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Abstract

We present Team BD’s submission to the BEA
2025 Shared Task on Pedagogical Ability As-
sessment of AI-powered Tutors, under Track
1 (Mistake Identification) and Track 2 (Mis-
take Location). Both tracks involve three-class
classification of tutor responses in educational
dialogues – determining if a tutor correctly
recognizes a student’s mistake (Track 1) and
whether the tutor pinpoints the mistake’s loca-
tion (Track 2). Our system is built on MPNet,
a Transformer-based language model that com-
bines BERT and XLNet’s pre-training advan-
tages. We fine-tuned MPNet on the task data
using a class-weighted cross-entropy loss to
handle class imbalance, and leveraged grouped
cross-validation (10 folds) to maximize the use
of limited data while avoiding dialogue over-
lap between training and validation. We then
performed a hard-voting ensemble of the best
models from each fold, which improves robust-
ness and generalization by combining multiple
classifiers. Our approach achieved strong re-
sults on both tracks, with exact-match macro-
F1 scores of approximately 0.7110 for Mistake
Identification and 0.5543 for Mistake Location
on the official test set. We include compre-
hensive analysis of our system’s performance,
including confusion matrices and t-SNE visual-
izations to interpret classifier behavior, as well
as a taxonomy of common errors with exam-
ples. We hope our ensemble-based approach
and findings provide useful insights for design-
ing reliable tutor response evaluation systems
in educational dialogue settings.

1 Introduction

Effective intelligent tutoring systems need to be
able to recognize and address student mistakes dur-
ing interactions. To evaluate such capabilities in
automated systems, the BEA 2025 Shared Task
introduced a multi-dimensional assessment of AI
tutor responses. In particular, Track 1 focuses on
whether a tutor’s response identifies the student’s

mistake, and Track 2 on whether it locates the mis-
take in the student’s answer. Each track is framed
as a three-way classification: the tutor either fully
recognizes/locates the error (“Yes”), partially or
uncertainly does so (“To some extent”), or fails to
do so (“No”). These pedagogically motivated cate-
gories draw from prior frameworks in educational
dialogue analysis—for example, Mistake Identi-
fication corresponds to the student understanding
dimension in Tack and Piech’s schema (Tack and
Piech, 2022b) and correctness in other tutoring eval-
uation schemata, reflecting how well the tutor ac-
knowledges the student’s misconception.

Assessing tutor responses along such dimensions
is challenging due to the nuanced and subjective na-
ture of pedagogical feedback. For instance, differ-
ent studies have used varied measures (e.g., “speak-
ing like a teacher,” “understanding the student,”
etc.) to judge tutor responses. The BEA 2025
shared task addresses this gap by defining clear
categories and metrics for evaluation (Kochmar
et al., 2025). However, even with a fixed taxonomy,
classifying responses correctly remains non-trivial:
tutors may implicitly acknowledge an error without
stating it outright, or they might hint at the error’s
location in vague terms. Distinguishing between
a definite “Yes” and a tentative “To some extent”
thus requires subtle interpretation of language.

In this paper, we describe Team BD’s ensemble-
based MPNet system for automating the annotation
of mistake identification and mistake location in AI-
tutor responses. MPNet, a pretrained Transformer
model that uses masked and permuted language
modeling to capture token dependencies, was cho-
sen as our backbone for its strong generalization
capabilities compared to earlier models like BERT,
XLNet, and RoBERTa. To address the limited size
of the labeled data (approximately 2.5 K examples)
and inherent class imbalance, we fine-tuned MP-
Net with a class-weighted cross-entropy loss and
trained ten separate models using grouped cross-
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validation—grouped by dialogue to prevent context
leakage—and then combined the top-performing
model from each fold through hard-voting. This
ensemble strategy greatly improved robustness and
generalization, leading to high accuracy and macro-
F1 scores on both the mistake identification and
mistake location tracks. Our error analysis us-
ing confusion matrices and t-SNE visualizations
revealed consistent misclassification patterns, no-
tably confusing fully recognized with partially ac-
knowledged mistakes. We created a taxonomy of
common error types with examples to aid future
refinements.

2 Related Work

Evaluation of Tutor Responses: The task of judg-
ing tutor or teacher responses in educational dia-
logues has recently garnered attention. Tack and
Piech (Tack and Piech, 2022a) introduced the AI
Teacher Test to measure the pedagogical ability
of dialogue agents, proposing dimensions such as
whether the agent understands the student’s error
and provides helpful guidance. Following this,
the BEA 2023 Shared Task (Tack et al., 2023) fo-
cused on generating AI teacher responses (rather
than classification), where models like GPT-3 and
Blender were challenged to produce tutor-like feed-
back. The BEA 2025 Shared Task (Kochmar et al.,
2025) moves a step further by creating a benchmark
dataset of tutor responses annotated along multi-
ple pedagogical dimensions. The dataset leverages
dialogues from MathDial (Macina et al., 2023)
and Bridge (Maurya et al., 2025), two collections
of student-tutor interactions in the math domain.
Each tutor response in these dialogues was labeled
by experts as to whether it identifies the student’s
mistake, pinpoints the mistake’s location, provides
guidance, and offers actionable next steps. Such
multi-faceted annotation of tutor feedback is rela-
tively novel; it connects to earlier work on dialogue
act classification (Maurya et al., 2025) in that both
involve categorizing utterances, but here the labels
are pedagogical quality ratings rather than commu-
nicative intent.

Ensemble Methods in NLP: Classic studies,
such as Dietterich’s work on ensemble methods,
demonstrated that an ensemble of diverse classifiers
can correct individual models’ errors and reduce
variance (Dietterich, 2000). For instance, (Ovadia
et al., 2019) and (Gustafsson et al., 2020) found that
deep ensembles improve reliability under dataset

shift. In shared task and kaggle competitions, top
teams often resort to model ensembling to squeeze
out some additional performance. These benefits
come at the cost of increased computational over-
head. Our approach aligns with this trend, as we
build an ensemble of 10 MPNet-based classifiers
(from cross-validation folds) to tackle the classifi-
cation of tutor responses.

Dialogue and Educational NLP: Related to our
work is research on grammatical error detection
and correction, where systems identify mistakes in
student-written text. Notably, (Ng et al., 2014) and
(Bryant et al., 2019) have contributed significantly
to this field. However, our task differs in that the
“mistakes” are conceptual or procedural errors in a
problem solution, and we are evaluating the tutor’s
response to those errors rather than directly ana-
lyzing the student’s text. Another line of relevant
work is on student response analysis in tutoring sys-
tems, where the goal is to classify student answers
as correct, incorrect, or incomplete. (Dzikovska
et al., 2013) explored this in the context of the
SemEval-2013 Task 7. In our case, the roles are
reversed—we classify the tutor’s replies. We also
draw on insights from educational dialogue anal-
ysis: studies like (Daheim et al., 2024) examined
tutor responses for targetedness and actionability,
which correspond to our Track 2 and Track 4 tasks.
These studies emphasize the subtle linguistic cues
that indicate whether a tutor has pinpointed an er-
ror (e.g., referencing a specific step in the student’s
solution) or just given generic feedback.

In summary, our work is situated at the intersec-
tion of dialogue evaluation and text classification.
We build upon the shared task’s provided taxon-
omy (SIGEDU, 2025) and prior educational NLP
research, employing modern Transformer models
and ensemble techniques known to be effective in
such tasks.

3 Data and Task Definition

Task Definition: Tracks 1 and 2 are classifica-
tion tasks applied to tutor responses in a dialogue.
Based on the previous conversation history between
students and tutors, in Track 1 (Mistake Identifi-
cation), the system must determine if the tutor’s
response indicates recognition of the student’s mis-
take. In Track 2 (Mistake Location), the system
judges if the tutor points out the specific location or
nature of the mistake in the student’s solution. Both
tasks share the same label set: Yes, To some extent,
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Model Macro-F1 Score

BERT-large 0.6851
DeBERTa 0.6845
MPNet (selected) 0.6975

Table 1: 10 fold Cross-validation Macro-F1 scores for
different Transformer models on the track 1 develop-
ment set. MPNet achieves the highest score.

or No. Because these categories can be nuanced,
the shared task also defined a lenient evaluation
where “Yes” and “To some extent” are merged, but
our system is trained on the full 3-class distinction
(exact evaluation).

Dataset: The training (development) data pro-
vided by the organizers consists of annotated ed-
ucational dialogues in mathematics, drawn from
the MathDial and Bridge datasets. Each dialogue
includes a student’s attempt at a math problem (con-
taining a mistake or confusion) and one or more tu-
tor responses (from either human tutors or various
LLMs such as Mistral, Llama, GPT-4, etc. acting
as tutors). Each tutor response is annotated with the
three-class labels for all four dimensions (Tracks
1–4). In total, the development set contains 300
conversation history and over 2,480 tutor responses
with annotations. On average, each dialogue con-
text yields 8–9 different tutor responses (one from
each of several tutor sources), which were all anno-
tated. The test set is constructed in the same way
but uses held-out dialogues and responses—both
the ground-truth labels and the tutors’ identities are
hidden.

The development set for both Track 1 (Mistake
Identification) and Track 2 (Mistake Location)
consists of the same 300 dialogues and 2,476 tutor
responses. However, the label distributions differ
between tracks due to the nature of the classifi-
cation tasks. The underrepresentation of the To
some extent class in both tracks poses challenges
for model learning.

4 Methodology

4.1 Preprocessing
All tutor responses and conversation histories were
first lowercased (while preserving punctuation) to
ensure consistent casing.

To standardize and sanitize the responses, we
applied a series of targeted cleaning steps:

• Extra Info Removal: Eliminated any meta-
data or annotations not part of the tutor’s ac-

tual reply.

• Appended Dialogue Trimming: Removed
follow-up conversational turns that were ap-
pended after the original tutor response (e.g.,
speculative follow-up questions or acknowl-
edgments).

• Code Abstraction: Replaced Python code
blocks with the placeholder «python code»
to retain structural intent while abstracting
away executable details.

• Punctuation Cleanup: Stripped redundant
or mismatched punctuation (e.g., extraneous
quotes or dashes) that might confuse the tok-
enizer or the model.

Table 4 provides a summary of how many in-
stances were affected by each category. We ob-
served that models such as Phi-3 and Llama-3.1-
405B required the most extensive preprocessing.

Finally, each input example—consisting of the
conversation history, cleaned response, and separa-
tor tokens—was constrained to a maximum of 512
MPNet tokens. In cases where the input exceeded
this limit, we removed the low-value content (e.g.,
greetings or small talk) from the conversation his-
tory to retain the most relevant context.

4.2 Language Model Finetuning
In our experiments, we utilize transformer-based
pretrained language models (LMs). Since these
models may lack task-specific contextual knowl-
edge, we fine-tune them on our target tasks to im-
prove performance.

To begin, we consider a pretrained language
model denoted as ϕLM. Each tutor’s response af-
ter preprocessing T is input to the model, yielding
a sequence of tokens T = {t[CLS], t1, t2, . . . , tn}
along with their corresponding layer-wise hidden
representations H l = {hl[CLS], h

l
1, h

l
2, . . . , h

l
n}.

In our setup, we use the hidden representation of
the [CLS] token from the final layer as the sentence-
level representation of the input T , defined as:

hT = ϕLM(T )L[CLS] = HL
[CLS]

This representation hT is then passed through a
classification head to produce the prediction. The
classification head consists of a dropout layer Drop
followed by a linear transformation:

p = W · Drop(hT ) + b
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Finally, we use a cross-entropy loss function to
update the parameters of the language model ϕLM
during training.

4.3 Grouped Cross-Validation
We employ group cross-validation to ensure ro-
bust evaluation and mitigate overfitting. In this
approach, each dialogue (or group of dialogues)
is entirely assigned to either the training or valida-
tion set within each fold, preventing shared context
between the training and validation sets.

For each fold f ∈ {1, 2, . . . , k}, we define
the training and validation sets as G(f)

train and G(f)
val ,

respectively, where each set contains whole dia-
logues (or groups) with no overlap. We monitor the
model’s performance on the validation set using
the macro-averaged F1 score (macro-F1), which
provides a balanced measure of performance across
classes. For each fold, we save the model check-
point that achieves the highest macro-F1 score on
the validation set.

The final performance of the model is computed
by aggregating the macro-F1 scores across all k
folds.

4.4 Ensembling Strategy
To enhance model performance, we employed an
ensembling strategy where the top-performing mod-
els from each fold were combined using hard vot-
ing. Specifically, for each track, we had a total of
N = 10 models (one from each fold).

Let ŷ
(f)
i denote the prediction of the model

from fold f for the i-th sample, where f ∈
{1, 2, . . . , N}. The final prediction ŷi for each
sample i was determined by majority vote:

ŷi = mode(ŷ(1)i , ŷ
(2)
i , . . . , ŷ

(N)
i )

In the case of a tie, the tie-breaking rule was
based on the average softmax confidence across
all models. Let s(f)i denote the softmax output
(confidence) of the f -th model for the i-th sample.
If a tie occurs, the final prediction is chosen as:

ŷi = argmax


 1

N

N∑

f=1

s
(f)
i




Ensembling helps to reduce variance and correct
individual model biases, leading to more robust pre-
dictions. Our ensembling approach improved the
macro-F1 score by 2–3 points over the performance
of individual models.

5 Experimental Setup

5.1 Implementation Details
Model Selection In our experiments, we compared
several such models—including BERT-large, De-
BERTa, and MPNet—on a held-out subset of the
training data. Among these, MPNet achieved the
best macro-F1 score (see Table 1), and was thus
selected as our backbone. For implementation de-
tails, including software, packages, and hardware
setup, see Appendix A.
Model Hyperparameters

We used the AdamW optimizer with a learn-
ing rate of 2× 10−5, selected through preliminary
experiments on a held-out validation set. This set-
ting outperformed alternative learning rates such
as 1× 10−5 and 3× 10−5 in terms of macro-F1. A
linear learning rate decay schedule was used, along
with early stopping based on validation macro-F1
(patience = 5 epochs). We trained with a batch
size of 32 and applied a dropout rate of 0.1 in the
classification head. No gradient accumulation was
used.
Handling Class Imbalance

To mitigate class imbalance, we used a class-
weighted cross-entropy loss, where the weight for
each class c was computed as:

wc =
N

K · nc

with N being the total number of samples, K
the number of classes, and nc the count for class
c. This formulation emphasizes underrepresented
classes without overly penalizing frequent ones.

For Track 1 (Mistake Identification), class dis-
tributions were skewed toward “Yes” (1932), com-
pared to “No” (370) and “To some extent” (174).
We thus used the weight vector:

[wNo, wSome, wYes] = [1.0, 3.0, 0.5]

to boost recall for the rare “Some extent” class and
mildly down-weight the majority class.

In Track 2 (Mistake Location), the frequencies
were: “Yes” (1504), “No” (732), and “To some
extent” (240). Based on this, we used:

[wNo, wSome, wYes] = [0.8, 2.2, 0.9]

These weights, derived from inverse class frequen-
cies and lightly tuned, improved macro-F1 by
reducing systematic underprediction of minority
classes. Although not extensively optimized, this
approach provided consistent performance gains
across both tracks.
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Track Macro F1 Accuracy

Track 1 – Mistake Identification
Best (BJTU) 0.718 0.862
Ours (Test) 0.711 0.877
Ours (CV aggregate) 0.685 0.869

Track 2 – Mistake Location
Best (BLCU-ICALL) 0.598 0.768
Ours (Test) 0.554 0.714
Ours (CV aggregate) 0.560 0.700

Table 2: Comparison of our system’s macro-F1 and
accuracy with top leaderboard scores on both tracks.

5.2 Evaluation Metrics

Following the shared task guidelines, we report
both Accuracy and Macro F1. Macro F1, the un-
weighted average of per-class F1 scores, is em-
phasized due to class imbalance. We monitored
performance using these metrics on the validation
set during training and evaluated on the aggregated
development set using cross-validation predictions.
Final test metrics were provided by the organizers.
We focus on exact 3-class classification; lenient
2-class metrics (merging “Yes” with “To some ex-
tent”) were higher but are omitted here for brevity.

6 Result and Analysis

6.1 Main Result

To contextualize our system’s performance, we
compared it against the top submissions from the
official shared task leaderboard. On Track1 (Mis-
take Identification), our model achieved a macro-F1
of 0.711 on the test set, placing 5th out of 44 par-
ticipating teams. The top-ranked system (BJTU)
achieved a macro-F1 of 0.718, indicating that our
system performs competitively, within 0.7 points
of the best result. For Track2 (Mistake Location),
our system scored 0.554 macro-F1 on the test set,
ranking 7th out of 31 teams. The highest score on
this track was 0.598, obtained by BLCU-ICALL.
While our model trails behind the top result by ap-
proximately 4.4 points in macro-F1, it still exceeds
the median leaderboard performance.

Our system achieved higher accuracy than the
top Track 1 system (0.877 vs. 0.862), suggesting
stronger performance on dominant classes, albeit
with slightly lower balance across all classes.

Even though our system performs well, a closer
examination of its errors provides insights into its
decision-making and the task’s inherent difficulty.
We carried out an error analysis on the development
set predictions, focusing on confusion patterns and

the nature of misclassified cases.

6.2 Class-Level Performance Analysis

Figure 1: Confusion matrix for Track 1 (Mistake Iden-
tification) on the development set. The model shows
strong performance on the "Yes" class but has difficulty
distinguishing partial acknowledgment ("To some ex-
tent").

Figure 2: Confusion matrix for Track 2 (Mistake Loca-
tion). The model maintains high accuracy on explicit
localizations ("Yes") but misclassifies many “To some
extent” and “No” cases, highlighting the subtlety of lo-
cation inference.

To gain insight into how well our system dis-
tinguishes among the three pedagogical feedback
categories, we analyze confusion matrices for both
tasks. Figures 1 and 2 visualize model predictions
against gold labels on the development set for Track
1 (Mistake Identification) and Track 2 (Mistake Lo-
cation), respectively.

In Track 1 (Figure 1), the model performs
strongly on the "Yes" class, correctly identifying
1,827 instances, with relatively low misclassifica-
tion into the "No" (54) and "To some extent" (51)
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classes. The "No" class is also well captured with
275 correct predictions and few false positives. The
model struggles more with the "To some extent"
category: 61 were correctly predicted, but 113 were
misclassified as either "No" or "Yes." This aligns
with our earlier claim that “To some extent” lies on
a subjective continuum and is more difficult to pin
down categorically.

For Track 2 (Figure 2), a similar trend emerges.
The model again shows high accuracy on “Yes”
(1,450 correct), but struggles to distinguish “To
some extent,” which is often misclassified as “Yes”
(197 cases) or “No” (11 cases). Notably, the “No”
class is less cleanly separated in Track 2 compared
to Track 1, with 330 examples misclassified as
“Yes.” This may suggest that tutors sometimes ap-
pear to reference an error without pinpointing its
location, confusing the model’s judgment.

Overall, these confusion matrices illustrate the
asymmetric difficulty across classes. "Yes" re-
sponses are most reliably predicted due to their
clearer, more direct language. "To some extent"
predictions remain a challenge, particularly when
tutors use indirect or hedging phrasing that blurs
the line between partial and full error acknowledg-
ment or localization.

6.3 Embedding Space Insights

Figure 3: t-SNE projection of [CLS] embeddings from
the held-out fold (Fold 0) for Track 1 (Mistake Identi-
fication), colored by true label. “Yes” and “To some
extent” examples are scattered and intermixed, whereas
“No” forms a more compact cluster, indicating lower
intra-class variation.

To better understand the internal representations
learned by our model, we applied t-SNE (van der
Maaten and Hinton, 2008) to the [CLS] embed-
dings from the final Transformer layer. These pro-

Figure 4: t-SNE projection of [CLS] embeddings from
MPNet models across all 10 cross-validation folds for
Track 1 (Mistake Identification). Each point represents
a tutor response from a held-out fold, colored by fold
ID. The emergence of distinct clusters suggests that
each fold-specific model learns a consistent but fold-
specific embedding subspace, reflecting representational
diversity across the ensemble.

jections reveal how the model organizes tutor re-
sponses in the embedding space across folds and
classes.

Figure 4 shows the t-SNE projection of the
[CLS] embeddings across all ten cross-validation
folds, with points colored by fold ID. We ob-
serve that embeddings from each fold tend to form
compact, well-separated clusters. This indicates
that while training on different subsets, each fold-
specific model learns fold-consistent but distinct
representations. The tightness of these clusters also
suggests good embedding stability and coherence
across training runs.

Figure 3 presents the t-SNE visualization for
the held-out fold (Fold 0), this time colored by
the true label. Unlike the per-fold visualization,
class-level structure is less distinct: the “Yes” and
“To some extent” responses are widely dispersed
and often intermingle, suggesting overlapping se-
mantic characteristics. In contrast, the “No” class
forms a more compact group, indicating that tutor
responses with no recognition of error share more
consistent linguistic patterns. This aligns with our
earlier findings that “Yes” and “To some extent”
are harder to separate, as they exist on a continuum
of acknowledgment.

Together, these visualizations support our earlier
confusion matrix results and highlight the chal-
lenge of distinguishing nuanced pedagogical feed-
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back categories based solely on language.

6.4 Error Taxonomy
To better understand where the model fails, we
analyzed misclassified responses from both tasks
and developed a taxonomy of recurring error types,
summarized in Table 3. These categories reflect
systematic issues in how the model interprets peda-
gogical language.

False Negatives (Missed Signal). These errors
occur when the model fails to recognize that the
tutor has identified or located a mistake, typically
labeling the response as “No” or “To some extent”
instead of “Yes.” Such cases often involve subtle
cues like rhetorical questions or light correction
phrasing (e.g., “Can you check the multiplication
again?”), which the model may under-interpret.

False Positives (Over-interpretation). Here,
the model predicts “Yes” even when the tutor does
not provide evidence of error recognition. This
often results from over-interpreting generic encour-
agement (e.g., “Let’s try another one.”) or positive
sentiment as pedagogical feedback.

Partial–Full Confusion. A frequent source of
confusion is the distinction between full and partial
identification or localization. Indirect language
such as “You’re close, just verify your subtraction”
may be intended as partial feedback, but the model
may treat it as a complete identification.

Hedged Language Confusion. Tutors often use
polite or indirect language (e.g., “Maybe revisit
the earlier step?”), especially in educational set-
tings. Such hedging may obscure intent, leading
the model to underestimate the strength of the feed-
back signal.

Contextual Miss. Some misclassifications stem
from failing to use conversational history. For in-
stance, if a tutor’s comment refers to an earlier
incorrect step, the model may mislabel it when that
context is not incorporated effectively.

Template Bias. We also observed that the model
sometimes over-relies on surface patterns seen dur-
ing training. For example, statements like “Great
work!” may be incorrectly classified as “Yes” due
to template bias, even when no mistake is acknowl-
edged.

These error categories offer valuable insight into
the linguistic and contextual challenges of the task.
They suggest that improvements in discourse mod-
eling, uncertainty handling, and pragmatic lan-
guage understanding could further enhance per-
formance.

From the above taxonomy, we see that many of
the model’s mistakes correspond to understandable
difficulties. False negatives often involved indirect
tutor feedback—the tutor recognized the mistake
but phrased it as a question or hint, requiring infer-
ence to identify it as an acknowledgment of error.
Our model sometimes took such tentative language
at face value and labeled it as if the tutor did noth-
ing. False positives, on the other hand, were cases
where the tutor’s response had reassuring or neutral
language that the model mistook for a sign of rec-
ognizing a mistake. For example, tutors might say
“Let’s double-check that” even when the student
was correct (encouraging the student, not pointing
an error), and the model erroneously flagged it as
identifying an error.

The partial vs. full confusion category was the
most prevalent error type. This reflects the inherent
ambiguity of the “To some extent” class—even hu-
man annotators might differ on these in some cases.
Our model would sometimes collapse it into one
of the binary decisions (“Yes” or “No”) depending
on slight wording differences. In some cases, the
model predicted “To some extent” when the tutor
had actually pinpointed the error but perhaps in a
subtle way; in others, it predicted “Yes” for a tu-
tor response that was only hinting. This suggests
that improving the model’s understanding of nu-
anced language (perhaps via better context usage
or training on more examples of hedging) could
help.

We also found that ambiguous wording and
polite phrasing (common in educational settings)
posed challenges. Phrases like “Maybe check
that again” require contextual understanding—they
might indicate an error without explicit wording.
Our model did catch many of these, but not all.
Some errors could be attributed to the model’s lack
of world knowledge or reasoning; for example, if
a tutor says “Remember the formula for area,” the
model needs to infer that the student likely made
a mistake related to area calculation and that the
tutor is hinting at it—a level of reasoning beyond
surface text.

In summary, the error analysis reveals that while
our ensemble is effective, there is room for im-
provement in handling borderline cases and under-
standing implicit signals. These findings guided
us in considering potential enhancements, as dis-
cussed next.
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Error Type Description Example Scenario

False Negative (Missed
Signal)

Tutor indicates or locates a mistake, but
the model predicts “No” or “To some
extent.”

Tutor: “Can you check the multiplication again?”
Gold: Yes → Pred: To some extent

False Positive (Over-
interpretation)

Model predicts “Yes” despite the tutor
giving no error feedback.

Tutor: “Let’s try another one.”
Gold: No → Pred: Yes

Partial–Full Confusion Confuses indirect hints as full identifica-
tion, or subtle localization as partial.

Tutor: “You’re close, just verify your subtraction.”
Gold: To some extent → Pred: Yes

Hedged Language Con-
fusion

Tutor’s suggestion is misread due to po-
lite phrasing or indirect cues.

Tutor: “Maybe revisit the earlier step?”
Gold: Yes → Pred: To some extent

Contextual Miss Misclassification caused by ignoring or
misusing multi-turn context.

Tutor: Feedback depends on an earlier step, but the
model misses the reference.

Template Bias Model favors phrases resembling
training-time patterns, even when
semantically incorrect.

Tutor: “Great work!” with no correction.
Model assumes this implies error recognition.

Table 3: Taxonomy of common misclassification errors in both tasks, with representative examples.

Figure 5: Histogram of prediction confidence values for
Track 1 (Mistake Identification). Most predictions fall
within a mid-confidence range.

6.5 Confidence Distribution and Calibration

To further investigate the model’s decision-making
behavior, we analyzed its prediction confidence
across classes and tasks. Figures 5 and 6 present
histograms of predicted confidence scores for
Track 1 and Track 2, respectively. These reflect
the model’s certainty in its predictions across the
development set.

In both tasks, the confidence distribution is
skewed toward the middle range (1.5–3.0), with
multiple local peaks. This suggests that while the
model often makes moderately confident predic-
tions, it does not frequently commit to extremely
low or high confidence outputs. The spiked clus-
ters in Track 2 (Figure 6) hint at calibration arti-
facts possibly introduced by ensemble averaging.
Despite ensemble smoothing, we still observe con-
fidence saturation for some predictions near 3.5,
particularly on easier instances.

Figure 6: Histogram of prediction confidence values
for Track 2 (Mistake Location). A similar mid-range
clustering pattern is observed, with some extreme confi-
dence peaks.

To better understand class-specific behavior,
we examined boxplots of prediction confidence
grouped by predicted label (Figures 7 and 8). In
both tasks, predictions labeled as “No” tend to have
higher median confidence compared to “To some
extent,” reflecting that the model is more certain
when asserting a complete absence of error. Pre-
dictions for “To some extent” exhibit both lower
median confidence and greater spread—supporting
earlier findings that this category is harder to clas-
sify due to its inherent ambiguity. Interestingly,
in Track 1, “Yes” predictions also show relatively
high confidence, indicating that the model treats
full error recognition as a more decisive signal than
partial acknowledgment.

These confidence trends are broadly aligned with
our confusion matrix analysis: “To some extent” is
not only the most frequently confused class but also
the one with the least confident predictions. This
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Figure 7: Boxplot of confidence by predicted class
(Track 1). Predictions labeled “To some extent” tend to
have lower median confidence.

Figure 8: Boxplot of confidence by predicted class
(Track 2). “No” and “Yes” predictions show higher
confidence than “To some extent.”

highlights a key challenge in pedagogical feedback
modeling—the need to model uncertainty explic-
itly, especially in borderline cases. Future work
could explore temperature scaling or Bayesian en-
sembling to better calibrate prediction confidence,
particularly for interpretability in high-stakes edu-
cational settings.

7 Conclusion

This paper presents Team BD’s ensemble-based
MPNet system for the BEA 2025 Shared Task
on Mistake Identification and Location in tutor
responses. By fine-tuning MPNet with class-
weighted loss and grouped cross-validation, we
addressed data imbalance and maximized the use of
training data, achieving high accuracy and macro-
F1 scores on both Track 1 and Track 2. Extensive
analyses show that, while the model reliably han-

dles clear-cut error recognition, it struggles with
borderline cases involving partial acknowledgment,
as evidenced by embedding-space visualizations
and a taxonomy of common errors. Future work
will explore multi-task learning across evaluation
dimensions, leverage larger language models or
adapter-based methods to incorporate LLM knowl-
edge, and improve calibration and domain-specific
contextual understanding to enhance system relia-
bility and interpretability.

8 Limitations

Despite the strong results achieved by our ensemble
MPNet-based system, several limitations warrant
discussion:

Confidence Calibration: Our ensemble ex-
hibits poor calibration, often assigning high con-
fidence to incorrect predictions—problematic for
intervention-triggering systems. We did not ap-
ply calibration methods due to time constraints.
Adaptive Temperature Scaling (ATS), a recent post-
hoc technique, improves token-level calibration by
10–50% across benchmarks (Xie et al., 2024), and
merits future exploration.

Label Ambiguity: The line between “Yes” and
“To some extent” is subjective, with some errors
stemming from annotation uncertainty rather than
model failure, thus limiting performance. Model-
ing the task as ordinal or probabilistic may better
capture this continuum; ordinal methods have been
proposed for similar label structures (Zhang et al.,
2023).

Model Scope and Efficiency: MPNet-base
lacks domain-specific specialization for educa-
tional dialogue, which may limit its ability to
handle nuanced interactions. Exploring a larger,
domain-adapted backbone or a multitask learning
setup could enhance performance and is a promis-
ing direction for future work.
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Appendix

A Software and Package Details

We conducted all experiments using Python 3.9,
PyTorch 1.13, and the Hugging Face Trans-
formers library (version 4.37.2) (Wolf et al.,
2020). Specifically, we fine-tuned the
sentence-transformers/all-mpnet-base-v2
model available on the Hugging Face Model Hub
(Reimers and Gurevych, 2020). Tokenization was
performed using MPNet’s tokenizer, with inputs
truncated to a maximum length of 300 tokens.

All models were trained on a single NVIDIA
RTX 3090 GPU (24 GB). Each fold took approxi-
mately 2–4 minutes per epoch to train, with conver-
gence typically reached within 3 epochs (i.e., 6–12
minutes per model). Full ensemble training (10
models for Track 1 and 7 for Track 2) completed in
under 3 hours. Despite the ensemble size, inference
was efficient: classifying the entire test set (several
hundred responses) took under 30 seconds.

B Training Configuration

Class Weights. To mitigate class imbalance, we
applied inverse frequency class weighting in the
cross-entropy loss function:

wc =
1

log(fc + ϵ)
,

where fc is the frequency of class c and ϵ = 1.05.

Hyperparameter Search. We performed grid
search over learning rates {1e-5, 2e-5, 3e-5} and
batch sizes {8, 16}. The best configuration was
selected based on average macro-F1 over the cross-
validation folds.

Reproducibility. We fixed all random seeds to 42
and set PyTorch to deterministic mode. Our code
will be made publicly available upon publication.

C Preprocessing Frequency Across
Models

Table 4 summarizes the frequency of manual
cleanup operations required across models.

D Additional Training Results

Table 5 reports additional macro-F1 scores for
Mistake Identification and Mistake Location tasks
across various models. For non-Transformer mod-
els, we used TF-IDF representations as input fea-
tures.
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Category Phi3 Mistral Llama-3.1-8B Llama-3.1-405B GPT-4 Total

Extra Info 1 0 1 11 1 14
Appended Dialogue Trimming 19 0 0 0 0 19
Code Abstraction 2 0 0 0 0 2
Punctuation Cleanup 3 2 0 0 0 5

Totals 25 2 1 11 1 40

Table 4: Model-specific frequencies of manual cleanup operations on tutor responses.

Model Mistake Identification Mistake Location

BERT 0.8703 0.7025
RoBERTa 0.7816 0.6551
DeBERTa 0.8576 0.7025
ELECTRA 0.8513 0.6266
MPNet 0.8639 0.6203
NeoBERT 0.8513 0.6677
Logistic Regression 0.7880 0.6139
Random Forest 0.8260 0.6551
Gradient Boosting 0.8418 0.6519
SVM 0.7785 0.6110
LightGBM 0.8418 0.6551
XGBoost 0.8386 0.6646
CatBoost 0.8196 0.6582

Table 5: Macro-F1 scores for Mistake Identification and Mistake Location tasks across Transformer models and
TF-IDF + traditional classifiers. Best results per column are bolded.
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