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Abstract

Pretrained language models (PLMs) for
African languages are continually improving,
but the reasons behind these advances remain
unclear. This paper presents the first systematic
investigation into probing PLMs for linguistic
knowledge about African languages. We train
layer-wise probes for six typologically diverse
African languages to analyse how linguistic fea-
tures are distributed. We also design control
tasks, a way to interpret probe performance,
for the MasakhaPOS dataset. We find PLMs
adapted for African languages to encode more
linguistic information about target languages
than massively multilingual PLMs. Our results
reaffirm previous findings that token-level syn-
tactic information concentrates in middle-to-
last layers, while sentence-level semantic infor-
mation is distributed across all layers. Through
control tasks and probing baselines, we confirm
that performance reflects the internal know-
ledge of PLMs rather than probe memorisation.
Our study applies established interpretability
techniques to African-language PLMs. In do-
ing so, we highlight the internal mechanisms
underlying the success of strategies like active
learning and multilingual adaptation.

1 Introduction

The past few years have seen the proliferation of
pretrained language models (PLMs) across vari-
ous domains including education, healthcare, and
finance (Hadi et al., 2024). The blackbox nature
of these models, paired with their increasing size
and complexity, has prompted the growing subfield
of NLP interpretability (Luo and Specia, 2024).
These methods aim for insights into the internal
mechanisms underlying the success and failures of
PLMs. One of the earliest interpretability methods
to gain traction in NLP was probing (Alain and
Bengio, 2017), which trains a classifier on interme-
diate PLM representations. Probing measures to
what extent specific linguistic features, such as part-
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Figure 1: POS probe performance (selectivity), aver-
aged over 6 African languages.
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Figure 2: NER probe gains (over random baselines)
across layers, averaged over 6 African languages.

of-speech (POS) categories or semantic concepts,
are encoded in hidden layers.

Probing provides insights into the internal mech-
anisms of PLMs by revealing how models acquire,
store, and leverage linguistic information in hidden
layers. This allows NLP practitioners to better un-
derstand the mechanisms by which PLMs succeed
in certain tasks, and can also point to the underlying
reasons for failing in others. Besides contributing
to a greater, linguistically grounded understanding
of PLM computations, probing also has the poten-
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Model Layers Params Swahili Igbo Hausa Luganda isiXhosa Naija

XLM-R-base (Conneau et al., 2020) 12 270M ★★ ✩✩ ★★ ✩✩ ★★ ✩✩
XLM-R-large (Conneau et al., 2020) 24 550M ★★ ✩✩ ★★ ✩✩ ★★ ✩✩
AfroXLMR-base (Alabi et al., 2022) 12 270M ★★ ★★ ★★ ✩✩ ★★ ★★
AfroXLMR-large (Alabi et al., 2022) 24 550M ★★ ★★ ★★ ✩✩ ★★ ★★
Nguni-XLMR (Meyer et al., 2024) 24 550M ★✩ ★✩ ★✩ ✩✩ ★★ ✩✩
AfriBERTa (Ogueji et al., 2021) 10 126M ★★ ★★ ★★ ✩✩ ✩✩ ★★
AfroLM (Dossou et al., 2022) 10 264M ★★ ★★ ★★ ★★ ★★ ★★

Table 1: Language coverage of PLMs. ✩✩ indicates no data from the language was included in pretraining or
adaptation. ★✩ shows the language was included in the base model but not in the adapted model. ★★ shows the
model was either pretrained or adapted for the language.

tial to contribute to performance gains by guiding
the finetuning process for downstream tasks. For
example, knowing which layers encode specific
properties can inform which layers should be tar-
getted for finetuning, optimising both performance
and efficiency (Katinskaia and Yangarber, 2024).

Probing is an established tool in NLP inter-
pretability, having been extensively applied and
studied across different settings. One area where it
has yet to be applied is the growing body of work
on PLMs for African languages. Most African
languages are under-represented in the pretraining
data of multilingual PLMs, which limits their per-
formance. Efforts to address this gap have led to the
development of PLMs targeting African languages,
such as AfriBERTa (Ogueji et al., 2021), AfroLM
(Dossou et al., 2022), and AfroXLMR (Alabi et al.,
2022). These models leverage strategies such as
cross-lingual transfer (Conneau et al., 2020), active
learning (Dossou et al., 2022), and multilingual
adaptive fine-tuning (MAFT) (Alabi et al., 2022) to
improve performance for low-resource languages.

Despite this progress, there is limited understand-
ing of how these PLMs encode African languages
internally, which is where probing holds promise.
Most probing research targets higher-resourced lan-
guages such as English, French, and Russian (Arps
et al., 2024; Katinskaia and Yangarber, 2024; Con-
neau et al., 2018; Hou et al., 2024). Previous works
have explored some low-resource languages, such
as Tagalog, Hindi and Tamil (Arora et al., 2023; Li
et al., 2024), but to the best of our knowledge, there
has been no research targeting African languages.

In this paper, we conduct the first systematic
probing study for PLMs focussed on African lan-
guages. We design probes for POS tagging, named
entity recognition (NER), and news topic classi-
fication (NTC), using the MasakhaPOS (Dione
et al., 2023), MasakhaNER (Adelani et al., 2022),
and MasakhaNEWS (Adelani et al., 2023) datasets

respectively. We train probes on seven masked
PLMs (listed in Table 1), representing different
approaches to developing PLMs for low-resource
languages. We evaluate how syntactic and semantic
information is encoded for six African languages,
which cover different language families and vary-
ing levels of data availability, as shown in Table 1.

To interpret probe accuracies, one has to isolate
the contribution of model-encoded knowledge, as
opposed to the probe itself learning the task. To
enable such probe interpretability for African lan-
guages, we design a control task (Hewitt and Liang,
2019) for MasakhaPOS. Control tasks are synthetic
tasks that measure to what extent probes can learn
a task without model-encoded knowledge. Our
control task enables researchers to contextualise
probing results for MasakhaPOS.

Our main findings can be summarised as follows:

1. Word-level linguistic knowledge (POS, NER)
concentrates in middle layers, while sentence-
level information (NTC) is spread out.

2. The inclusion of target languages in pretrain-
ing or multilingual adaptation improves probe
performance across all tasks.

3. Cross-lingual transfer improves probe perfor-
mance for languages not in pretraining, but
less so for low-resource language families.

2 Background

PLMs for African Languages Multilingual
modelling has been leveraged in different ways
to build PLMs for African languages. The mas-
sively multilingual XLM-R (Conneau et al., 2020)
is trained on 100 languages, of which only 8 are
African languages. AfroXLMR (Alabi et al., 2022)
improves performance by adapting XLM-R for 17
African languages, while Nguni-XLMR (Meyer
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et al., 2024) adapts XLM-R for the four Nguni lan-
guages (isiXhosa, isiZulu, isiNdebele, and Siswati).
AfriBERTa (Ogueji et al., 2021) is a smaller model
pretrained from scratch on 11 African languages
on less than 1GB data. AfroLM (Dossou et al.,
2022) is also trained from scratch on 23 African
languages, using self-active learning (the model
learns to identify beneficial training samples).

Contextualising Probe Performance Probes are
not direct measures of model-encoded knowledge,
since the probe itself can contribute to perfor-
mance by learning the task. Probing studies use
baselines, such as majority class prediction (Be-
linkov et al., 2017; Conneau et al., 2018) or probes
trained on random representations (Zhang and Bow-
man, 2018; Conneau et al., 2018; Chrupała et al.,
2020; Tenney et al., 2019b), to contextualize per-
formance.

However, even random baselines may encode
information that a sophisticated classifier could ex-
ploit. As an alternative, Hewitt and Liang (2019)
propose control tasks: pairing word types with ran-
dom labels to neutralise the linguistic information
required for the original task. They define selec-
tivity as the difference between original task and
control task accuracy. Selectivity captures the con-
tribution of linguistic knowledge to probe perfor-
mance, so it is a more reliable measure of model
knowledge than raw probe accuracies. To enable
probe contextualisation for African languages, we
design a control task for the MasakhaPOS dataset.

3 Probing Framework

3.1 Probe Design

Some works advocate for linear probes (Alain and
Bengio, 2017; Hewitt and Liang, 2019), arguing
that they are less prone to memorisation, while
others argue that some linguistic features might not
be linearly separable in the representation space
(Conneau et al., 2018; Pimentel et al., 2020).

For our experiments, we select a probe to strike
a balance between complexity and simplicity. Our
probe classifier is a multilayer perceptron (MLP)
with a single hidden layer of 50 neurons, which we
formally define as

y = f(W2 σ(W1x+ b1) + b2), (1)

where x ∈ Rn is the input representation, W1 ∈
Rm×n is the weight matrix for the hidden layer,
W2 ∈ Rk×m is the weight matrix for the output

layer, b1 ∈ Rm and b2 ∈ Rk are bias vectors,
σ(·) is the ReLu activation function, and f(·) is a
softmax function for label prediction.

For POS tagging and NER, we define a word-
level task as a function f that maps an input
sequence X to an output sequence Y . That is
f : X −→ Y , where X is a sequence of con-
textualized hidden representations (embeddings)
of the input text, and Y is the sequence of output
labels corresponding to the words encoded by X .
Given that some words are tokenized into multiple
subwords, we use the first subword in each word to
represent the word in the classifier.

For news topic classification (NTC), we define
a sentence-level task similarly. Instead of passing
word embeddings to the probe classifier, we pass
the embedding of the special token for sequence
classification (e.g. <s> for XLM-R). We truncate
inputs consisting of more tokens than the maximum
sequence length of PLMs.

3.2 MasakhaPOS Control Task
As discussed in section 2, control tasks (Hewitt and
Liang, 2019) can be used to contextualise probe
results. A probe could achieve a high raw accuracy
by learning to map word types to labels, without
relying on linguistic knowledge. For example, a
probe classifier could learn to map the embedding
of “walk” to the POS tag “verb”, by learning the
mapping between word type and label (instead of
the mapping between syntactic role and label). He-
witt and Liang (2019) propose selectivity as an
alternative to raw accuracy. Selectivity is defined
as the difference between linguistic task accuracy
and the control accuracy. As a measure, it iso-
lates the contribution of model-encoded linguistic
knowledge to probe performance.

A control task is designed in two steps:

1. Define the random control behavior for each
word type i.e. assign a label randomly to each
word in the vocabulary.

2. Deterministically label the original task cor-
pus based on control behaviour i.e. annotate
each word with its assigned random label.

To define a control task for MasakhaPOS, we
randomly map each unique word in the dataset to
a random POS tag. Next, we use this synthetic
mapping to re-annotate the train / validation / test
set. As per Hewitt and Liang (2019), when creat-
ing the random mapping (the control behaviour)
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we sample POS tags according to their empirical
distribution in the original MasakhaPOS dataset.
Control tasks are designed to have both structure
and randomness. Our MasakhaPOS contains struc-
ture in that a word type is always mapped to the
same tag, but the assignment is random in that it is
independent of the linguistic role of words.

3.3 NTC and NER Probe Baselines

Control tasks define word-level control behaviour,
so they are not applicable to sentence-level tasks.
To interpret NTC probes, we compare the perfor-
mance of probes trained on PLMs to those trained
on random contextual representations. Following
Hewitt and Manning (2019), we use an untrained
bi-LSTM, and mean-pooling word-level outputs to
produce a single sentence representation. Probes
trained on these outputs can leverage contextual
information, but no linguistic knowledge.

NER is a word-level task, so controls tasks could
plausibly be designed for MasakhaNER. However,
the procedure is complicated by the fact that NER is
actually a span-level task (named entities can span
multiple words). It is not obvious how to extend
the control behaviour design of Hewitt and Liang
(2019) to multi-word spans. To contextualise NER
results, we randomly re-initialise the architectures
of our seven probed PLMs to serve as random base-
lines (Zhang and Bowman, 2018; Conneau et al.,
2018). We estimate model-encoded knowledge by
subtracting the F1 score of a random model from
the F1 score of the corresponding PLM. For each
layer, we refer to this as the probe gain over the
random baseline.

4 Experimental Setup

4.1 Data

Both MasakhaPOS (Dione et al., 2023) and
MasakhaNER (Adelani et al., 2022) cover 20
African languages. MasakhaNEWS (Adelani et al.,
2023) covers 16 African languages and contains
news articles annotated with one of seven topic
labels (business, entertainment, health, politics, re-
ligion, sports, technology).

4.2 Languages

The six language in our study (Swahili, Igbo,
Hausa, Luganda, isiXhosa, and Naija Pidgin) are in-
cluded in all three Masakhane1 datasets. We chose

1https://www.masakhane.io/

Language Family Region mC4 tokens

Swahili Bantu East 1B
Igbo Volta-Niger West 90m
Hausa Chadic West 200m
Luganda Bantu East 0
isiXhosa Bantu Southern 60m
Naija Pidgin Creole West 0

Table 2: The languages used in our study. The number
is tokens in the mC4 corpus (Xue et al., 2021) serves to
give an indication of broader data availability.

these languages specifically to cover several lan-
guage families, a broad range of data availabil-
ity, and varying levels of representation in existing
PLMs (as shown in Table 1). As shown in Table 2,
the languages cover four language families across
East, West, and Southern Africa.

4.3 PLMs
The seven PLMs selected for our study represent
established approaches to developing PLMs for
African languages. XLM-R-base and XLM-R-
large (Conneau et al., 2020) employ massively
multilingual pretraining, while AfroXLMR-base,
AfroXLMR-large (Alabi et al., 2022), and Nguni-
XLMR-large (Meyer et al., 2024) adapt XLM-R
to a more limited set of African languages. Afro-
XLMR takes a broader adaptation approach than
Nguni-XLMR, which focusses only on the four
Nguni languages, a group of related languages
which includes isiXhosa. AfriBERTa (Ogueji et al.,
2021) represents memory-efficient pretraining – it
is our smallest model both in terms of parameters
and training data size. AfroLM (Dossou et al.,
2022) represents sample-efficient pretraining, since
its self-active learning maximizes available data by
identifying beneficial training samples.

5 Results

We plot probing results for POS, NER, and NTC
respectively in Figure 3, Figure 4, and Figure 5.
We report and compare best-layer results for each
language, model, and task in Table 3.

5.1 POS Tagging
We evaluate our POS probes based on selectivity,
which is computed using the MasakhaPOS control
task described in subsection 3.2. As shown in Fig-
ure 3, the PLMs exhibit positive selectivity across
all layers for all languages, except in the case of
Igbo. This aligns with previously reported PLM re-
sults for MasakhaPOS (Dione et al., 2023), where
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Figure 3: Probe selectivity for POS tagging (the difference between MasakhaPOS accuracy and control task
accuracy), across all layers and 6 African languages.

POS tagging accuracies for Igbo were lower than
all other languages. Igbo is from the Volta-Niger
family, which is under-represented in the datasets
of all seven models (as shown in Table 4 in the
appendix). This limits the benefit of cross-lingual
transfer for Igbo.

For all other languages, POS selectivity is con-
sistently positive, indicating that syntactic roles
are reliably being encoded in the hidden represen-
tations of the PLMs. A clear pattern emerges in
the distribution of POS information across layers.
Probe selectivity is low in early layers, increases
steadily in middle layers, peaks and plateaus in
deeper layers, and finally decreases slightly in final
layers. This pattern aligns with existing literature
showing that middle-to-last-layers encode syntactic
features more effectively (Rogers et al., 2020).

AfroLM stands out as encoding a high amount
of POS information, achieving the highest selec-
tivity overall on four of the six languages. While
the exact reason for this is unknown, it is possible
that self-active learning is used to select training
examples that improve the model’s syntactic knowl-
edge during pretraining. Among the deeper models,
AfroXLMR-large exhibits the greatest internal syn-
actic knowledge overall, even achieving reasonable

selectivity scores for Igbo in deeper layers. The
difference in selectivity between AfroXLMR and
XLM-R highlights the ability of multilingual adap-
tation to encode linguistic knowledge about spe-
cific languages. Similarly, Nguni-XLMR, exhibits
the best probe performance for isiXhosa, one of its
four target languages.

We include the raw probe accuracies for POS
tagging in Figure 6 in the appendix. The accura-
cies are quite high, comparing favourably to previ-
ously reported PLM performance for MasakhaPOS
(Dione et al., 2023).

5.2 NER

To contextualise our NER probes, we compute
the per-layer difference between the F1 scores of
probes trained on PLMs and their re-initialised
counterparts (described in subsection 3.3). As
shown in Figure 4, probes trained on PLMs consis-
tently exhibit performance gains over random base-
lines across all layers and languages. The general
trends observed for NER probes are similar to those
of POS probes. AfroXLMR achieves the high-
est probe gains across different languages, while
Nguni-XLMR does particularly well for isiXhosa.
As in POS tagging, probe performance peaks in
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Figure 4: Probe performance gains for NER tagging (F1 improvements over randomly re-initialised PLM architec-
tures), across all layers and 6 African languages.

middle-to-later layers.
We also observe evidence of cross-lingual knowl-

edge representation. Luganda is not included in the
pretraining data of either AfroXLMR or Nguni-
XLMR but both exhibit high probe performance
gains for Luganda than AfroLM, which is pre-
trained on Luganda. Luganda is of the Bantu lan-
guage family, which is better represented than other
families in the pretraining data of our PLMs (as
shown in Table 4 in the appendix). This shows
that the PLMs are encoding linguistic similarities
between different languages. This cross-lingual
representation learning is the mechanism behind
the impressive zero-shot performance of PLMs pre-
viously reported on MasakhaNER (Adelani et al.,
2022).

5.3 News Topic Classification (NTC)

To contextualise our NTC probes, we compare the
classification accuracies of probes trained on PLMs
and probes trained on random, contextual baselines
(described in subsection 3.3). Figure 5 plots probe
accuracies alongside random baseline performance.
As for POS and NER, multilingual adaptation en-
hances sentence-level representations for target lan-
guages. Beyond this, NTC probing results diverge

from the trends reported for POS and NER.
Probe accuracy remains relatively consistent

across layers, which aligns with previous work
showing that sentence-level semantic information
is spread across layers (Tenney et al., 2019a). The
one exception to this is Luganda, which exhibits
high variance across layers and is the only language
for which some PLM layers fall below random
probe performance. We are unable to explain this
behaviour. It is possible that the data scarcity of Lu-
ganda (see Table 2) is a contributing factor and that,
unlike for syntactic knowledge, cross-lingual se-
mantic knowledge does not transfer as effectively.

5.4 Analysing Trends Across Tasks

Table 3 lists results for the top-performing layer
for each PLM, across all languages and tasks. For
each PLM and language, it also shows to what
extent the language is represented by the model:
(1) not included at all, (2) included in pretraining
but not adaptation, or (3) included in pretraining
or adaptation. The table reveals trends that hold
across all three tasks.

Multilingual adaptation is known to be a reliable
method to improve downstream performance for
low-resource languages. Our results show that this
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Figure 5: Probe accuracy for news topic classification (visualised in comparison to a random contextual baseline)
across all layers and 6 African languages.

is being achieved, in part, by enhancing internal
representations of target languages. AfroXLMR-
large and Nguni-XLMR-large have the most in-
stances of top-performing layers (six cases each).
AfroXLMR-large performs best across Swahili,
Igbo, and Hausa, all three of which belong to dif-
ferent language families. The multilingual adapta-
tion of AfroXLMR is highly effective at enhanc-
ing linguistic feature encoding across typologically
diverse languages. Nguni-XLMR-large performs
best for isiXhosa and Luganda (which is also of the
Bantu language family). The more focussed, lin-
guistically oriented adaptation of Nguni-XLMR ef-
fectively enhances linguistic knowledge for a more
limited set of related languages.

A clear pattern in Table 3 is the fact that all top-
performing layers (except two) occur in PLMs that
represent probed languages in their final pretrain-
ing stage (either during adaptation or in pretraining
without subsequent adaptation). Best-layer perfor-
mances (boldface in the table) almost always co-
occur with maximal language representation (★★).
The only exception to this is Luganda, for which
Nguni-XLMR-large achieves two best-layer results.
While we have previously discussed evidence of
zero-shot cross-lingual representation learning, it

is clear that including languages in pretraining is
essential for encoding language-specific syntactic
and semantic knowledge.

6 Conclusion

This paper presents a systematic analysis of the
linguistic knowledge encoded in PLMs for African
languages. Through extensive probing experiments
across seven PLMs and six typologically diverse
African languages, we highlight trends in how
PLMs represent syntactic and semantic informa-
tion. To contextualise our results we design a con-
trol task for POS tagging and employ randomly
initialised baselines to compare against NER and
NTC probing results. We show that multilingual
adaptation reliably enhances hidden representa-
tions for target languages. While token-level lin-
guistic knowledge is primarily encoded in middle
and deeper layers, sentence-level semantic infor-
mation is distributed across layers. We find ev-
idence that cross-lingual learning enhances rep-
resentations for low-resource languages, such as
Luganda, but cannot be relied on to do so for under-
represented languages, such as Igbo. We hope this
work inspires further research at the intersection of
interpretability and NLP for African language.
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Swahili Igbo Hausa Luganda isiXhosa Naija

XLM-R-base

Language coverage ★★ ✩✩ ★★ ✩✩ ★★ ✩✩
POS selectivity 16.39 5.98 13.15 19.23 36.32 15.39
NER gain 41.54 37.79 60.84 60.95 55.16 58.46
NTC accuracy 84.03 74.23 87.38 64.55 82.15 92.11

XLM-R-large

Language coverage ★★ ✩✩ ★★ ✩✩ ★★ ✩✩
POS selectivity 19.09 3.29 14.54 19.97 38.15 19.56
NER gain 79.98 45.03 66.63 66.95 68.97 74.20
NTC accuracy 81.93 73.20 87.38 61.82 86.87 92.76

AfroXLMR-base

Language coverage ★★ ★★ ★★ ✩✩ ★★ ★★
POS selectivity 16.73 4.22 14.40 24.18 38.48 16.28
NER gain 47.07 50.55 66.06 57.7 65.27 69.52
NTC accuracy 80.46 76.80 86.12 70.00 87.54 90.79

AfroXLMR-large

Language coverage ★★ ★★ ★★ ✩✩ ★★ ★★
POS selectivity 21.82 7.62 16.56 26.97 42.49 22.03
NER gain 78.41 55.20 70.63 75.79 77.96 76.27
NTC accuracy 84.24 82.47 88.33 74.55 92.93 90.79

Nguni-XLMR-large

Language coverage ★✩ ★✩ ★✩ ✩✩ ★★ ✩✩
POS selectivity 19.09 3.6 9.76 25.67 43.13 18.92
NER gain 73.10 47.52 60.57 77.28 80.18 58.46
NTC accuracy 80.25 82.47 83.28 77.27 94.61 92.76

AfriBERTa

Language coverage ★★ ★★ ★★ ✩✩ ✩✩ ★★
POS selectivity 18.79 -0.82 14.77 18.85 30.87 14.55
NER gain 42.45 53.78 64.52 48.75 67.36 57.80
NTC accuracy 82.56 84.02 87.38 74.55 81.48 92.76

AfroLM

Language coverage ★★ ★★ ★★ ★★ ★★ ★★
POS selectivity 23.64 3.37 26.55 27.98 38.92 27.28
NER gain 39.45 46.33 61.21 45.90 62.07 47.97
NTC accuracy 76.05 76.29 85.80 69.09 80.47 92.76

Table 3: Best-layer performance for each probing task, with best task performance overall indicated in boldface.
We show this alongside model language coverage to indicate how language inclusion improves probe performance.
✩✩ indicates no language included in pretraining or adaptation, ★✩ shows the language was included in the base
model but not in the adapted model, while ★★ shows the model was either pretrained or adapted for the language.

Limitations

As discussed in Section 2, designing control tasks
for NER proved challenging. While control tasks
are primarily designed for word-level tasks, NER
presents complications because named entities of-
ten span multiple words. This makes it difficult
to apply the typical control task framework in a
meaningful way. Instead, we relied on random
baselines, which, although commonly used, are
known to have certain limitations (Belinkov, 2022;
Hewitt and Liang, 2019).

In this study, we used the first subword as in-
put for the classifier to align tokens with their hid-
den representations. However, even the choice of
subword pooling strategy can make a difference in
probing performance (Ács et al., 2021). Other pool-
ing strategies, such as last subword, mean pooling,
or attention over subwords, could provide differ-
ent insights, especially for morphologically rich
languages with high subword tokenization rates.
Future work should systematically compare the ef-

fects of different subword pooling strategies across
various syntactic and semantic tasks for African
languages.
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A Data Information

Bantu (%) Volta-Niger (%) Afro-Asiatic (%) Others (%)
XLM-R 33.3 0.0 6.3 60.4

AfroXLMR 28.0 5.8 7.4 58.8
AfriBERTa 0.0 7.4 16.0 76.6

AfroLM 32.8 9.7 18.4 39.1

Table 4: Distribution of African datasets by language family
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Figure 6: Raw accuracies for POS tagging.

50



0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Swahili Igbo Hausa

0 5 10 15 20 25
Layer

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Luganda

0 5 10 15 20 25
Layer

isiXhosa

0 5 10 15 20 25
Layer

Naija Pidgin

Afro-XLMR large
Afro-XLMR base
AfriBERTa
AfroLM
XLM-R large
XLM-R base
Nguni XLM-R
Random baseline

Figure 7: Raw F1-scores for Named Entity Recognition.
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