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Abstract

In this work, we assess the potential of using
synthetic data to train models for content scor-
ing. We generate a parallel corpus of LLM-
generated data for the SRA dataset. In our
experiments, we train three different kinds of
models (Logistic Regression, BERT, SBERT)
with this data, examining their respective abil-
ity to bridge between generated training data
and student-authored test data. We also ex-
plore the effects of generating larger volumes
of training data than what is available in the
original dataset. Overall, we find that train-
ing models from LLM-generated data outper-
forms zero-shot scoring of the test data with
an LLM. Still, the fine-tuned models perform
much worse than models trained on the origi-
nal data, largely because the LLM-generated
answers often do not to conform to the desired
labels. However, once the data is manually
relabeled, competitive models can be trained
from it. With a similarity-based scoring ap-
proach, the relabeled (larger) amount of syn-
thetic answers consistently yields a model that
surpasses performance of training on the (lim-
ited) amount of answers available in the origi-
nal dataset.

1 Introduction

Building supervised scoring models for new con-
tent scoring tasks is subject to the cold-start prob-
lem: before we can train and use the model, we
need to collect student answers and manually score
them. LLMs come with the promise of being
able to directly score answers without the need
for any dedicated training data. Still, current re-
search shows mixed results, with the majority of
studies demonstrating traditional models to outper-
form LLMs (Chamieh et al., 2024; Ferreira Mello
et al., 2025). Even if this might change with more
capable LLMs, supervised models have other ad-
vantages: the resulting model is (i) smaller and can
be deployed locally, which alleviates data protec-

Figure 1: Conceptual overview. We focus on using an
LLM for answer generation, and compare performance
of supervised models trained on this data to directly
labeling the student answers with an LLM.

tion issues, (ii) faster and consumes less energy per
grading decision, (iii) deterministic, and (iv) more
explainable.

However, we can still make use of LLMs, just
not to judge the answers, but true to their nature,
to generate answers. As visualized in Figure 1
(bottom), the generated answers can then be used
to train a supervised model. For this to work well,
the LLM needs to be able to generate answers that
(i) are close in key features such as length and
register to what students would write, (ii) have
enough realization variance (Zesch et al., 2023) to
be a good model of future student answers, and
(iii) belong to the correct label, i.e. if we ask for
incorrect answers, it should produce answers that
are in fact incorrect.

While style and variance have the potential of
being controlled by prompting (Yu et al., 2023),
label match seems more challenging (Chen et al.,
2023; Gao et al., 2023). There might also be con-
siderable differences in answer quality depending
on the label, due to the ‘Anna Karenina principle’1,

1After the famous novel by Tolstoy, which begins as fol-
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which applied to content scoring can be formu-
lated as: correct answers share a common set of
attributes that lead to correctness, while any of a
variety of attributes can cause an incorrect answer
(Gurin Schleifer et al., 2024).

In this paper, we put all that to the test by train-
ing supervised content scoring models on LLM-
generated data. We evaluate them on real student
answers, comparing their performance to models
trained on real student answers, and to directly
scoring the real student answers with an LLM. As
generating data removes constraints on the amount
of available data, we also experiment with larger
volumes of generated data and control the label
distribution in the training data.

We find that it yields better results to train mod-
els using the LLM-generated data than to directly
score the student data with the same LLM. Still,
when generating the data, the LLM has difficulty
sticking to the label it is asked to generate answers
for. Manually re-annotating the data substantially
increases model performance. Using a similarity-
based scoring approach, models trained on the re-
annotated data outperform training on the limited
amount of original data, albeit at the cost of requir-
ing more of the higher-variance synthetic data.

All our experimental code and data are available
on GitHub.2

2 Related Work

Studies that contrast the success of traditional su-
pervised scoring methods with LLM-based scoring
show the former to perform better (Chamieh et al.,
2024; Ferreira Mello et al., 2025). In regard to ques-
tion answering, there are however many studies
demonstrating that LLMs can answer well enough
to pass various exams, such as in law school (Choi
et al., 2021), even up to the bar exam (OpenAI
et al., 2024), to obtain a driver’s license (Rahimi
et al., 2023), or to pass medical licensing (Liu
et al., 2024). In the realm of content scoring, Ro-
drigues et al. (2024) assess the ability of GPT4 to
answer science questions that span different lev-
els of Bloom’s taxonomy (Anderson and Sosniak,
1994). They find the model answers to be of better
quality than answers from human subjects across
most taxonomy levels.

lows: All happy families are alike; each unhappy family is
unhappy in its own way.

2https://github.com/mariebexte/
llm-augmentation-scoring

However, all of this work on question answering
focuses on the model’s ability to generate correct
answers. Our setup of using an LLM to generate
training data for content scoring requires it to not
only produce correct, but also incorrect answers.
This goes against the nature of LLMs, since these
models are reinforced to generate accurate content.

Previous work has shown some success of LLMs
generating distractors for multiple choice questions
by explicitly asking for plausible, but incorrect
answers. This body of work spans questions target-
ing language and factual knowledge (Bitew et al.,
2025), reading comprehension (Taslimipoor et al.,
2024) as well as programming tasks (Hassany et al.,
2025). In our experiments, we go beyond a binary
distinction of correct and incorrect answers and
test LLM ability to generate answers for a more
fine-grained, 5-way label scale.

Somewhat contrary to the motivation for our
work, Dinh et al. (2024) find that for university
exams, LLMs are better at judging answers than
answering themselves. In a way, we are combining
the two skills: The model must be aware which
label an answer has to conform to and answer ac-
cordingly. The paradigm of using LLM-generated
data to train models has been described as data-
generation-based zero-shot learning (Gao et al.,
2023). In previous work, this approach was em-
ployed for text classification tasks such as senti-
ment classification, subjectivity detection, topic
classification, natural language understanding and
named entity recognition (Chen et al., 2023; Meng
et al., 2022; Gao et al., 2023; Ye et al., 2022). La-
bel faithfulness was pinpointed as a key issue that
negatively affects data quality.

Again, content scoring differs from all of the
many tasks the paradigm was explored for previ-
ously, as it requires the model to also generate in-
correct statements. Thus, it is interesting to explore
the issue of label faithfulness in this setting.

3 Source Dataset

For our experiments, we are using the SciEntsBank
(SEB) part of the Student Response Analysis cor-
pus (SRA) (Dzikovska et al., 2013), a collection of
student answers to science questions. Some of the
135 SEB questions reference visual content, such
as a diagram. Since the images are not publicly
available, it would be unfair to ask an LLM to gen-
erate answers without the ability to take the visual
information into account. Therefore, we discard
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Label SRA SRA-gen
Correct A controlled experiment is an ex-

periment where you only change
one variable.

The key feature of a controlled experiment is that it allows for
control over extraneous variables to ensure that any observed
results can be attributed solely to the manipulated factor.

Partially correct To do one at a time. Comparing two groups of subjects, with one group receiving
an intervention and another not

Contradictory A controlled experiment is a ex-
periment that you can control by
weight and the length of string.

The experiment is considered controlled if it lacks any external
variables, making it impossible to detect significant effects

Irrelevant The longer the string the shorter
the swings.

A controlled experiment is when you try out different ways
to study for tests with your friends and compare which way
works best without getting too many distractions around

Non-domain By not being good. Isn’t that something scientists use to test ideas?

Table 1: Exemplary answers for the question VB_1 (How do you define a controlled experiment?).

these questions, which leaves us with 84 questions.
On average, there are 43 answers for each question.
While other datasets tend to have binary labels (cor-
rect/false), answers in SRA are labeled on a 5-way
categorical scale as either correct, partially correct,
contradictory, irrelevant or non-domain. This de-
tailed scheme enables us to analyze the potential of
LLMs to generate answers for a more fine-grained
rubric. Throughout the paper, we refer to the origi-
nal, student-authored data as SRA and denote our
generated answers as SRA-gen.

4 LLM-based Answer Generation

For each of the five labels in the dataset, we gen-
erate 100 answers. This is done in increments of
10, i.e. each call to the model asks for ten answers
that conform to a specific label. The prompts fol-
low a zero-shot approach (see Figure 5 in the Ap-
pendix for the full prompt). Thus, the model is
only prompted with the question and a description
of the desired label. From the generated answers,
we strip any enumeration signs and drop instances
where parts of the prompt are returned by the model.
We continue generation until we reach the desired
amount of 100 answers.

As our LLM of choice we select DeepSeek-v2
(DeepSeek-AI et al., 2024), a 4-bit quantized mix-
ture of experts model with 15.7B parameters. We
access a local model server via the Ollama API
(version 0.5.7). All parameters of the model are
left at their default values. Thus, all requests are
put towards the model with the default temperature
of 0.8.

4.1 Data Analysis

To get an impression of the two datasets, Table 1
shows some exemplary generated and original an-

SRA SRA-gen

Avg. answer length (chars) 64.9 125.2
Avg. token length (chars) 4.2 5.1
MATTR .58 .86
MTLD 26.5 122.0
# types 116 1354
# unique types 20 1258

Table 2: Comparison of the two datasets.

swers. An obvious difference is that answers in
SRA-gen tend to be longer.

Table 2 gives a quantitative comparison of the
two datasets. Values are averaged across all ques-
tions. Answers in SRA-gen are on average twice as
long as answers in SRA. Note that this is the case
even though we had explicitly asked the model to
keep it brief. While we had asked for at most 20
words per answer, the generated answers have an
average of around 24 words. Apart from mere
length, lexical diversity is another important char-
acteristic. Since standard type token ratio is depen-
dent on length, we instead include moving average
type token ratio (MATTR) and the measure of tex-
tual lexical diversity (MTLD). Both metrics show a
substantially greater lexical diversity of SRA-gen.

To get an idea of the overlap in answer content,
we compare the types present in the two datasets.
Thus, we compare the sets of unique (lowercased)
tokens for each question. On average, SRA and
SRA-gen share 96 types. SRA (SRA-gen) has an
average of 20 (1258) types that to not occur in the
respective other dataset. Thus, while SRA-gen is
substantially more lexically diverse, around 15%
of the types in SRA do not occur in SRA-gen.

In screening the generated answers, we noticed
some patterns. When asked to generate answers
for the non domain label, the model often came up
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Third-
person

Lack of Randomization: Without random as-
signment of participants to groups, there is a
risk of bias influencing the outcomes, making
interpretation difficult or misleading.

Elaborate Plucking one end of an infinitely long taut string
will not create any sound as it has no physi-
cal medium to transmit the vibrational energy
through; there’s nothing else to pass on the

’wave’ from where Darla plucked

Refusal I’m sorry, but it seems there was a misunder-
standing or error in your request. The instruc-
tions provided do not match what you requested;
specifically, they ask for "irrelevant" answers
rather than correct ones. If you need help with
crafting irrelevant responses within the context
of magnet science experiments, please let me
know how else I might assist!

Wrong
language

我觉得这个跟我们学的东西好像不一样，
会不会是问错了？ [I don’t think this seems to
be the same as what we’ve been learning, could
this be the wrong question?]

Table 3: Failure modes when generating answers.

with (rhetorical) questions, an example of which is
included in Table 1. Beyond this, Table 3 includes
some examples of failure modes of different sever-
ity. The model at times had difficulty answering
from the perspective of a student. Especially when
asked to generate contradictory answers, it would
start with a reason why an answer could be con-
tradictory and then continue in a third-person-like
style of what a student might say. Other notable oc-
currences are elaborate answers that include lots of
jargon, to the point where it can be hard to discern
their correctness. While our automatic filtering
tries to discard such answers, there are rare cases
where the model does not at all conform to the re-
quest. A few times, the model also does not answer
in English.

5 Experimental Setup

Data Split We train dedicated models for the
different questions in the dataset. To train on SRA,
we perform leave-one-out cross validation. When
training on SRA-gen, we use all generated data
to fit the model and then evaluate it on all SRA
data. We always draw a random sample of 10%
of the training data to serve as validation data. All
scoring methods are evaluated on the exact same
data splits.

Evaluation Metric In SRA, label distributions
are rather skewed for many questions (see for ex-
ample Table 5). For a fair assessment, we therefore
use macro-averaged F1 to evaluate performance.

Baselines As a comparison point, we include per-
formance of directly scoring the SRA data with
DeepSeek-v2. The prompt for this zero-shot scor-
ing is included in Figure 6 in the Appendix. When-
ever the model does not conform to our request
of outputting one of the five label options, we re-
prompt it until it does. We also include the perfor-
mance of a majority classifier.

Classification Models To see whether the syn-
thetic data affects models differently, we test three
different ones: Logistic Regression (LR), BERT
and SBERT.

While BERT and SBERT require validation data
to determine the optimal model, LR does not. Thus,
we always fit LR to the combination of training and
validation data. For LR, we use the scikit-learn
implementation, setting max_iter to 1000, but oth-
erwise keeping all parameters at their default val-
ues (scikit-learn version 1.6.1). Answers are repre-
sented as lowercased unigrams and bigrams. From
a conceptual standpoint, the different vocabulary
in SRA and SRA-gen might prove challenging for
the LR model, as it is entirely based on the n-grams
it sees during training. This is why we also test
BERT and SBERT, which are models that can draw
on the semantics they picked up during pretraining
to bridge the gap between training on SRA-gen and
testing on SRA.

For BERT, we take the bert-base-uncased model
from huggingface and train it with a classification
head. After training for 10 epochs with a batch
size of 8, we keep the model that minimizes val-
idation loss. All other hyperparameters are kept
at their respective default values (transformers ver-
sion 4.50.3).

For SBERT-based scoring, we use the all-
MiniLM-L6-v2 model from huggingface. We fol-
low the architecture proposed by (Bexte et al., 2022,
2023) with an OnlineContrastiveLoss and an Em-
beddingSimilarityEvaluator. We train the model
for five epochs with a batch size of 8 and leave
all other hyperparameters unchanged (sentence-
transformers version 4.0.1). Again, we keep the
model that performs best on the validation data.
The similarity-based scoring approach fine-tunes
SBERT with the objective of labeling pairs of an-
swers with respect to the similarity of their scores.
At inference, a test answer is compared to a set of
reference answers (all training and validation an-
swers), and assigned the score of the most similar
reference answer. Since this search is also possi-
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Method Training Data
SRA SRA-gen

Majority baseline .21 .21
LLM Scoring .21 .21

SBERTpre .44 .30

LR .46 .25
BERT .40 .25
SBERTfine .55 .28

Table 4: Macro-averaged F1 across all questions.

ble without any fine-tuning of the model, we ad-
ditionally report performance of directly using the
pretrained SBERT model without any adaptation
to the training data. We refer to this as SBERTpre
and denote the fine-tuned model with SBERTfine.

6 Training on Synthetic Data

6.1 SRA vs. SRA-gen

In our first experiment, we compare scoring per-
formance of models trained on the original SRA
data vs. our generated data. To keep results com-
parable, we sample data from SRA-gen following
the same label distribution as in SRA. To even out
sampling effects, we repeat this 20 times and re-
port the average performance. Aggregated results
are shown in Table 4. Directly scoring the SRA
data with DeepSeek-v2 performs at the level of the
majority baseline. Due to the non-deterministic
nature of the LLM, we run this scoring five times,
obtaining a range of performance. We report the
average here, but include detailed results in Figure
7 in the Appendix. In extreme cases, repeatedly
administering the exact same prompt can produce
macro-averaged F1 values ranging from below .3
to above .6. We also observe that the model al-
most exclusively labels answers as either correct or
partially correct. Thus, the closeness to majority
baseline performance is unsurprising.

For all three of the fine-tuned model types we
test, training a model from SRA-gen performs
slightly better than majority baseline and zero-shot
LLM scoring. However, this performance is still a
long way off from training on SRA. On SRA, the
fine-tuned SBERT model gives the best results (.55
F1). Likely due to the limited training data, LR
(.46) outperforms BERT (.40). Interestingly, the
pretrained SBERT model (.44) also outperforms
BERT on SRA, and does better than all other mod-
els on SRA-gen. Thus, we choose to break down
results for individual questions for this model in
Figure 2. To see variation between the 20 SRA-gen
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Macro-averaged F1
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Train: SRA
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Figure 2: SBERTpre: Performance per question.

samples we draw (Figure 8), and for the same re-
sults for the fine-tuned SBERT model (Figure 9)
refer to the Appendix.

In Figure 2, we see that the pattern of using the
LLM-generated data as training data being superior
to zero-shot scoring with an LLM (green bars) is
consistent across the majority of questions. For
some questions, even the fine-tuned model is not
doing much better than the majority baseline. Only
for one of the questions for which a successful
model can be learned on SRA do we see compara-
ble performance when using SRA-gen as training
data. Do however note that this only holds for the
pretrained model. Fine-tuning SBERT on SRA
outperforms training on SRA-gen for all questions.

6.2 Amount of Generated Training Data
As generating training data puts us at liberty to
surpass the amount of data that is present in the
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original dataset, we now explore how performance
changes with larger amounts of synthetic data. We
do this in a balanced fashion, i.e. with an equal
amount of answers for each label, starting with just
one per label and going up to 100. This means
that we use training data ranging from as little as
five to as many as 500 answers. We sample each
amount 20 times, and report average, best and worst
performance.

We again choose to do this analysis for the pre-
trained SBERT model, as this is the model that gave
the best performance on SRA-gen in the previous
experiment. To see the full curve, refer to Figure 10
in the Appendix. From a low amount of training
data onwards, performance remains on a consis-
tent low level. The average performance is below
the majority baseline performance of .21 macro-
averaged F1, and even the best runs do just slightly
better than this baseline. Thus, the relatively low
performance on SRA-gen we saw in the previous
experiment was not due to the limited amount of
training data. Do also note that the balanced la-
bel distribution we enforce here leads to overall
lower performance than what we had observed in
the previous experiment, where training and test
data shared the same label distribution.

7 Training on Cleaned Synthetic Data

Apart from the answers themselves, their labels
are a crucial element of the generated data. While
we are asking the LLM to generate answers that
conform to a target label, there is no guarantee
that they actually do. Thus, we perform manual
annotation to assess whether the generated answers
match the label they are supposed to belong to.
Table 5 shows the three questions we select for this
assessment.

We first manually clean the labels and then run
scoring experiments that compare performance of
training on the as-generated labels vs. the manu-
ally cleaned labels.

7.1 Label cleaning
As a first calibration round, three annotators (two
authors of this paper and a research assistant) man-
ually label the answers in SRA to make sure that
there is substantial agreement with the original la-
bels. Table 6 shows the Cohen’s Kappa (Cohen,
1960) we obtain.3 We also include agreement with

3Note that we believe to have found two mislabeled in-
stances for question ME_27b, and one for question VB_1. We
report agreement with the corrected labels.

ID Question # Answers
c. p.c. con. irr. n.-d.

M
E

_2
7b How can you use a magnet to

find out if the key is iron or alu-
minum?

22 12 1 4 1

PS
_4

bp

Darla tied one end of a string
around a doorknob and held the
other end in her hand. When
she plucked the string (pulled
and let go quickly) she heard
a sound. How would the pitch
change if Darla made the string
longer?

24 0 10 6 0

V
B

_1 How do you define a controlled
experiment?

21 3 1 14 1

Table 5: Questions chosen for manual annotation.

ME_27b PS_4bp VB_1
G R1 R2 R3 G R1 R2 R3 G R1 R2 R3

Gold - .77 .62 .84 - .91 .91 .96 – .79 .72 .91
R1 .77 - .45 .69 .91 - .91 .91 .79 – .80 .83
R2 .62 .45 - .62 .91 .91 - .91 .72 .80 – .68
R3 .84 .69 .62 - .96 .91 .91 - .91 .83 .68 –
Adj. .88 .73 .66 .96 .95 .95 .95 .95 .83 .96 .84 .83

Table 6: Kappa agreement of our annotations with the
labels in SRA (Adj. = adjudicated annotations).

the adjudicated labels, which we determined by tak-
ing the majority label. Where all three annotators
had decided on different labels (two cases), the dis-
agreement is resolved via discussion. Agreement
between adjudicated labels and gold SRA labels
ranges from .83 to .95. This shows that we can
reliably annotate the data. Thus, we proceed with
annotating the same prompts in SRA-gen.

For each of the three questions, we take 50 an-
swers per label. This makes for a total of 250
answers per question, of which we randomize the
order and hide the as-generated label. All three an-
notators now annotate the answers and we again de-
rive adjudicated annotations by taking the majority
label where possible. The remaining cases where
all annotators disagree (12 for question ME_27b, 9
for question PS_4bp, 41 for question VB_1) are re-
solved through discussion. Table 9 in the Appendix
shows kappa agreement for this round of anno-
tation. Agreement is overall lower, as the LLM-
generated data has substantially more variance than
the original SRA data.

Label Accuracy With the manual label annota-
tions we can now compute the accuracy for each
label by comparing what the LLM was asked to
generate with what the annotators agreed was ac-
tually generated. Table 7 shows these results, and
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Human Label Acc.
LLM Label corr. part. corr. contr. irr. non-d.

ME_27b
correct 12 13 3 22 0 .24
partially correct 13 17 4 16 0 .34
contradictory 3 2 18 26 1 .36
irrelevant 1 4 6 37 2 .74
non-domain 0 2 3 1 44 .88

PS_4bp
correct 22 3 14 11 0 .44
partially correct 14 14 8 14 0 .28
contradictory 3 9 26 12 0 .52
irrelevant 0 0 3 47 0 .94
non-domain 6 2 2 11 29 .58

VB_1
correct 23 26 0 1 0 .46
partially correct 26 18 3 3 0 .36
contradictory 0 13 14 23 0 .28
irrelevant 2 4 8 35 1 .70
non-domain 0 0 4 10 36 .72

Table 7: Adherence of the LLM to the label it was asked
to generate answers for. Accuracy: the fraction of the
50 generated answers that does match the desired label.

Figure 3 compares label accuracies across ques-
tions. Only for one question and label (irrelevant
for PS_4bp) nearly all generated answers conform
to the desired label. Non-domain answers are only
generated when the LLMs is asked for such: very
rarely is an answer from a different label manually
found to be non-domain. Overall, accuracy of non-
domain and irrelevant answers is higher than for
the other labels. Consistently, over half of the cor-
rect, partially correct and contradictory answers do
not conform to the desired label. Contradictory an-
swers are often determined to be irrelevant, and for
VB_1 13 of them are even partially correct. Correct
answers are regularly found to actually be partially
correct or irrelevant. For PS_4bp, 14 correct an-
swers are even found to in fact be contradictory.
This is somewhat contrary to the general consensus
that LLMs are doing well with answering correctly.
It may however be due to a difficulty of having to
come up with multiple answers in one go, i.e. ten
correct answers instead of just one.

7.2 Model training with cleaned data

To assess the benefit of cleaning labels in SRA-gen,
we can now compare the success of models trained
on the as-generated vs. cleaned labels. Table 8
summarizes these results. When training on 40 in-
stances from SRA-gen, we draw a sample with the
same distribution as in SRA 20 times and report
the average performance. Training on as-generated
SRA-gen data consistently does worse when a bal-
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Figure 3: Accuracy of the labels in SRA-gen.

anced sample of 250 answers vs. just 40 answers is
used to train. This is likely due to models benefit-
ing from the matching label distribution in training
and test data for the smaller sample.

The cleaned labels consistently lead to an in-
crease in performance. For the 40 training answers,
this increase is however much more subtle than
for the full 250 SRA-gen answers. On this larger
amount of training data, performance often reaches
the level of training on the original SRA data. The
SBERT model consistently gives the best perfor-
mance, and is the only model for which training
on the 250 cleaned SRA-gen answers consistently
outperforms training on the 40 SRA answers.

Overall, our results demonstrate that the LLM-
generated answers themselves do carry enough
meaning to inform a model, but that manual clean-
ing is necessary to remove noise in their labels. As
we have seen the label distribution in the training
data to affect model performance, the comparison
between the 250 as-generated vs. cleaned SRA-gen
answers is however not entirely ‘fair’: While the
SRA-gen data was drawn with a balanced distribu-
tion of 50 answers per label, this distribution has
shifted once the labels were cleaned. We therefore
take a look at the performance of balanced sam-
pling with as-generated vs. cleaned SRA-gen data
in Figure 4. Since the fine-tuned SBERT model
gives the best performance on cleaned SRA-gen
data, we choose this model for this analysis. Do
note that we can only compute the curve for the
cleaned data up to 28 answers per label, as the total
number of answers for the most infrequent label
limits our ability to draw a balanced sample. For
training with 5, 10, 15, 20 and 25 answers per label,
we draw 20 training samples each and report best,
average and worst performance.

For all three questions, the as-generated labels
constantly lead to low average performance lev-
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Data LR BERT SBERTpre SBERTfine

# train 40 40 40 250 250 40 40 40 250 250 40 40 40 250 250 40 40 40 250 250

Generated ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
Cleaned - ✗ ✓ ✗ ✓ - ✗ ✓ ✗ ✓ - ✗ ✓ ✗ ✓ - ✗ ✓ ✗ ✓

ME_27b .34 .16 .19 .09 .32 .36 .10 .17 .07 .32 .33 .20 .31 .26 .29 .33 .12 .29 .08 .41
PS_4bp .58 .25 .25 .00 .46 .49 .29 .27 .03 .47 .73 .32 .45 .00 .21 .82 .26 .61 .07 .91
VB_1 .33 .13 .30 .06 .37 .33 .24 .29 .09 .31 .33 .28 .25 .16 .46 .35 .22 .31 .02 .41

Avg. .42 .18 .25 .05 .38 .39 .21 .25 .06 .37 .46 .27 .34 .14 .32 .50 .20 .40 .06 .58

Table 8: Effect of cleaning the LLM labels via manual annotation (macro-averaged F1). For BERT and SBERT,
results are averaged across three runs for a more reliable performance estimate. ‘Generated’ denotes whether we are
training on SRA (✗) or SRA-gen (✓). ‘Cleaned’ indicates if we are using the as-generated (✗) or cleaned (✓) labels.

els of below .2 F1. With the cleaned labels, per-
formance rises once more data is added, and the
curves indicate that it might rise further if there
was more data available. This controlled compari-
son thus confirms the beneficial effect of manually
cleaning the labels.

8 Conclusion

We generate answers to the questions in the SRA
dataset with an LLM. Using these answers as train-
ing data leads to relatively poor performance. Di-
rectly scoring the SRA data with an LLM even
performs slightly worse, showing an inability of
the model to reliably apply the 5-way label scale.
This is supported by our analysis of the extent to
which the LLM sticks to the label we ask it to gen-
erate answers for. Up to 75% of the answers the
model was asked to generate for a specific label
were found not to conform to this label. Training
a model with manually relabeled generated data
demonstrates the detrimental effect of the noisy
labels: With cleaned labels, model performance in-
creases substantially, reaching a comparable level
to training on the original SRA data - albeit at the
demand of larger volumes of training data. In light
of our analysis of the lexical diversity in SRA vs.
SRA-gen, this is likely due to diverging content in
SRA vs. SRA-gen. Thus, more SRA-gen data is
needed to sufficiently cover the content of SRA.

With a similarity based scoring model, training
on the larger sample of generated data even consis-
tently leads to superior performance over training
on the small amount of available original SRA data.
One benefit of the similarity-based model might
be that one highly similar answer with the correct
label suffices for the model to correctly label an
answer of interest.

In conclusion, one can overcome the cold-start

Figure 4: SBERTfine: Balanced sampling of SRA-gen
with as-generated (left) vs. cleaned (right) labels.

problem with the help of an LLM in the sense of
not having to collect data from real students, but
not without the manual effort of labeling the gener-
ated answers. Future work could explore automatic
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cleaning of the generated data to alleviate the man-
ual labeling effort. While we saw limited success
in preliminary experiments, future work could also
quantify the effect of using few-shot prompting,
both in zero-shot labeling and generating answers.

Limitations

While our results provide interesting insights into
the possibility of generating training data with an
LLM, there are a number of limitations to our find-
ings. First, we only experiment with one LLM.
Other LLMs may behave differently, which limits
our conclusions to DeepSeek-v2. Even within the
realm of prompting an LLM, the precise choice of
prompt can have substantial impact (Sclar et al.,
2024). While we did carefully craft our prompts,
subtle changes to the wording may affect results.
Within the prompt design, a key aspect might be
the amount of answers the model is asked to gen-
erate in one go. We always asked for ten answers,
but results may differ if the model were asked to
generate just one or even all 500 answers at once.

Even beyond model choice and prompt design,
model parameters will affect results. We left these
untouched, but varying the temperature will affect
both answer generation and scoring ability of the
model.

Ethical Considerations

In considering the use of generated training data
for model training, one has to be cautious about the
normative language LLMs produce. An inability
to produce sufficiently ‘student-like’ language may
lead to a model with inferior performance on real
student answers that deviate from language norms.
Since content scoring is however less about lan-
guage form and more about content, this should
not affect the score of an answer.

Automated scoring of student answers in general
is not without ethical and legal issues. It is high-
risk as per the European Union AI Act, and LLM
use poses ‘systematic risks’.

A main concern of LLMs and deep learning in
general is a lack of transparency. This is somewhat
alleviated by the use of an LLM to generate syn-
thetic answers as opposed to using it to directly
score student answers. Still, our work shows that
based on the synthetic answers it is again most suc-
cessful to apply deep learning. This in turn is much
less transparent than the use of a shallow learning
method such as logistic regression - which we test

as well, but find to perform worse. However, the
deep learning model we find to perform best oper-
ates in a similarity-based fashion. Thus, it at least
allows backtracking to the reference answers that
lead to a predicted score.
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Appendix

This appendix contains some supplementary ma-
terial to increase transparency of our experiments.
It includes the prompt used to generate SRA-gen
in Figure 5 and the prompt used to score the an-
swers in SRA in Figure 6. The main paper con-
tains the agreement we achieve in labeling the orig-
inal SRA data in Table 6. Here, we include the
same statistics for our annotation of the generated
data in Table 9. We also include some more de-
tailed results of our scoring experiments. Due to
the non-deterministic nature of the LLM, repeated
administration of the same prompt leads to differ-
ing results. Thus, Figure 7 depicts the variation in
performance when administering the same prompt
to the same model five times. Figures 8 (pretrained
SBERT) and 9 (SBERT) show question-wise re-
sults for scoring based on SRA-gen vs. SRA. Fi-
nally, Figure 10 shows performance of training the
pretrained SBERT model with balanced samples of
SRA-gen.

LLM R1 R2 R3 Adjudicated

ME_27b
LLM - .49 .19 .36 .39
R1 .49 - .32 .48 .62
R2 .16 .32 - .48 .63
R3 .36 .48 .48 - .81
Adjudicated .39 .62 .63 .81 -

PS_4bp
LLM - .55 .33 .39 .45
R1 .55 - .59 .59 .77
R2 .33 .59 - .56 .75
R3 .39 .59 .56 - .75
Adjudicated .45 .77 .75 .75 -

VB_1
LLM – .63 .26 .22 .34
R1 .63 – .41 .31 .55
R2 .26 .41 – .46 .69
R3 .22 .31 .46 – .59
Adjudicated .34 .55 .69 .59 –

Table 9: Kappa agreement of our annotations with the
labels in SRA-gen.
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<purpose>
You are a school teacher.
Your students are going to answer the following question:
{question}

You are now thinking about possible answers students could give.

[LABEL_INSTRUCTIONS]
</purpose>
<format_rules>
Use markdown output and put each correct answer as a single bullet point.
Keep the answers as short as possible. A maximum of 20 words per answer.
</format_rules>
<output>
Create 10 [correct/partially correct or incomplete/contradictory/irrelevant/non domain]
responses following the given rules.
</output>

LABEL_INSTRUCTIONS={

CORRECT: Generate a list of 10 possible correct answers.
That is the important part, generating that list of exactly 10 answers!

PARTIALLY_CORRECT_INCOMPLETE: Generate a list of 10 possible partially correct
or incomplete answers. Partially correct or incomplete means that the student answer is
a partially correct answer containing some but not all information from the reference
answer. The important part is to generate a list of 10 student answers belonging to that
category (partially correct incomplete)!

CONTRADICTORY: Generate a list of 10 possible contradictory answers. That means that
the given answers are not correct and explicitly contradict the correct answer. The
important part is to generate a list of 10 answers belonging to that contradictory
category!

IRRELEVANT: Generate a list of 10 possible irrelevant answers. Irrelevant means that
the student answer is talking about domain content but not providing the necessary
information to be correct. The important part is to generate a list of 10 student answers
belonging to that irrelevant category!

NON_DOMAIN: Generate a list of 10 possible 'non domain' answers. 'Non domain' means that
the student utterance does not include domain content, e.g., "I don't know", "what the
book says", "you are stupid". The important part is to generate a list of 10 student
answers belonging to that category!}

Figure 5: Prompt used to generate training data. We follow the
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<purpose>
You are a school teacher.
A student has answered the following question:
{question}
This is the answer the student gave:
{answer}
You now have to score this answer.
These are the possible scores:
Correct: A correct answer to the question.
Partially correct or incomplete: This means that the student answer is a partially
correct answer that contains some but not all necessary information.
Contradictory: This means that the student answer is not correct and explicitly
contradicts the correct answer.
Irrelevant: This means that the student answer is talking about domain content but
not providing the necessary information to be correct.
Non-domain: This means that the student answer does not include domain content, e.g.,
"I don't know", "what the book says", "you are stupid".
</purpose>
<format_rules>
Only output the score.
</format_rules>
<output>
Decide on the score of the student answer.
</output>

Figure 6: Prompt used to score answers with the LLM.
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Figure 7: Performance variation across five runs of scoring the answers using an LLM.
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Figure 8: SBERTpre performance variation across 20 samples of generated training data that follow the same label
distribution as the original SRA data. Left: Comparison of the average performance to directly scoring the data with
an LLM. Right: Detailed results of the best, average and worst sample.
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Figure 9: SBERTfine performance variation across 20 samples of generated training data that follow the same label
distribution as the original SRA data. Left: Comparison of the average performance to directly scoring the data with
an LLM. Right: Detailed results of the best, average and worst sample.
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Figure 10: Average performance of SBERTpre when using a balanced sample of SRA-gen training data. Light blue
lines show average results for individual questions.
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