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Motivation and Objectives: Recent advancements
in Large Language Models (LLMs) have opened
unprecedented opportunities in education but the
current development goals of LLMs stand in con-
trast to the requirements of educational applica-
tions. This tutorial aims to bridge the gap be-
tween two major communities: Natural Language
Processing (NLP) researchers and Artificial Intel-
ligence in Education (AIED) practitioners. Our
objectives are: (1) to help NLP researchers under-
stand the requirements and challenges of education,
enabling them to develop LLMs that align with
educational needs, and (2) to enable educators and
AIED practitioners to gain a deeper understand-
ing of the capabilities and limitations of current
NLP technologies , fostering effective integration
of LLMs in educational contexts. By facilitating
cross-disciplinary dialog, we aim to uncover the
potential of LLMs in education.

First, we identify several critical challenges:
LLMs must be aligned to complement established
pedagogical theories and educational practices, in-
corporating principles such as scaffolding (Macina
et al., 2023b; Sonkar et al., 2024a) or Socratic ques-
tioning (Shridhar et al., 2022), effective feedback
mechanisms (Daheim et al., 2024), and cognitive
load management (Settles and Meeder, 2016). This
ensures that AI systems enhance rather than un-
dermine learning processes. We emphasize that
LLMs need to be integrated with existing AIED
technologies, including knowledge tracing models
and intelligent tutoring systems (ITS). As high-
lighted by UNESCO (Miao and Cukurova, 2024),
we also need to explore human-AI collaboration to
preserve human agency while leveraging the bene-
fits of LLMs. The use of LLMs also raises ethical
concerns about data privacy and security and fair-
ness for students, necessitating robust safeguards.
Finally, AI literacy among educators, students, and
policymakers is important for ensuring that stake-
holders understand their potential and limitations.

1 Tutorial Overview and Structure

1. LLMs meet AIED (60 min)
Intro to LLMs (20 min)
Learning science, AIED foundations (20 min)
Misalignment b/w LLMs & AIED (20 min)

2. Case Studies & Coffee Break (120 min)
Intelligent Tutoring Systems (30 min)
Coffee break (30 min)
Automated feedback & assessment (20 min)
Content (e.g. problem) generation (20 min)
Student modeling and adaptivity (20 min)

3. Closing Discussion (30 min)
LLM development for education
Human, ethical and societal aspects
Closing remarks

We will begin with an introduction of key LLM
technologies and AIED usecases, focussing on the
needs of stakeholders in education, such as peda-
gogy, and opportunities to harness LLMs for ed-
ucation applications. Then, we will outline how
these needs stand in contrast with current LLM
development which instead focusses on solving
correctness. Afterwards, we will delve into a series
of case studies that highlight how LLMs can be
adapted for: (1) robust, personalized, and scalable
conversational tutoring systems; (2) adaptive and
personalized content generation of educational ma-
terial, lesson plans, and assessments; (3) grading
and delivery of detailed and personalized feedback
on student work. We will examine the current ca-
pabilities of LLMs in these domains, discussing
recent research findings and practical applications.
The tutorial will interweave the applications with
critical challenges such as pedagogical alignment,
ethical considerations, and human factors in AI-
assisted education. We finally conclude with a
discussion of LLM development for education that
emphasizes human, ethical, and societal aspects.
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2 LLMs Meet AIED

LLM Training & AIED Requirements LLMs
offer significant potential in education but require
careful tuning to align with pedagogical goals.
For instance, LLMs tend to provide direct an-
swers instead of scaffolding learning which can
hinder learning (Macina et al., 2023b; Sonkar et al.,
2024a). We will first discuss how LLMs are
trained using supervised fine-Tuning (SFT) (Wei
et al., 2022), instruction tuning, and reinforcement-
learning-based optimization methods (Ziegler et al.,
2019; Rafailov et al., 2023). Connected to this, we
also highlight the shortcomings of current bench-
marks (Hendrycks et al., 2020; Cobbe et al., 2021;
Hendrycks et al., 2021) that are used to evaluate
LLMs, mainly for solving accuracy. Evaluation of
AIED systems is different from this, as pedagog-
ical factors play a large role and have dominated
the development of educational systems (Graesser
et al., 2005). We highlight these educational needs
from different perspectives and show how LLM
development goals do not align to them. For exam-
ple, students require space to think and learn, also
by making mistakes (Macina et al., 2023a; Sonkar
et al., 2024a), and teachers require flexible student
simulations (Markel et al., 2023).

Human Factors & Ethical Considerations: In-
tegrating LLMs into educational contexts brings
several human-centered challenges that must be
addressed to ensure effective and ethical use. For
example, teachers are often not included in the de-
velopment loop (Shankar et al., 2024), but gain-
ing their trust, also through model explainabil-
ity (Cortez et al., 2024) is important. We will dis-
cuss how instructors can be included effectively,
for example, to decide, when and which NLP mod-
els to use or which inputs to give to the models. We
will also discuss how they can modify the generated
outcomes as needed (Lu et al., 2023) and prompt
architectures to provide responses to MCQs based
on student simulations (Lu and Wang, 2024).

The application of LLMs in schools also raises
ethical considerations related to attribution, plagia-
rism, and the potential for AI-generated content to
be presented as original work. To address these is-
sues, universities and educational authorities must
strengthen and enforce academic integrity policies
while educating students about responsible AI use.
Promoting awareness and developing guidelines is
essential in maintaining the integrity of academic
work in the age of GenAI (Okaiyeto et al., 2023).

3 LLMs for Educational Applications

3.1 Intelligent Tutoring Systems (ITSs)

ITSs have long been the focus of AIED develop-
ments including systems such as AutoTutor-based
(Nye et al., 2014), example-tracing tutors (Aleven
et al., 2009) or Cognitive tutor (Anderson et al.,
1997). However, they require extensive human
authoring. While LLMs hold great promise to over-
come this and enable applications like student tutor-
ing (Chen et al., 2024) or teacher training (Gregor-
cic et al., 2024; Markel et al., 2023). Yet, they still
face limitations, such as generating factually incor-
rect responses or not offering sufficient pedagogy
(Sonkar et al., 2023).

In this tutorial, we will cover a range of works
that attempt to alleviate these shortcomings, for
example, such that use LLMs within structured
dialogs (Schmucker et al., 2024; Pal Chowdhury
et al., 2024), data-driven approaches to adding scaf-
folding capabilities (Macina et al., 2023a; Sonkar
et al., 2023; Jurenka and et al., 2024), and mitigat-
ing hallucinations by adding intermediate reason-
ing steps for prompted LLMs (Wang et al., 2024b;
Daheim et al., 2024). As large amounts of dialog
tutoring data can be hard to collect, we will also dis-
cuss synthetic data creation methods (Wang et al.,
2024a; Chevalier et al., 2024).

Finally, we will touch upon evaluation protocols
that, ideally, should include relevant stakeholders
and evaluate learning effectiveness. Such studies
include using LLMs in real classrooms, for exam-
ple, for computer science (Nie et al., 2024) or math
education (Cheng et al., 2024), or using LLMs as
student simulations to evaluate the effectiveness
of automatic dialog tutors (Macina et al., 2023a).
Such student simulations can also be effective for
teacher training (Gregorcic et al., 2024; Wang and
Demszky, 2023) and training teaching assistants
(Markel et al., 2023).

3.2 Automated Feedback and Assessment

Hint and Feedback mechanisms play an important
role in determining learning outcomes. We will
discuss studies that show both the potential and
limitations of LLMs in generating quality feedback.
(McNichols et al., 2024) show fine-tuned LLMs
have limited generalization capabilities. Contrarily,
(Dai et al., 2024) find GPT-4 outperforms human in-
structors in important aspects of effective feedback
dimensions such as feeding-up, feeding-forward,
and process level. However, student dynamics are
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complex; (Nazaretsky et al., 2024) highlights a
preference for human-generated feedback when
students know its source. We will discuss solutions
to overcome these challenges such as reinforcement
learning (Scarlatos et al., 2024) and LLM-based
student simulation models (Phung et al., 2024).

Another important aspect of feedback is its emo-
tional and motivational impact on students. We will
discuss the importance of affective feedback (Li
et al., 2024a; Baral et al., 2023). We will also
explore how LLMs can be used to provide not
just cognitive but also emotional support, offer-
ing praise (Thomas et al., 2023) and addressing
negative self-talk (Thomas et al., 2024). Addition-
ally, we will touch on ongoing efforts to integrate
AI-driven emotional assessment in educational set-
tings (Vistorte et al., 2024) to create empathetic
learning environments.

Finally, we’ll shift our focus to automatic as-
sessment. We will review their performance in Au-
tomated Short/Long Answer Grading (Kortemeyer,
2023a; Sonkar et al., 2024b) and Automated Essay
Grading (AEG) (Mizumoto and Eguchi, 2023), ref-
erencing open-source benchmarks (Ruseti et al.,
2024; Dzikovska et al., 2013; Blanchard et al.,
2013) for these tasks. Next we will summarize
some findings on the real-world deployment of
LLMs for grading, which show promise despite
certain limitations. We will start with studies on
math grading (Morris et al., 2024; Gandolfi, 2024)
including those which involve handwritten recog-
nition (Liu et al., 2024a). We will also expand
the analysis to other subjects like physics (Korte-
meyer, 2023b), computer science (Nilsson and Tu-
vstedt, 2023), and biology (Mackey et al., 2023) to
highlight their capabilities and limitation across do-
mains. We will also explore hybrid grading strate-
gies that incorporate human oversight to enhance
reliability (Kaya and Cicekli, 2024).

3.3 Educational Content Generation
LLM-generated content serves teachers (e.g., for
curating lessons and exercises) and students (e.g.,
for writing essays and problem-solving). We will
examine studies that use controllable generation
to adapt LLMs to diverse learners based on diffi-
culty, grade level, and readability score (Rooein
et al., 2023; Kew et al., 2023). We will also discuss
LLMs in controlled content generation, focusing
on readability scores (Imperial and Tayyar Mad-
abushi, 2023) and novel prompting techniques for
difficulty assessment (Rooein et al., 2024).

We will also explore strategies to control and
align generated questions with students’ abilities,
expert requirements, and question taxonomies like
Bloom’s (Elkins et al., 2024; Hwang et al., 2023).
We will mention studies on improving adaptability
in question generation (Scaria et al., 2024; Wang
et al., 2022) and cover methods like PFQS (Li
and Zhang, 2024) for improved control by gen-
erating answer outlines before question genera-
tion. Evaluation of generated educational ques-
tions typically involves expert assessments (Scaria
et al., 2024; Biancini et al., 2024), while tools like
SQUET (Moore et al., 2024) offer automated qual-
ity evaluation. However, challenges remain, as
studies show GPT models underperforming in eval-
uating the pedagogical quality of generated ques-
tions (Bulathwela et al., 2023).

Finally, we will also discuss multimodal and mul-
tilingual LLMs in education – research has demon-
strated the effectiveness of multimodal learning
in enhancing educational outcomes, e.g., in sci-
ence (Bewersdorff et al., 2024). These findings
are supported by learning theories emphasizing the
cognitive benefits of integrating multiple modes of
information, such as combining multimodal repre-
sentations like text and images (Mayer, 2024).

3.4 Adaptivity and Personalization
In this section, we will discuss personalized learn-
ing’s potential to address diverse student needs,
based on educational theories emphasizing tai-
lored learning experiences. We discuss knowl-
edge space theory (Doignon and Falmagne, 1985),
Vygotsky’s Zone of Proximal Development (Vy-
gotsky, 1978), and Ebbinghaus’s memory model
(Ebbinghaus, 1913), which have influenced appli-
cations like Duolingo’s spaced repetition (Settles
and Meeder, 2016) and ETS’s assessments (Carl-
son and von Davier, 2017). We then introduce
Knowledge Tracing (KT) techniques, from basic
Rasch models (Rasch, 1960) and Item Response
Theory (IRT) (Lord, 1980) to advanced Bayesian
Knowledge Tracing (Corbett and Anderson, 1994)
and Deep Knowledge Tracing (Piech et al., 2015).

Traditionally, KT models have focused on ques-
tion IDs rather than textual content due to dataset
limitations. However, the attention mechanism is
well-suited for sequence modeling tasks like knowl-
edge tracing. We will cover models such as MC-
QStudentBert (Parsa Neshaei et al., 2024), AKT
(Ghosh et al., 2020), SAKT (Pandey and Karypis,
2019), Dtransformer (Yin et al., 2023), and SAINT
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(Choi et al., 2020), which leverage attention mech-
anisms to capture complex relationships between
knowledge components and student interactions.
The emergence of datasets with auxiliary informa-
tion, like XES3G5M (Liu et al., 2024b), has facili-
tated the application of pre-trained LLMs in KT, as
explored in works like (Lee et al., 2024).

LLMs have also expanded the scope of KT by
enabling adaptive exercise generation (Cui and
Sachan, 2023; Srivastava and Goodman, 2021) and
domain-specific modifications to transformer archi-
tecture, e.g. SparseKT (Huang et al., 2023) which
models student behaviors like forgetting (Im et al.,
2023). LLMs have also been used in student sim-
ulation models like OKT (Liu et al., 2022), which
predicts actual student textual responses. Despite
these advances, challenges remain, such as LLMs’
limited context windows which hinder capturing
long-range learning trajectories (Li et al., 2024b).

4 Vision and Path Forward

AI in education offers significant opportunities but
requires careful technical, ethical, regulatory, and
pedagogical consideration. Requirements include
balancing technology with human agency, inclu-
sion, and diversity (Miao and Cukurova, 2024),
addressing privacy (Baraniuk, 2024; Leitner et al.,
2019; O’Hara and Straus, 2022) and transparency
(Holmes et al., 2022), promoting AI literacy (Su
et al., 2023; Su and Yang, 2023), but also develop-
ing LLMs that meet pedagogical goals. We aim to
build a common ground between various stakehold-
ers, namely policymakers, educators, developers,
and researchers, which can form a basis for human-
centered AI development in education.

5 Diversity & Inclusion considerations

Our tutorial aims to bring together NLP, LS and
AIED researchers as well as practitioners. The
tutorial is designed to be understandable to an au-
dience with a range of backgrounds. Our group
of presenters is made up of diverse backgrounds,
seniority-levels, genders, and affiliations.

6 About the Speakers

Sankalan Pal Chowdhury is a second year PhD
student in the ETH-EPFL Joint Doctoral Pro-
gram for Learning Science, advised by Mrinmaya
Sachan and Tanja Käser. His research focuses on
improving tutoring abilities of LLMs. His work
has been published in EMNLP, TACL and L@S.

Nico Daheim is a third year ELLIS PhD student
advised by Iryna Gurevych and Mrinmaya Sachan.
He works on making LLMs equitable dialog tutors
that provide studentes with personalized opportu-
nities to learn. His works have been published at
EMNLP, NAACL, EACL, ICLR and ICML.
Ekaterina Kochmar is an Assistant Professor at
the NLP Department at MBZUAI, where she con-
ducts research at the intersection of AI, NLP, and
ITSs. She is the current President of SIGEDU and
has been involved in organizing BEA since 2013.
Jakub Macina is a fourth year PhD at ETH ad-
vised by Mrinmaya Sachan and Manu Kapur. His
research focuses on understanding and improving
generative models’ reasoning and pedagogical ca-
pabilities. His work has been published in venues
such as ACL, EMNLP, and RecSys.
Donya Rooein is a Postdoc at Bocconi University;
her work revolves around leveraging NLP for Edu-
cation. She explores the synergy between machine
learning, linguistics, and practitioner insights to
enhance education systems. Her work has been
published in different ML, NLP, and AIED venues,
including NAACL, WWW, and EdMedia.
Mrinmaya Sachan is an Assistant Professor at
ETH Zurich, focusing on NLP and its interface
with Education. His group has published rele-
vant research on the challenges of Pedagogy and
LLMs, Educational Chatbots and Tutors, Student
Modeling and Assessment across various NLP and
Education-focused venues.
Shashank Sonkar is a final-year PhD student at
Rice University advised by Richard G. Baraniuk.
His work focuses on pedagogical alignment of
LLMs, learner modeling, and intelligent assess-
ment. His work has been published in EMNLP,
COLING, AIED, EDM, and LAK.

7 Type of Tutorial & Target Audience

The tutorial will be introductory and present re-
search from the fields of NLP, AIED and learning
sciences. We will discuss seminal as well as re-
cent papers to build a common ground for partic-
ipants. Therefore, we welcome participants from
any of these backgrounds. While it is helpful to
have knowledge of either NLP / ML or learning
sciences, it is not a requirement. The tutorial will
be self-contained and welcomes an estimated 50-
100 attendees based on recent BEA iterations. We
will recommend the attendees a small reading list
comprising of papers listed in the appendix.
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