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Abstract

We present our submission for Tracks 3 (Pro-
viding Guidance), 4 (Actionability), and 5 (Tu-
tor Identification) of the BEA 2025 Shared
Task on Pedagogical Ability Assessment of AI-
Powered Tutors. Our approach sought to in-
vestigate the performance of directly using sen-
tence embeddings of tutor responses as input
to downstream classifiers (that is, without em-
ploying any fine-tuning). To this end, we bench-
marked two general-purpose sentence embed-
ding models: gte-modernbert-base (GTE) and
all-MiniLM-L12-v2, in combination with two
downstream classifiers: XGBoost and multi-
layer perceptron. Feeding GTE embeddings
to a multilayer perceptron achieved macro-F1
scores of 0.4776, 0.5294, and 0.6420 on the
official test sets for Tracks 3, 4, and 5, respec-
tively. While overall performance was modest,
these results offer insights into the challenges
of pedagogical response evaluation and estab-
lish a baseline for future improvements.

1 Introduction

Recent advancements in large language models
(LLMs) have opened new possibilities for using
AI-powered chatbots as educational tutors, pro-
viding benefits for tasks such as homework assis-
tance, personalized learning, and skills develop-
ment (Labadze et al., 2023). However, while these
systems can generate human-like dialogue, assess-
ing their pedagogical effectiveness remains a signif-
icant challenge. In the past, human evaluation has
typically been used for evaluation, though reliable,
this is costly and difficult to scale (Liu et al., 2023).

To address this gap, the BEA 2025 Shared Task
on Pedagogical Ability Assessment of AI-powered
Tutors (Kochmar et al., 2025) was organized to pro-
mote the development of automated evaluation sys-
tems for tutor responses in educational dialogues.
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The shared task focused on assessing the quality
of tutor responses aimed at helping students correct
their mistakes in math-related dialogues. Partici-
pants were provided with dialogues that included
conversation history, a student’s incorrect utter-
ance, and multiple possible tutor responses (Mau-
rya et al., 2025). Each response was to be evaluated
along four pedagogically motivated dimensions:
mistake identification, mistake location, guidance
provision, and actionability. These dimensions
were annotated on a three-point scale: “Yes,” “To
some extent,” or “No.”

In addition to these four tracks, the shared task
included a fifth track, Tutor Identification, wherein
participants were asked to predict the origin of
anonymous tutor responses, distinguishing between
different LLMs and human tutors. This track ex-
plored whether distinct pedagogical or linguistic
styles could be used to attribute responses to their
source.

The organizers released a development dataset
of 300 annotated dialogues and a test set of 191
dialogues. Both sets included responses from a
diverse set of state-of-the-art LLMs and, in some
cases, human tutors (Maurya et al., 2025).

Our contributions are as follows:

• We evaluated the performance of directly feed-
ing sentence embeddings of tutor responses
(without any fine-tuning) to downstream clas-
sifiers for Tracks 3 (Providing Guidance),
4 (Actionability), and 5 (Tutor Identification).

• We benchmarked two sentence embedding
models: gte-modernbert-base (GTE) and all-
MiniLM-L12-v2. Our results show that using
GTE embeddings and a multilayer perceptron
yielded macro-F1 scores of 0.4776, 0.5294,
and 0.6420, thus providing a baseline for the
performance of general-purpose sentence em-
beddings on multiple pedagogical response
evaluation tasks.
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2 Methods

Figure 1: Methodology

Figure 1 shows our approach. First, we extracted
the tutor response from each dialogue instance
and fed it into a pretrained sentence embedding
model to obtain a fixed-length vector representa-
tion. We used this representation as input to a
classifier trained to predict the relevant task labels.

This methodology was applied across all three
tracks in which we participated. We modeled
Tracks 3 and 4 as multiclass classification prob-
lems where the output labels are “No,” “To some
extent,” and “Yes.” Likewise, Track 5 was also
modeled as a multiclass classification problem
with nine output labels: “Expert,” “GPT4,” “Gem-
ini,” “Llama31405B,” “Llama318B,” “Mistral,”
“Novice,” “Phi3,” and “Sonnet.”

2.1 Sentence Embedding Model
Two embedding models were chosen from the Mas-
sive Text Embedding Benchmark (MTEB) Leader-
board1 (Enevoldsen et al., 2025), which compares
the performance of over a hundred embedding mod-
els across multiple tasks.

We first selected gte-modernbert-base2 (Zhang
et al., 2024) or GTE, a general-purpose embedding

1https://huggingface.co/spaces/mteb/
leaderboard

2https://huggingface.co/Alibaba-NLP/
gte-modernbert-base

model built on modernBERT (Warner et al., 2024).
With 149 million parameters and a context length
of up to 8192 tokens, it performs strongly on the
MTEB leaderboard, competitive with other models
with under 1 billion parameters.

In addition, we also evaluated a more lightweight
model, all-MiniLM-L12-v23, which has 33.4M pa-
rameters. Despite its compact size, it registers com-
petitive performance on the MTEB leaderboard and
on other classification tasks (Meleti et al., 2025).

2.2 Downstream Classifier

We trained two classification models: XGBoost
and a multilayer perceptron (MLP) with a single
hidden layer. XGBoost, a decision tree-based gradi-
ent boosting method, has been reported to achieve
good performance with dense sentence embeddings
as input (Muqadas et al., 2025; Chen and Guestrin,
2016). MLPs are capable of capturing nonlinear
relationships and, as such, are widely used in su-
pervised learning tasks (Goodfellow et al., 2016).

We partitioned the development set such that
80% of the data comprises the training set and the
remaining 20% comprises the test set. We then per-
formed three-fold cross-validation with grid search
on the training set to tune the hyperparameters of
both models; the complete hyperparameter search
space is reported in Table 3. Tables 4 and 5 show
the combination of hyperparameters that returned
the highest macro-F1.

3 Results and Discussion

3.1 Development Set Results

Table 1 summarizes the results on the test set parti-
tion of our development set. We found that using
MLP consistently outperformed using XGBoost in
terms of macro-F1 across all three tasks, with the
strongest gains observed in Tracks 4 (Actionability)
and 5 (Tutor Identification). Pairing GTE embed-
dings with MLP achieved the highest macro-F1 and
also the highest accuracy (except for Task 3).Con-
fusion matrices are given in Figure 2.

3.2 Official Test Set Results

Based on the development set results, we selected
the top two model combinations for final testing.
For Tracks 3 and 4, we chose GTE + MLP and GTE
+ XGBoost. For Track 5, we selected GTE + MLP
and MiniLM + MLP. The complete official test set

3https://huggingface.co/sentence-transformers/
all-MiniLM-L12-v2
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Task Model Macro-F1 Accuracy

Track 3

GTE + MLP 0.5601 0.6371
GTE + XGBoost 0.5095 0.6492
MiniLM + MLP 0.4675 0.6371
MiniLM + XGBoost 0.4814 0.6310

Track 4

GTE + MLP 0.5667 0.6492
GTE + XGBoost 0.5097 0.6552
MiniLM + MLP 0.5504 0.6411
MiniLM + XGBoost 0.4766 0.6431

Track 5

GTE + MLP 0.6047 0.5665
GTE + XGBoost 0.4879 0.4476
MiniLM + MLP 0.5333 0.4879
MiniLM + XGBoost 0.4595 0.3992

Table 1: Macro-F1 and accuracy on the development
set across Tracks 3 (Providing Guidance), 4 (Actionabil-
ity), and 5 (Tutor Identification). The best performance
scores are in bold.

scores for these selected model combinations are
reported in Table 2.

3.3 Limitations

First, we fed the tutor responses, as is, to the sen-
tence embedding models, that is, we did not per-
form any text preprocessing (such as stopword re-
moval or punctuation stripping) prior to embedding.
While this decision aligns with the intention to eval-
uate the raw utility of general-purpose embeddings,
preprocessing might have potentially reduced noise
and improved classification performance.

Second, we did not fine-tune the sentence em-
bedding models on task-specific data. The GTE
and MiniLM embeddings were used as is, without
adaptation to the tutoring domain or label space.
This might have limited the models’ ability to cap-
ture nuanced patterns in the instructional dialogue,
particularly for more subtle distinctions such as
“To some extent” in Tracks 3 and 4 or between tutor
personas in Track 5.

Finally, the per-class evaluation results (Figure 3)
reflect the class imbalance, with the dominant class
(“Yes”) having noticeably higher F1 compared to
“No” and “To some extent” for Tracks 3 and 4. To
address this, it may be helpful to incorporate class-
adjusted weights during training, perform data aug-
mentation, or generate synthetic data.

4 Conclusion

In this paper, we investigated the performance of
directly feeding sentence embeddings of tutor re-
sponses to downstream classifiers for multiple ped-
agogical response evaluation tasks, thus providing

baseline models for future improvements in this
domain.

For future work, it may be interesting to compare
these baselines with domain-specific fine-tuning,
as well as perform more extensive hyperparameter
tuning through automated optimization techniques
(such as Bayesian optimization) to further improve
classification accuracy.
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Task Model Exact F1 Exact Acc Lenient F1 Lenient Acc
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Track 4 (Actionability) GTE + MLP 0.5294 0.6089 0.7351 0.7738
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MiniLM + MLP 0.5808 0.5624 – –

Table 2: Performance on the official test sets. “F1” is shorthand for macro-F1, and “Acc” stands for accuracy.
For Tracks 3 and 4, two additional metrics were additionally computed by the testing platform: lenient F1 and
lenient accuracy, which consider “Yes” and “To some extent” the same class. The qualifier “exact” distinguishes the
conventional metrics from their lenient variation.
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Hyperparameter Search Space

XGBoost

Number of estimators 50, 100, 150
Maximum depth of a tree 3, 5, 7
Learning rate 0.01, 0.1, 0.2
Subsample ratio of the training instances 0.8, 1.0
Subsample ratio of columns when constructing each tree 0.8, 1.0

MLP
Hidden layer size (50,), (100,), (150,)
Activation ReLU, tanh, logistic
Solver Adam, SGD
L2 regularization strength 10−4, 10−3, 10−2

Learning rate schedule Constant, adaptive

Table 3: Hyperparameter search space

Task Embedding n_estimators max_depth learning_rate subsample colsample_bytree

Track 3 GTE 100 7 0.2 1.0 0.8
MiniLM 50 5 0.2 1.0 1.0

Track 4 GTE 150 3 0.2 0.8 0.8
MiniLM 150 7 0.1 0.8 0.8

Track 5 GTE 150 3 0.2 0.8 0.8
MiniLM 150 5 0.1 0.8 1.0

Table 4: Optimal XGBoost hyperparameters selected via three-fold cross-validation with grid search for each task
and sentence embedding model. n_estimators refers to the number of estimators; max_depth, maximum depth of a
tree; learning_rate, learning rate; subsample, subsample ratio of the training instances; and colsample_bytree,
subsample ratio of columns when constructing a tree.

Task Embedding Activation L2 Reg. Hidden Layer Size Learning Rate Schedule Solver

Track 3 GTE ReLU 10−2 (150,) Constant Adam
MiniLM tanh 10−4 (150,) Constant SGD

Track 4 GTE ReLU 10−4 (50,) Constant Adam
MiniLM ReLU 10−4 (150,) Constant Adam

Track 5 GTE Logistic 10−3 (50,) Constant Adam
MiniLM Logistic 10−2 (50,) Constant Adam

Table 5: Optimal MLP hyperparameters selected via three-fold cross-validation with grid search for each task and
sentence embedding model
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Figure 2: Confusion matrices for (a) Track 3, (b)
Track 4, and (c) Track 5, obtained by pairing gte-
modernbert-base and multilayer perceptron (GTE +
MLP)

Figure 3: Per-class F1 scores for (a) Track 3, (b) Track 4,
and (c) Track 5
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