio of
sections in D that also contain t. The formula for
tf-idf is:

tf-idf(t,D) =
ft∑
t′ ft′

· log
(
N

gt

)
(3)

Here, N is the total number of sections in D, and gt
is the number of sections in D that contain the term
t. Typically, a threshold τ ∈ R is used to identify
domain-specific vocabulary. Any term with a tf-
idf score greater than τ is considered part of this
vocabulary. In our specific case, we choose the τ
value that maximizes the f1-score of the predicted
domain-specific vocabulary.
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Rapid Automatic Keyword Extraction RAKE
(Rose et al., 2010) selects keyphrases from docu-
ments for information retrieval via assigning each
keyphrase a score based on cooccurrence statistics
and returning the 33% top scoring keyphrases. We
use the implementation provided by the rake-nltk
library.3 We only consider single keywords, i.e. the
maximum keyphrase length is 1. As stopwords, we
provide the list of German stopwords provided by
the NLTK (Bird et al., 2009).

Supervised Learning The task of domain-
specific vocabulary extraction can be described as
a binary classification problem if we are given lem-
mas and binary labels that show if each lemma is
specific to a certain domain. We represent lemmas
using their static fastText embeddings, as described
in Section 3.5. Then, we train a multi-layer per-
ceptron (MLP) to predict the correct label from
these embeddings. To get predictions for all lem-
mas in a textbook, we use 5-fold stratified cross-
validation. We use the scikit-learn library for both
cross-validation and the MLP.

Glossaries Nineteen textbooks in our dataset in-
clude a glossary. We assess how much of the
domain-specific vocabulary these glossaries cover
and whether they also contain general, non-domain-
specific vocabulary. We extract all elements from
these 19 glossaries. We then keep all individual
tokens, excluding stopwords, and lemmatize them.
From these, we only keep nouns and verbs. We
then return only the remaining lemmas from the
glossary that appear in the given textbook D.

Seed Lists In this case, we return all entries from
the seed lists described in Section 3.5 that also
appear as domain-specific vocabulary in the text-
book. This baseline tests whether GlossEx can
discover new domain-specific vocabulary and suc-
cessfully discard non-domain-specific vocabulary.
However, the seed lists directly determine which
lemmas are returned as domain-specific and which
are discarded after the clustering step (see Sec-
tion 3.4). Therefore, there is a close relationship
between the precision of the seed lists (i.e., how
many of the seed list entries are actually domain-
specific vocabulary) and the precision of GlossEx.

4.3 Results
Overall Performance In Table 1, we present
the precision, recall, and f1-score for all meth-

3https://pypi.org/project/rake-nltk/

Precis. Recall F1
Method

tf-idf 0.152 0.685 0.230
RAKE 0.172 0.854 0.283

Glossary 0.821 0.258 0.382
Wiki-Seedlist 0.367 0.065 0.103

GlossEx-dereko (ours) 0.543 0.584 0.545
GlossEx-subtlex (ours) 0.518 0.645 0.559

Supervised 0.754 0.524 0.589

Table 1: Precision, recall, and f1-scores of GlossEx and
baselines. Scores are averages across the 28 textbooks
in our dataset. Best results (excluding supervised) are in
bold, and second best results are underlined. “dereko”
and “subtlex” refer to the background corpus.

ods. These scores are macro-averaged across all 28
textbooks in the dataset. The supervised baseline
shows the best overall performance, as expected.
Because the data is imbalanced (with only a few
domain-specific words), the precision for this base-
line is higher than its recall. Conversely, tf-idf and
RAKE perform poorly in terms of f1-score. These
methods identify many words as domain-specific
vocabulary, leading to high recall but low precision.
RAKE performs better than tf-idf, even though the
optimal score threshold is used for tf-idf.

Using glossaries improves performance. How-
ever, these results cannot be directly compared
because glossaries are only available for 19 text-
books. Therefore, the reported results are averaged
only over these 19 textbooks. Generally, glossaries
mainly contain domain-specific vocabulary. How-
ever, they miss 75% of the domain-specific vocabu-
lary in textbooks, which is indicated by the low re-
call. The seed list extracted from Wikipedia yields
low precision, low recall, and consequently, a very
low f1-score. Still, the precision is higher than that
of tf-idf and RAKE. This is expected because the
construction method directly uses the Wikipedia
category hierarchy. This primarily confirms that
our method’s performance is not simply due to a
very strong starting point through the seed lists.

Finally, GlossEx achieves an improvement over
the seed lists in terms of f1-score and recall. This
shows that GlossEx can indeed leverage distribu-
tional semantics to identify domain-specific vo-
cabulary. Our method also significantly reduces
the gap between baseline methods and supervised
learning. Compared to supervised learning, our
method achieves higher recall at the expense of
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Figure 1: GlossEx f1-score vs. increasing seed list size.

lower precision. Therefore, exploring more precise
methods to characterize the contextual semantics
of words in textbooks seems to be a promising
direction for improving our method.

Since GlossEx relies on external data, we must
characterize the influence of the background corpus
and seed list on its performance. As seen in Table 1,
using SUBTLEX-DE instead of DeReKo (referred
to as “subtlex” and “dereko”) as the background
corpus results in higher recall but lower precision.
One possible reason for this is that DeReKo has
broader vocabulary coverage, which leads to fewer
lemmas appearing prominent for a given document.
Additionally, the DeReKo corpus contains many
newspaper texts, which might bias frequency esti-
mates for terms related to topics like politics and
financial news.

Effect of Seed List Size To assess how the size
of the seed list affects our method’s performance,
we repeatedly select random seed lists of different
sizes. These sample sizes, denoted as n, are cho-
sen from the set {10, 20, 50, 100, 200, 300, 400}.
From the complete set of all entries in the seed
lists, for each sample size n, we sample k = 100
seed lists. In all instances, both the economics and
education seed lists have the same number of en-
tries. We then re-evaluate our method using these
selected seed lists.

Figure 1 shows that the performance of GlossEx
consistently improves as the seed list size increases.
This outcome is expected and these findings also
indicate that GlossEx is resilient to direct overlaps
between seed lists and textbook vocabulary. The
Wikipedia seed list, for example, contains only a
few domain-specific terms. However, GlossEx can
fully utilize the semantic information found in these
entries. In summary, our results demonstrate that
GlossEx performs well with 100 to 200 noisy seed
words. However, it achieves optimal performance
when provided with more, higher-quality entries.

5 Discussion and Future Work

Our method, GlossEx, uses traditional machine
learning and natural language processing (NLP)
techniques for domain vocabulary extraction, such
as clustering and word embeddings. Unlike pre-
vious methods, we also include contextualized
embeddings derived from large language models
(LLMs). Recent versions of generative LLMs have
been very successful in various zero-shot applica-
tions (Brown et al., 2020; Achiam et al., 2023).
These advancements are promising for all areas
of NLP, including education (Alhafni et al., 2024;
Wen et al., 2024), making the use of LLMs for
domain-specific vocabulary extraction in a zero- or
few-shot manner an exciting direction for future re-
search. However, we believe that combining LLMs
with modular approaches like ours is most effective,
because we can not only identify, but also explain
why certain words are considered domain-specific.
This explanation comes from traceable differences
in word occurrences in domain-specific versus gen-
eral texts, and from semantic similarity to known
domain-specific words. This built-in interpretabil-
ity makes GlossEx a valuable approach even in the
era of LLMs.

6 Conclusion

Given educational materials, how can we system-
atically extract the domain concepts to be learned
and understood by students? Answering this is
relevant for building glossaries for textbooks, for
domain and student modeling for adaptive learn-
ing platforms, and for the automatic derivation of
activity models for text-based learning materials.
In this paper, we investigated how computational
linguistic methods such as distributional semantic
analysis and clustering can be combined to auto-
matically extract a domain-specific glossary. We
presented a pipeline to extract specialized vocabu-
lary from single documents, e.g. , textbooks. The
pipeline is optimized for documents from the edu-
cational domain, where pedagogical terminology
cannot easily be separated from subject domain
concepts by statistical methods alone. Pursuing a
weakly supervised approach, we injected only a
limited amount of domain knowledge in the form
of a seed list readily obtained from Wikipedia. We
evaluated the method on German economics text-
books. Evaluation is both automatic, by comparing
the extracted vocabulary to paired glossaries, and
manual by human domain experts.
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Data and Code Availability

Our implementation of GlossEx is available at
https://github.com/LGirrbach/GlossEx. We
cannot release the textbook material used in this
paper because it is copyrighted. However, the text-
book titles are included in our code release.

Limitations

While our approach to automatic concept extraction
using contextualized word embeddings and weakly
supervised learning shows promising results, there
are some limitations to our approach.

First, the reliance on pre-trained language mod-
els such as BERT, which are primarily trained on
general corpora, may not fully capture the nuances
of domain-specific language used in educational
texts. This can lead to less optimal performance
in identifying and clustering domain-specific vo-
cabulary, particularly in specialized fields not well-
represented in the training data.

Second, the quality and comprehensiveness of
the seed lists used to guide the clustering process
significantly influence the results. Although we
used Wikipedia to generate these lists, the potential
gaps in coverage can affect the accuracy of the ex-
tracted concepts. In future work, one could explore
more refined methods for seed list generation or
incorporate additional domain-specific resources
to support the robustness of the approach.

Third, the performance of GlossEx is evaluated
on a relatively small and specific dataset of German
economics textbooks. This limits the generalizabil-
ity of our findings to other subjects and educational
contexts. Extensive testing on diverse datasets is
necessary to validate the broader applicability of
our approach.

Finally, while our approach reduces the need for
extensive manual annotation, it still requires some
level of domain knowledge for seed list creation
and cluster validation. This semi-supervised nature
means that the method is not entirely free from
human intervention, which could be a limitation in
fully automating the concept extraction process.

Addressing these limitations in future research
will be crucial for enhancing the scalability, accu-
racy, and applicability of our method in various
educational settings.
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Supplementary Material
A Qualitative Examples

This section presents the predictions made by GlossEx (using SUBTLEX-DE as its background corpus)
on a specific textbook. The predicted lemmas are divided into two categories: correctly predicted
(true positives) and incorrectly predicted (false positives). The results for Westermann: Kompetenz
Politik-Wirtschaft 2006 (Gymnasium Niedersachsen, Stufe 8) are as follows:

Correct Lemmas Incorrect Lemmas

Einkommen, Haushalt, Ökonom, Geld, Markt,
Wirtschaft, Händler, Anbieter, Knappheit,
Angebot, Bedürfnis, Käufer, Nachfrage

Herr, Ergebnis, Person, Wunsch, Cent, Mark,
Laden, Mensch, Mitglied, Form, Preis, Verfü-
gung, Mittel, Stand, Kauf, Wochenmarkt, Euro,
Prinzip, kaufen, Taschengeld

Our method successfully identifies words with domain-specific meaning, such as “Haushalt” (English:
budget) and “Nachfrage” (English: demand). However, GlossEx also identifies common economic terms
that are part of everyday language, like “Laden” (English: shop) and “Euro”. Additionally, GlossEx finds
words such as “Person” (English: person) and “Mensch” (English: human). These terms have a strong
semantic similarity to other human-related words, such as “Käufer” (English: buyer), and are therefore
included in the list of predicted lemmas. An examination of results from other textbooks generally
supports these findings.

185


