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Abstract

Morphological parsing is the task of decompos-
ing words into morphemes, the smallest units
of meaning in a language, and labelling their
grammatical roles. It is a particularly challeng-
ing task for agglutinative languages, such as
the Nguni languages of South Africa, which
construct words by concatenating multiple mor-
phemes. A morphological parsing system can
be framed as a pipeline with two separate com-
ponents, a segmenter followed by a tagger. This
paper investigates the use of neural methods to
build morphological taggers for the four Nguni
languages. We compare two classes of ap-
proaches: training neural sequence labellers
(LSTMs and neural CRFs) from scratch and
finetuning pretrained language models. We
compare performance across these two cate-
gories, as well as to a traditional rule-based
morphological parser. Neural taggers comfort-
ably outperform the rule-based baseline and
models trained from scratch tend to outperform
pretrained models. We also compare parsing re-
sults across different upstream segmenters and
with varying linguistic input features. Our find-
ings confirm the viability of employing neural
taggers based on pre-existing morphological
segmenters for the Nguni languages.

1 Introduction

The smallest unit of linguistic meaning that a
word can be split into is known as a morpheme
(Matthews, 1991). Morphological parsing is
the task of identifying the grammatical role of
each morpheme within a word (Puttkammer and
Du Toit, 2021). For example, “izinhlobo” (mean-
ing “types” in isiZulu) is split into the morphemes
“i-zin-hlobo”, which is parsed as “i[NPrePre10] -
zin[BPre10] - hlobo[NStem]” (Gaustad and Put-
tkammer, 2022) (see Figure 1). Each bracketed tag
labels the preceding morpheme with its grammati-
cal function and noun class (if applicable).

*Equal contribution.

Figure 1: Morphological parsing as a two-step pipeline.
We focus on tagging, training our taggers on the outputs
of pre-existing morphological segmenters.

Morphological information is especially impor-
tant for the Nguni languages, a group of related lan-
guages (isiNdebele, isiXhosa, isiZulu, and Siswati)
spoken across South Africa by more than 23m
home language speakers (Eberhard et al., 2019).
The Nguni languages are agglutinative, meaning
that many words are created by aggregating multi-
ple morphemes (Taljard and Bosch, 2006). They
are also written conjunctively—morphemes are
concatenated into a single orthographic (space-
delimited) word (Taljard and Bosch, 2006). This
can produce long, complex word forms consisting
of several morphemes, such as the isiXhosa word
“andikambuzi”, which means “I have not yet asked
them”, composed of the morphemes “a”, “ndi”,
“ka”, “m”, “buza”, and “i”.

As a result of this morphological complexity,
morphological parsing is a challenging but impor-
tant task for the Nguni languages. Despite this,
few morphological parsers exist for the Nguni lan-
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guages. Moreover, no existing parsers use neu-
ral methods, despite their established performance
gains for linguistic annotation tasks (Min et al.,
2023). In this paper we explore the viability of neu-
ral morphological parsers for the Nguni languages.

Morphological parsing can be framed as a two-
step pipeline (Tsarfaty et al., 2013; Puttkammer and
Du Toit, 2021), in which raw text is first segmented
into morphemes, which are subsequently tagged
with morphological labels. The first part of this
pipeline is known as morphological segmentation,
while the second part is known as morphological
tagging. We visualise this pipeline for the isiZulu
word “izinhlobo” in Figure 1. In this work we fo-
cus on the second subtask, morphological tagging.
Instead of training models for the entire task, we
make use of pre-existing morphological segmenters
for the Nguni languages (Moeng et al., 2021) and
train neural taggers on top of their output.

We train two classes of neural taggers – neural se-
quence labellers trained from scratch and finetuned
pretrained language models (PLMs). Our models
trained from scratch are bi-LSTMs (Hochreiter and
Schmidhuber, 1997) and conditional random fields
(CRFs) (Lafferty et al., 2001) with bi-LSTM fea-
tures, using either morpheme or character-level in-
put features. For PLMs, we finetune XLM-R-large
(Conneau et al., 2020), Afro-XLMR-large (Alabi
et al., 2022), and Nguni-XLMR-large (Meyer et al.,
2024), which respectively represent different levels
of Nguni-language coverage.

We develop neural taggers based on two types of
morphological segmentations: canonical and sur-
face segmentations (Cotterell et al., 2016). Canoni-
cal segmentation decomposes a word into its con-
stituent morphemes, in their standardised (pre-
composed) form. For example, the isiXhosa word
“zobomi” is canonically segmented into “za-u-(bu)-
bomi”, where some of the morphemes undergo
spelling changes in word composition (Gaustad and
Puttkammer, 2022). Surface segmentation decom-
poses a word into its constituent morphs, which
are the surface forms of morphemes as they ap-
pear in the composed word. For example, “zobomi”
is surface-segmented into “zo-bomi”. As demon-
strated by this example, the canonical and surface-
level segmentation of a word can differ.

We evaluate all our models in two settings. In
the first, we test our taggers on the morpholog-
ical segmentations available in our task dataset
(Gaustad and Puttkammer, 2022). This provides
an idealised setting in which we evaluate our mod-

els on gold-annotated segmentations, which we
know to be correct, isolating tagging performance
from segmentation mistakes. In the second setting,
we test our taggers on the segmentations produced
by the neural segmenters of Moeng et al. (2021).
These are model-predicted segmentations, so some
segmentations will not align with morphological
boundaries. This can lead to error propagation,
in which segmentation errors degrade tagging per-
formance. However, it also provides us with an
estimate of how our taggers fare in a real-world
setting in which the entire morphological parsing
pipeline is predicted by neural models.

Overall, we evaluate four variants of each
model configuration – trained on canonical/surface
segmentations, and respectively tested on gold-
annotated/model-predicted segmentations. Our
study is an extensive investigation into the potential
of neural parsers for all four Nguni languages. Our
main findings can be summarised as follows:

• Neural parsing comfortably outperforms our
rule-based baseline, confirming the benefit of
data-driven segmentation and tagging.

• Neural sequence labellers trained from scratch
outperform finetuned PLMs on the morpho-
logical tagging subtask.

• With no access to gold-annotated morphologi-
cal segmentations, canonical segmentations
consistently leads to better parsing perfor-
mance than surface segmentations.

We are the first to use neural models to train mor-
phological taggers for the Nguni languages. To the
best of our knowledge, our morphological parsing
results represent state-of-the-art performance. Our
models can be used to incorporate morphological
information into downstream NLP models, which
holds the potential to improve performance for the
morphologically complex Nguni languages.

2 Related Work

Morphological parsing has been extensively stud-
ied in NLP (Tsarfaty et al., 2013; Klemen et al.,
2023). Traditionally, it is performed by incorpo-
rating grammatical and morphological rules from
the language into a finite-state transducer. This
is a time-consuming process in which linguists
construct hand-crafted rules (Chapin and Norton,
1968). As in other tasks of linguistic annotation
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(Min et al., 2023), neural models provide an effec-
tive, data-driven solution approach to morphologi-
cal parsing.

Several works have trained a single model for
morphological parsing, jointly modelling morpho-
logical segmentation and tagging (Seker and Tsar-
faty, 2020a; Aleçakır, 2020; Abudouwaili et al.,
2023; Yshaayahu Levi and Tsarfaty, 2024). Al-
ternatively, Tsarfaty et al. (2013) propose a two-
step architecture for parsing morphologically rich
languages by first segmenting them into their mor-
phemes and then tagging the morphemes with la-
bels. Because morphological segmenters for Nguni
languages already exist (Moeng et al., 2021), we
choose to adopt this two-step pipeline approach,
visualised in Figure 1. Despite the drawbacks of
error propagation, training neural taggers alone is
simpler than training joint segmentation-tagging
models. The approach is also more modular, allow-
ing for better segmenters to be substituted in as and
when they are developed.

A number of works have developed morpho-
logical segmenters, taggers, and parsers for the
Nguni languages. ZulMorph (Bosch et al., 2008)
is a rule-based canonical segmenter and tagger for
isiZulu based on finite-state transducers. Puttkam-
mer and Du Toit (2021) develop data-driven (non-
neural) canonical segmenters and taggers for all
four Nguni languages. They apply TiMBL (Daele-
mans et al.), a memory-based learning package, to
the segmentation step, and MarMoT (Björkelund
et al., 2013; Mueller et al., 2013), a trainable CRF
pipeline, to the tagging step. Moeng et al. (2021)
were the first to apply neural methods to segmen-
tation, using CRFs (Lafferty et al., 2001), LSTMs
(Hochreiter and Schmidhuber, 1997), and Trans-
formers (Vaswani et al., 2023) to train canonical
and surface-level segmenters for all four Nguni lan-
guages. They found that non-neural CRFs were
best for surface segmentation, while Transformers
outperformed the other methods in canonical seg-
mentation. Despite recent developments in neural
models, such as sequence-to-sequence (Akyürek
et al., 2019) and sequence labeling models (Ma
and Hovy, 2016), no neural morphological taggers
currently exist for the Nguni languages.

3 Tagging Models

We now introduce our neural morphological tag-
gers. Our models are trained on sequences of pre-
segmented morphemes as input, and are tasked

with assigning a morphological label to each mor-
pheme. By focusing on the morphological tagging
component of the morphological parsing pipeline
(Figure 1), we can use established approaches to
neural sequence tagging.

3.1 Neural sequence labellers
We train two types of neural models from scratch:
bidirectional long short-term memory (bi-LSTM)
networks (Hochreiter and Schmidhuber, 1997) and
conditional random fields (CRFs) (Lafferty et al.,
2001) with bi-LSTM features. Bi-LSTMs have pre-
viously been successfully applied to POS tagging
(Pannach et al., 2022) and morphological segmenta-
tion (Moeng et al., 2021) for the Nguni languages.

CRFs are probabilistic models for sequence la-
belling. A CRF estimates the probability of a given
output (label) sequence by modelling the interde-
pendence of labels with each other, as well as their
dependence on the input sequence. We use linear-
chain CRFs because of their lower computational
complexity (compared to higher-order CRFs). Tra-
ditionally, CRFs use a set of hand-crafted features
to assign probabilities (Moeng et al., 2021). How-
ever, instead of designing these features by hand, a
neural network can be used to automatically learn
the features from the data (Moeng et al., 2021; Lam-
ple et al., 2016; Ma and Hovy, 2016). We choose
a bi-LSTM to generate these features, as this has
previously proved successful in POS tagging (Pan-
nach et al., 2022) and morphological segmentation
(Moeng et al., 2021) for the Nguni languages.

We experimented with several design choices for
our neural models trained from scratch, varying the
following factors:

• Feature level. Models were trained on either
morpheme-level or character-level input fea-
tures, represented by learned embeddings in
both cases. For morpheme-level features, we
replaced rare morphemes (<2 examples in the
training data) with a special unknown token
to help the model generalise to unseen data.
For character-level features, we summed char-
acter embeddings to produce morpheme-level
input embeddings. Surface models also have
lowercase variants of these features.

• Context level. Models were trained on single
words in isolation, or on entire sentences. Our
goal was to investigate whether the additional
context available to sentence-level sequence
models would improve performance.
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Word Morphological analysis
aliqela a[RelConc6]-li[BPre5]-qela[NStem]

kwibhunga ku[LocPre]-i[NPrePre5]-(li)[BPre5]-bhunga[NStem]
izincomo i[NPrePre10]-zin[BPre10]-como[NStem]

Table 1: Three examples from the isiXhosa part of the
dataset used in our experiments (Gaustad and Puttkam-
mer, 2022). Only the relevant aspects are included.

3.2 Pretrained language models
We finetune the following three PLMs on our task:

1. XLM-R-large (Conneau et al., 2020): a mas-
sively multilingual PLM trained on more than
100 languages, including isiXhosa.

2. Afro-XLMR-large (Alabi et al., 2022): XLM-
R further pretrained on 20 African languages,
including isiXhosa and isiZulu.

3. Nguni-XLMR-large (Meyer et al., 2024):
XLM-R adapted for the four Nguni languages.

The models were selected to represent increas-
ing levels of Nguni language pretraining cover-
age: XLM-R includes minimal Nguni data (only
isiXhosa), Afro-XLMR adds isiZulu, while Nguni-
XLMR specifically targets all four Nguni lan-
guages. We examine the degree to which these
different levels of Nguni language inclusion influ-
ence downstream performance.

4 Experimental Setup

4.1 Dataset
We use the morphologically annotated dataset de-
veloped by Gaustad and Puttkammer (2022). It
contains sentences from South African government
publications, wherein each word is annotated with
its morphological parse (segmentation and tags, as
shown in Table 1), lemma, and part-of-speech. It
contains 1,431 parallel paragraphs with roughly
50k words per language. The data is pre-split
90%/10% into train/test sets. The dataset con-
tains only gold-standard canonical segmentations,
so gold-standard surface segmentations were ob-
tained through a script provided by Moeng et al.
(2021). Predicted segmentations for both canonical
and surface forms were created by applying Moeng
et al.’s (Moeng et al., 2021) to the raw text column
of the dataset.

4.2 Model Configurations
All our models are monolingually trained and eval-
uated on isiNdebele, isiXhosa, isiZulu, or Siswati.

We evaluate four versions of each neural model,
varying morphological input in the following ways.

Segmentation types We train models for both
types of morphological segmentation, allowing us
to evaluate their respective difficulty.

• Canonical segmentation: decompose words
into standardised morphemes (e.g., “zobomi”
→ “za-u-(bu)-bomi”).

• Surface segmentation: decompose words into
morphs as they appear in composed forms
(e.g., “zobomi” → “zo-bomi”).

Upstream segmentation During testing, we as-
sess performance across both idealised and practi-
cal scenarios.

• Gold-annotated segmentations: apply taggers
directly to the linguistically annotated, gold-
standard morphological segmentations from
the task dataset (Gaustad and Puttkammer,
2022). This provides an idealised setting
in which morphological segmentations are
known to be correct, isolating tagging per-
formance from segmentation errors.

• Model-predicted segmentations: apply tag-
gers to segmentations generated by neural
segmenters (Moeng et al., 2021). We retrain
their feature-based CRFs and Transformers
on our training set to match our data setup.
This simulates a real-world pipeline where
segmentation is predicted, allowing for error
propagation from segmentation to tagging.

4.3 Evaluation
We use F1 score to evaluate our models. We only
evaluate morphological tagging performance, as
opposed to full morphological parsing (segmenta-
tion + tagging). However, tagging inherently de-
pends on segmentation in our setup, since models
are trained on the pre-segmented morpheme se-
quences.

In our model-predicted segmentation setting, er-
rors in predicted morphological segmentations can
result in fewer or more predicted morphemes than
morphological tags. As a result, in some instances
we have to compute an F1 score for predicted and
target tag sequences of different lengths. We make
use of the aligned multiset F1 score proposed by
Seker and Tsarfaty (2020b). This is an adaptation
of the aligned segment F1 score used in CoNLL18
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Hyperparameter Search space

Neural sequence labellers

Learning rate [10−6, 10−1]
Weight decay {0} ∪ [10−10, 10−3]
Hidden state size {2x : 6 ≤ x ≤ 11}
Dropout {0, 0.1, 0.2, 0.3}
Gradient clip {0.5, 1, 2, 4,∞}

Finetuned PLMs

Learning rate {10−5, 3× 10−5, 5× 10−5}
Epochs {5, 10, 15}
Batch size {8, 16, 32}

Table 2: The hyperparameter ranges of our grid search.

(Zeman and Hajič, 2018). The key difference is that
the aligned multiset F1 score bases token counts on
the multiset intersection between the target and pre-
dicted sequences, so that target-prediction length
mismatches are ameliorated.

We report both macro F1 and micro F1 in our
results. Micro F1 is a calculated by counting the
number of true positives/negatives and false posi-
tives/negatives for all classes. More common tags
therefore have a greater effect on the Micro F1

score. With one tag per item, it is equivalent to ac-
curacy. Macro F1 calculates the per-class F1 score
and averages them, weighting all tags equally ir-
respective of frequency. A high macro F1 score
indicates good performance across all tags, includ-
ing rare tag types. We focused on macro F1 during
hyperparameter tuning and in discussing our re-
sults, as we consider it important for our models to
perform well on rare tags. Our evaluation dataset
(Gaustad and Puttkammer, 2022) is imbalanced
from a tag perspective, so macro F1 is the more
challenging metric to optimise than micro F1.

4.4 Hyperparameters

The morphologically annotated dateset (Gaustad
and Puttkammer, 2022) is split into train and test
sets, but does not include a validation set. To pre-
vent over-fitting hyperparameters to the test set,
we created our own held-out validation set from
10% of the training set. Hyperparameter settings
were tuned to maximise macro F1 scores on the
validation dataset.

For our models trained from scratch, we per-
formed a grid search over the hyperparameter
ranges shown in Table 2. We tuned our hyperpa-
rameter settings on isiZulu only, because including
other languages would lead to a computationally
infeasible grid search. Once the best parameters

for isiZulu were found, these configurations were
applied to the other languages. For our PLMs, we
also performed a grid search over finetuning hyper-
parameters over the grid shown in Table 2.

After we settled on our final hyperparameter set-
tings based on validation set performance, we re-
trained models on the full, original training set
(including our newly created validation set) and
evaluated them on the test set. For each model
configuration, we train/finetune five models with
different random seeds and report the average eval-
uation metrics.

4.5 Baselines

We compare our neural methods to ZulMorph
(Bosch et al., 2008), a traditional, rule-based parser
for IsiZulu. ZulMorph is based on finite-state trans-
ducers with manually incorporated grammatical
rules, stems, and affixes for isiZulu. We use the Zul-
Morph demo (Pretorius and Bosch, 2018) to evalu-
ate its performance on the test set. Since ZulMorph
both segments and tags the input data, we com-
pare it to our taggers trained on model-predicted
segmentations.

5 Results

The results based on gold-annotated segmentations
are shown in Table 3, while those based on model-
predicted segmentations are shown in Table 4.

Overall, our results demonstrate the effective-
ness of neural models on the challenging task of
morphological tagging for Nguni languages. Our
best-performing models based on gold-annotated
canonical segmentations consistently achieve mi-
cro F1 scores above 90% and macro F1 scores
above 60%. Even without access to the gold mor-
phological annotations, with models tested on the
predicted canonical segmentations of Moeng et al.
(2021), our best models consistently achieve micro
F1 scores above 80% and macro F1 scores above
55%. This confirms the feasibility of basing the full
morphological parsing pipeline on neural models.

Comparison to rule-based parsing The neu-
ral models comfortably outperform our rule-based
baseline, ZulMorph, on isiZulu morphological
tagging. ZulMorph (Pretorius and Bosch, 2018)
achieves a macro F1 of 34% and micro F1 of 71.8%
on the test-set. All our isiZulu models surpass this
performance, ranging from macro F1s of 43.1% to
60% and micro F1s of 72.7% to 85.8%.
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Model IsiZulu IsiNdebele IsiXhosa Siswati

Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1

Canonical segmentations as annotated in Gaustad and Puttkammer (2022)

Trained from scratch

Word-level
bi-LSTM, character-sum 66.9 92.4 67.2 91.9 72.3 95.2 66.5 91.2
bi-LSTM, morpheme 66.6 92.1 67.7 91.8 71.5 94.9 65.5 91.0
Sentence-level
bi-LSTM, character-sum 64.6 91.6 66.6 91.0 72.1 95.5 64.7 90.8
bi-LSTM, morpheme 66.0 92.1 67.9 91.6 74.7 95.7 67.2 91.3
CRF, character-sum 65.7 92.1 67.3 91.4 74.7 95.9 66.0 91.4
CRF, morpheme 66.1 92.3 68.1 91.6 75.3 95.8 67.2 91.4

Pretrained language models

Word-level
Afro-XLMR 62.5 92.0 62.3 91.4 67.9 95.1 63.3 91.3
Nguni-XLMR 61.9 92.0 62.8 91.5 68.1 95.1 61.8 90.7
XLM-R-large 61.8 91.8 63.6 91.6 67.4 95.0 62.9 91.2

Surface segmentations extrapolated from Gaustad and Puttkammer (2022) by script from Moeng et al. (2021)

Trained from scratch

Sentence-level
bi-LSTM, character-sum 63.3 90.7 65.2 90.4 73.6 94.7 61.3 89.6
bi-LSTM, character-sum-lower 63.2 90.8 65.4 90.4 73.7 94.7 60.8 89.7
bi-LSTM, morpheme 65.6 91.3 68.4 91.1 76.1 95.1 65.9 90.6
bi-LSTM, morpheme-lower 66.0 91.3 68.7 91.2 76.0 95.3 65.8 90.7

Pretrained language models

Word-level
Afro-XLMR 43.8 72.8 47.7 77.4 52.3 78.5 23.4 55.6
Nguni-XLMR 44.1 73.1 48.1 77.5 52.4 79.0 23.9 56.6
XLM-R-large 43.1 72.6 48.0 77.5 51.7 78.1 22.7 55.4

Table 3: Results for models evaluated on gold-annotated segmentations, given as percentages. This provides
an idealised training setting in which all morphological segmentations are correct, allowing us to isolate the
performance of morphological tagging. The best models for each approach (pretrained or from scratch) is bolded,
while the best for each segmentation type (surface or canonical) is underlined.

Since ZulMorph is rule-based and contains
manually-incorporated stems and affixes, it likely
struggles to generalise to unseen data. For instance,
ZulMorph failed to segment and parse “wezen-
tuthuko”, and instead produced “wezentuthuko +?”.
Conversely, the neural models do not explicitly in-
corporate any information. The models are able
to classify text even when there are unknown mor-
phemes present in the text, based on the surround-
ing context of known morphemes.

Macro vs Micro F1 Macro F1 is consistently
lower than corresponding micro F1 scores. This
highlights one of the difficulties of morphological
tagging for the Nguni languages. The tag set is
large and unevenly distributed in the dataset, which
make it challenging to accurately model rare tags.
This imbalance would explain the mismatch be-
tween macro and micro F1 for neural models, since
they are not adequately exposed to rare tags during

training. However, the mismatch persists for Zul-
Morph (Bosch et al., 2008) (see Table 4), which is
based on gramatically informed rules, as opposed
to being data-driven. This could indicate that some
tags are inherently harder to disambiguate.

5.1 Training neural taggers from scratch

As shown in Tables 3 and 4, sentence-level models
trained from scratch tended to outperform their
word-level counterparts. Sentence-level models are
trained on the entire sentence as context, which
may allow them to use grammatical dependencies
to improve tagging. For example, in the isiXhosa
sentence “ipolisa liyahamba”, the word “ipolisa” is
in noun class 5. The shorted prefix “i” (“ipolisa”) is
ambiguous and also appears in class 9 nouns, such
as “iteksi”. However, combining it with the subject
concord for class 5 “li” (“liyahamba”) provides the
information required to correctly disambiguate and
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Model IsiZulu IsiNdebele IsiXhosa Siswati

Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1

ZulMorph online demo (Pretorius and Bosch, 2018)

ZulMorph 34.0 71.8

Canonical segmentations as predicted by Moeng et al. (2021)

Trained from scratch

Word-level
bi-LSTM, character-sum 60.0 85.8 57.8 84.1 67.9 92.3 57.0 85.0
bi-LSTM, morpheme 58.3 85.5 58.3 84.1 67.0 92.2 55.7 84.7
Sentence-level
bi-LSTM, character-sum 57.5 85.1 57.3 83.4 68.1 92.7 55.5 84.8
bi-LSTM, morpheme 58.4 85.7 58.3 83.8 70.7 93.0 57.3 85.2
CRF, character-sum 58.1 85.5 58.4 83.8 69.8 93.1 57.2 85.4
CRF, morpheme 58.7 85.7 58.5 83.7 71.1 93.1 57.8 85.3

Pretrained language models

Word-level
Afro-XLMR 55.3 85.5 54.6 84.0 63.4 92.4 53.4 85.1
Nguni-XLMR 54.8 85.5 54.5 83.9 64.4 92.6 52.5 84.6
XLM-R-large 54.4 85.4 55.4 84.1 63.5 92.5 52.9 85.0

Surface segmentations as predicted by Moeng et al. (2021)

Trained from scratch

Sentence-level
bi-LSTM, character-sum 53.6 79.6 52.8 78.3 65.6 87.7 51.8 80.4
bi-LSTM, character-sum-lower 53.3 79.6 52.9 78.2 65.2 87.5 51.6 80.4
bi-LSTM, morpheme 55.0 79.7 54.7 78.4 68.0 87.4 55.2 81.0
bi-LSTM, morpheme-lower 55.3 79.7 54.6 78.5 68.2 87.6 55.8 81.0

Pretrained language models

Word-level
Afro-XLMR 43.6 72.8 46.9 77.4 51.9 78.5 23.0 55.7
Nguni-XLMR 43.9 73.0 46.9 77.4 51.7 78.8 23.7 56.3
XLM-R-large 43.1 72.7 47.7 77.5 51.4 78.0 22.1 55.4

Table 4: Results for models evaluated on model-predicted segmentations, given as percentages. This evaluates the
combined use of neural methods for segmentation and tagging, without access to morphological annotations. The
best models for each approach (pretrained or from scratch) is bolded, while the best for each segmentation type
(surface or canonical) is underlined.

tag “ipolisa” as class 5.

Morpheme-level embeddings outperformed
character-summing embeddings. While one might
expect character-level modelling to improve gen-
eralisation across morphemes, this is not neces-
sarily the case. Morphemes representations have
previously been shown to be highly effective for
syntactic tasks (Üstün et al., 2018). For our task,
morpheme-level embeddings allow the model to
be more sensitive to small changes in morphemes.
For example, the morphemes “ng” and “nga” differ
by a single character, but can have totally differ-
ent meanings (“ng” can be a copulative prefix and
“nga” can be an adverb prefix). With character-
summed representations, the two morphemes will
have highly similar embeddings. With morpheme-
level embeddings, each morpheme embedding is

learned separately. For rare or previously unseen
morphemes, the morpheme-level model is forced to
rely on contextual grammatical information (within
the word or surrounding sentence), which provides
a more reliable grammatical signal than the number
of overlapping characters between morphemes.

We do not find substantial performance differ-
ences between bi-LSTMs and bi-LSTM CRFs.
This indicates that explicitly modeling grammar
through tag dependence presents limited advantage.
Bi-LSTMs are able to encode such grammatical
dependencies, based on morpheme co-occurrence
patterns, in their hidden representations.

5.2 Pretrained language models

As shown in Tables 3 and 4, training models from
scratch outperformed finetuning PLMs. This con-
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trasts with previous work on linguistic annotation
tasks, in which pretrained solutions have outper-
formed models trained from scratch (Min et al.,
2023; Alabi et al., 2022). However, it does align
with related work for the Nguni languages, which
have achieved high performance levels with neural
models trained from scratch (Moeng et al., 2021;
Pannach et al., 2022).

Due to computational constraints, we did not
finetune PLMs on sentence-level input. The pre-
trained contextual representations of PLMs are
well suited to take advantage of sentence-level con-
text, so it is possible that finetuning sentence-level
versions of our PLMs could improve their perfor-
mance. We leave the exploration of sentence-level
PLMs for Nguni-language morphological tagging
to future work.

Another factor which could contribute to PLM
performance degradation is subword tokenisation.
While our models trained from scratch use charac-
ter or morpheme-level representations, our PLMs
are constrained to finetune representations for the
subword tokens produced by their pretrained to-
kenisers. In pretraining, the tokeniser segments
raw words. In finetuning, the tokeniser segments
pre-segmented morphemes. This misalignment
could impede the model’s ability to leverage pre-
trained knowledge during finetuning, since the sub-
word tokens learned in pretraining do not match
those of finetuning. This also leads to irregular,
morphologically unsound subword tokens. For ex-
ample, the XLM-R SentencePiece tokeniser (Con-
neau et al., 2020; Kudo and Richardson, 2018) seg-
ments, which is the tokeniser for all our PLMs,
segments the isiXhosa morpheme “-bandela” into “-
ba”, “#ndel”, “#a”, which is morphologically mean-
ingless. In our pipeline setup for morphological
parsing, it is not obvious how to bridge the mis-
match between pretraining and finetuning subword
tokenisation. It should be viewed as a limitation of
PLMs. With neural models trained from scratch,
we have the freedom to design our own morpholog-
ical input features.

5.3 Models based on surface segmentations
In both Tables 3 and 4, the top half of each ta-
ble reports results for models trained on canoni-
cal segmentations (morphemes), while the bottom
half reports results for surface-level segmentations
(morphs). In general, canonically-based tagging
scores are higher than surface-level tagging. The
performance gap is particularly notable and con-

sistent for models trained on model-predicted seg-
mentations. While canonical and surface-level tag-
ging scores cannot be directly compared (for some
words, the tag sequence will not be the same), our
results clearly show that training taggers on top of
canonical segmenters is more effective than doing
so with surface-level segmenters. We attribute this
to two factors.

Firstly, the surface segmentation of a word pro-
vides less grammatical information to models than
the canonical segmentation. For instance, the word
“kwicandelo” is canonically segmented as “ku-i-(li)-
candelo” and surface segmented as “kw-i-candelo”
(Gaustad and Puttkammer, 2022). Critically, the
“(li)” morpheme is lost, which is part of the noun
prefix for class 5. The only morpheme left for
the noun prefix is thus “i”. However, this on its
own is ambiguous, and could be the noun prefix
for class 5 or class 9. In this case, the canonical
tagger would have more information relevant to the
tagging decision than the surface tagger.

Secondly, there is often a length mismatch be-
tween the surface and canonical morphemes in
a word. For example, “kubomi” is canonically
segmented into “ku-u-(bu)-bomi”, but surface-
segmented into “ku-bomi”. We evaluate our model
on gold-annotated data, which include morphologi-
cal tags for each word. In a case like “kubomi”, this
would limit performance to 50% accuracy in the
best case scenario. In general, this length mismatch
limits the performance of models based surface-
level segmentations.

6 Conclusion

In this paper, we explored the feasibility of neu-
ral morphological taggers for the Nguni languages.
We divide morphological parsing into two subtasks,
segmentation and tagging, focussing on the latter.
We investigate bi-LSTMs and CRFs trained from
scratch, as well as finetuned PLMs. Our neural
models comfortably outperform a rule-based base-
line, while our models trained from scratch outper-
form PLMs. Models based on canonical segmenta-
tions outperform their surface-level counterparts.

We identify several promising directions for fu-
ture research to build on our findings. Firstly, our
PLM taggers could potentially be improved, either
by finetuning on sentence-level input or by explor-
ing ways to align the mismatch between subword
tokenisation in pretraining and finetuning. Fur-
thermore, our parsers can be used to incorporate
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morphological information into downstream task
models (Klemen et al., 2023). This has been shown
to improve performance in tasks such as language
modelling (Nzeyimana and Niyongabo Rubungo,
2022) and machine translation (Nzeyimana, 2024),
but has not been explored for the Nguni languages.

Limitations

Our study is limited to the Nguni languages, so
our findings may not generalise to other language
families or typologies like the Sotho-Tswana lan-
guages whose morphology is disjunctive. Further
experimentation is needed to validate whether train-
ing taggers on model-predicted morphological seg-
mentations is viable for languages with different
morphological structures. That being said, the
promising performance of our models on the Nguni
languages suggests that similar neural approaches
could be beneficial for other low-resource, morpho-
logically complex languages.

Additionally, while our models trained from
scratch consistently outperformed finetuned PLMs,
we do not definitively conclude that PLMs are in-
ferior for this task. As discussed in subsection 5.2,
because of computational constraints we did not
test sentence-level PLMs. Incoporating sentence-
level context could improve PLM performance to
be competitive with models trained from scratch.
We would need to run further experiments with
sentence-level finetuning to evaluate the full poten-
tial of PLMs for this task.
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