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Abstract

Generative AI models are primarily accessed
through chat interfaces, where user queries of-
ten contain typographical errors. While these
models perform well in English, their robust-
ness to noisy inputs in low-resource languages
like Yorùbá remains underexplored. This work
investigates a Yorùbá question-answering (QA)
task by introducing synthetic typographical
noise into clean inputs. We design a proba-
bilistic noise injection strategy that simulates
realistic human typos. In our experiments, each
character in a clean sentence is independently
altered, with noise levels ranging from 10% to
40%. We evaluate performance across three
strong multilingual models using two comple-
mentary metrics: (1) a multilingual BERTScore
to assess semantic similarity between outputs
on clean and noisy inputs, and (2) an LLM-as-
judge approach, where the best Yorùbá-capable
model rates fluency, comprehension, and accu-
racy on a 1–5 scale. Results show that while
English QA performance degrades gradually,
Yorùbá QA suffers a sharper decline. At 40%
noise, GPT-4o experiences over a 50% drop
in comprehension ability, with similar declines
for Gemini 2.0 Flash and Claude 3.7 Sonnet.
We conclude with recommendations for noise-
aware training and dedicated noisy Yorùbá
benchmarks to enhance LLM robustness in low-
resource settings.

1 Introduction

Large Language Models (LLMs) have transformed
the landscape of Natural Language Processing
(NLP), enabling advanced reasoning and question-
answering (QA) capabilities. These models per-
form exceptionally well in high-resource languages
like English, where extensive training data and
noise-handling mechanisms enhance robustness.
However, their effectiveness in low-resource lan-
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Ìwà ọmọlúàbí túmọ ̀sí àwọn ìwà rere tí
ọmọ Yorùbá ní láti ní. Ó kan ọẁọ ̀fún
àwọn àgbàlagbà, òtítọ́, ìwà tútù ati

ìtẹríba fun agba.

Mi ò lè fàṣẹỳìnwá pẹl̀ú ìbéèrè yí nítorí
pé ìbéèrè náà kò yé mi dáadáa. Ọ̀rọ̀

"itump" àti "ọmilaubi" kò dàbí ẹk̀a èdè
Yorùbá tí mo mọ.̀

Kíni itumọ́ iwà ọmọlúàbí?

�

Kíní itump iws ọmilaubi

�

Figure 1: The top conversation represents a correct re-
sponse, while the bottom conversation illustrates errors
due to typographical noise. The question in the bottom
example contains multiple error types, which includes
replacement and transposition. As a result, the model
fails to understand the query and responds with confu-
sion.

guages like Yorùbá remains underexplored (Inuwa-
Dutse, 2025).

A key challenge affecting LLM robustness is
sensitivity to input variations. Minor typographical
errors, such as omitted letters or misplaced diacrit-
ics, can significantly degrade model performance.
Prior research (Moradi and Samwald, 2021; Vaib-
hav et al., 2019) has analyzed this phenomenon in
English QA tasks, revealing how slight distortions
mislead models. However, little is known about its
effects in Yorùbá, a tonal language heavily reliant
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on diacritics to convey meaning. Misplaced or omit-
ted diacritics can alter words entirely—e.g., “Ògún”
(a deity) vs. “ogun” (war) vs. “ogún” (twenty), pre-
senting an even greater risk of misinterpretation
(Jimoh et al., 2025).

Despite the linguistic importance of diacritics,
Yorùbá text is often written without them in elec-
tronic media, most often due to keyboard limita-
tions or user habits, resulting in significant infor-
mation loss (Jimoh et al., 2025). As illustrated
in Figure 1, typographical distortions can lead to
misinterpretations that affect model performance
in QA tasks. LLMs trained predominantly on high-
resource languages may struggle with these nu-
ances, raising a critical question: How well do
LLMs handle typographical errors in Yorùbá
question answering?

Handling noisy text is crucial for real-world
applications, particularly in multilingual settings.
While typographical perturbations and adversar-
ial attacks have been studied extensively in En-
glish, systematic evaluations for Yorùbá are lack-
ing—despite the language being spoken by over
40 million people. Understanding how well LLMs
handle noisy Yorùbá input is essential for improv-
ing their reliability across diverse linguistic con-
texts.

To address this gap, we construct a controlled
Yorùbá QA dataset with synthetic typographical
noise using a probabilistic noise modeling ap-
proach. Characters in clean sentences are inde-
pendently altered at noise levels ranging from 10%
to 40%, introducing errors such as insertions, re-
placements, and transpositions (swapping) based
on keyboard adjacency. We also explore a variant
where error types are randomly selected, incorpo-
rating leet replacements (e.g., ’e’ → ’3’, ’o’ → ’0’,
’s’ → ’$’)(Zhang et al., 2022). Model responses
to noisy inputs are evaluated against clean text us-
ing semantic similarity metrics such as BERTScore
(Zhang et al., 2020) and an LLM-as-judge evalua-
tion framework (Zheng et al., 2023).

Our contributions are as follows:

1. We propose a probabilistic noise generation
method that simulates human typographical
errors in Yorùbá.

2. We systematically evaluate the impact of ty-
pographical noise on Yorùbá QA performance
using GPT-4o, Gemini 2.0 Flash and Claude
3.7 Sonnet.

3. We provide insights to inform noise-aware
training, develop evaluation datasets, and es-
tablish benchmarks for assessing typographi-
cal robustness in Yorùbá NLP.

2 Related Work

Given the increasing prevalence of chat-based lan-
guage models facilitating text-based interaction be-
tween users and language models, several stud-
ies have explored how user-generated typograph-
ical errors influence model performance. Pre-
vious research has utilized artificially generated
noisy datasets created through various simulation
methodologies (Kumar et al., 2020; Cai et al.,
2022). Specifically, these studies introduced noise
by randomly altering a percentage of characters
based on proximity within the QWERTY keyboard
layout, effectively simulating typical typing errors
encountered in real-world interactions.

However, much of this research has primarily
concentrated on monolingual settings, predomi-
nantly English, neglecting the assessment of mul-
tilingual language models with diverse multilin-
gual test scenarios (Moradi and Samwald, 2021;
Wang et al., 2023). Consequently, investigations
into textual noise have largely been restricted to
English-language contexts. Despite impressive per-
formances by large multilingual models across var-
ious tasks and languages, their effectiveness tends
to diminish significantly when applied to languages
other than English, particularly low-resource lan-
guages (Etxaniz et al., 2023).

Additionally, existing literature has mainly evalu-
ated transformer-based models such as BERT, sug-
gesting a research gap regarding larger, recently
popularized language models (Cooper Stickland
et al., 2023). Previous studies demonstrated the
robustness of models like BERT, XLM-Roberta,
and XLNet against textual noise, noting their com-
mendable performance despite their relatively mod-
est sizes, typically under 0.3 billion parameters.
This highlights a clear distinction from contempo-
rary LLMs, which frequently possess parameter
counts in the billions, underscoring the necessity
for further investigations into their resilience to
noisy inputs.

This study addresses the gap between contempo-
rary chat-based LLMs and authentic typographical
errors observed in practical usage. It examines the
robustness of large language models with multi-
lingual capabilities, specifically using noisy, real-
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Error Example Sentence

None Kí ló mu ki ęro. ko.mpútà fi s.e
pàtàkì púpo. ní ayé òde òní?

Replacement lí ló mu ji ęfo. ko.mpútà fi s.e
pàtàkì púpo. ní ayé òde ònk?

Insertion Kí ló mu kiu ęęro. ko.mpútà fi s.e
pàtàqkì púpo. ní ayé òde òoní?

Transposition Kí ló mu ki ęo. r kmo.pútà fi s.e
pàtàkì púpo. ní ayé òde òin?

Random Kí l0 mu k1 ęro. o.kmpútà fi $e
pàtàkì púpo. ní ayé pde 0ní

Table 1: Yorùbá text with different error types.

world Yorùbá datasets.

3 Methodology

3.1 Typographical Error Types

To effectively replicate real-world user interactions,
we focus on modifying words in ways that reflect
common typing errors made during chatbot con-
versations with LLMs. To assess their impact, we
introduce four primary categories of typographical
errors using a probabilistic modeling approach:

• Insertion Errors: An extra character, either
the same as the intended one (double typing)
or an adjacent key from a QWERTY keyboard,
is inserted immediately after the original char-
acter. This simulates accidental keystrokes
common in rapid typing.

• Replacement Errors: The intended character
is replaced with a neighboring key based on
the QWERTY layout, mimicking mistyped
characters.

• Transposition (Swap) Errors: Two adjacent
characters swap positions, replicating com-
mon finger-slips where typists accidentally in-
vert the order of two neighboring characters.

• Random Errors: A combination of insertion,
replacement, transposition, and character-to-
symbol substitutions (leetspeak errors, e.g.,
replacing ’e’ with ’3’, ’o’ with ’0’) is applied.
This mixed-error category closely reflects real-
world, unstructured typing mistakes.

These error types collectively represent realistic
erros that can substantially affect the performance
of language models, especially in a linguistically
sensitive context such as Yorùbá question and an-
swering tasks. Table 1 shows examples of these
errors in a sentence.

3.2 Noise Injection Strategy

To precisely evaluate the impact of typographical
errors, we employ a probabilistic noise injection
approach. Given a clean text sequence of length N ,
we introduce errors at a predefined rate p, modify-
ing a fraction of characters to simulate real-world
typing mistakes.

The number of modified characters, Ne, is deter-
mined as:

Ne = ⌊p×N⌋

where p is the error rate (e.g., 10%, 20%, 40%).
For each selected character position, one of the

previously described error types is applied. The
error type is either predetermined (for controlled
experiments) or chosen randomly for greater vari-
ability.

The noise injection process follows these steps:

1. Text Tokenization: The input text is split into
individual characters while preserving spaces.

2. Error Injection: A random subset of char-
acters, determined by Ne, is selected, and an
error type is applied.

3. Text Reconstruction: The modified sequence
is reconstructed, ensuring that spacing and
word boundaries remain intact.

Since the selection of characters to be modified is
performed uniformly at random, each character in
the text has an equal probability of being selected
for modification. The probability that a specific
character xi is selected for modification is:

P (xi is modified) =
Ne

N
= p

This implies that every character has an indepen-
dent probability p of being altered, regardless of
its position in the sequence. The overall process is
further illustrated in Algorithm 1.
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Algorithm 1 Probabilistic Typo Injection
Require: Clean text sequence X = {x1, x2, ..., xn}, error

rate p, predefined error mapping T , noise function N
Ensure: Noisy text sequence X ′ = {x′

1, x
′
2, ..., x

′
n}

1: Compute number of typo errors:

Ne = ⌊p× n⌋

2: Randomly select Ne character positions:

P = RandomSample({1, 2, ..., n}, Ne)

3: for i ∈ P do
4: Retrieve predefined error type Ti from mapping T
5: Apply noise function N based on Ti:
6: if Ti = Insertion then
7: Insert an adjacent or duplicate character
8: else if Ti = Replacement then
9: Replace character with a neighboring key

10: else if Ti = Transposition then
11: Swap adjacent characters
12: else if Ti = Random then
13: Apply a mix of predefined transformations
14: end if
15: end for
16: Construct noisy text X ′ by modifying selected positions

in X
17: return X ′

4 Experimentation

4.1 Dataset

The dataset used in this study consists of 50 cu-
rated Yorùbá QA pairs, carefully selected to ensure
a balance between culturally specific questions and
general knowledge inquiries. The culturally pe-
culiar questions focus on topics rooted in Yorùbá
traditions, language, and history, while the general
knowledge questions cover widely known facts that
are not restricted to any specific cultural context.
The average question length is about 15 words.

Each question in the dataset is structured to en-
courage detailed responses rather than one-word
answers. This design choice ensures that evalua-
tion is not based on exact matches but rather on
the LLM’s ability to understand the question and
generate an accurate and contextually appropriate
response.

4.2 Generating Noisy Variants from Dataset

To evaluate the impact of typographical noise on
Yorùbá QA, we introduce controlled noise to cre-
ate variations of the clean questions in the dataset.
For each question, we introduce typographical er-
rors at predefined rates. Every question undergoes
modifications corresponding to the four error types,
with error rates varying from 10% to 40% in incre-
ments of 10%. This range ensures that we capture a

spectrum of real-world errors, from minor typos to
more severe distortions. Increasing noise beyond
this threshold could result in unnatural sentences,
making evaluation less meaningful.

To account for variability, we generate three dis-
tinct variations for each error type at each noise
level, ensuring that different subsets of characters
are affected. This results in a total of:

4 (error types) × 4 (error rates)

× 3 (variations per rate) = 48

noisy versions per sentence. Since we have 50
sentences in our dataset, we end up with a total of:

50× 48 = 2, 400

sentences, allowing for a diverse evaluation of
model robustness.

Having multiple variations per sentence en-
hances evaluation depth and reliability. First, it
provides a comprehensive assessment of how differ-
ent types and levels of noise impact model perfor-
mance. Additionally, by generating multiple varia-
tions at the same noise level, we ensure that evalu-
ation results are not biased by a specific character
selection, reducing variance and improving statis-
tical significance. Finally, this approach closely
reflects real-world typing errors, as users rarely
make the same mistake in a fixed pattern.

4.3 Models

Each noisy variation of the dataset is input into
the models using the same system prompt to en-
sure consistency across evaluations. The prompt
explicitly instructs the models to limit responses to
a maximum of 25 words, balancing computational
efficiency with response relevance.

To enforce deterministic outputs, we set the tem-
perature to 0, ensuring a fixed response pattern for
each input. The generated responses are logged
for further evaluation, enabling direct comparisons
between clean and noisy input variations.

4.4 Evaluation Process

We pass the clean questions to the models, using
their returned output as a gold standard for compar-
ison. Next, we introduce typographical noise and
compare the models’ responses to their clean-input
counterparts to measure performance degradation.
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Model Error Rate LLM as Judge Refusal BertScore
Fluency Comp. Acc. Rate (%) P R F1

Google Gemini

10 4.9 4.9 4.8 0.7 82.4 82.2 82.3
20 4.8 4.3 4.3 8.4 79.2 79.0 79.1
30 4.7 3.2 3.1 29.4 76.0 75.3 75.6
40 4.7 2.3 2.2 59.1 73.4 72.7 73.0

Claude sonnet 3.7

10 4.8 4.9 4.8 1.0 83.0 80.0 84.0
20 4.7 4.5 4.5 8.0 80.0 78.0 80.0
30 4.5 3.4 3.3 19.7 77.0 77.0 76.0
40 4.0 2.1 2.0 35.0 71.0 72.0 73.0

GPT-4 Omni

10 4.9 4.8 4.7 0.4 85.9 85.8 85.9
20 4.5 4.2 4.1 2.5 81.2 80.9 81.1
30 4.1 3.1 3.0 13.4 77.1 76.7 76.9
40 4.2 2.2 1.9 38.1 73.8 73.1 73.4

Table 2: Model Performance Across Error Rates: Fluency, Comprehension, Accuracy, Refusal Rate, and BERTScore

4.4.1 Metrics for Measuring Robustness
BERTScore for Semantic Similarity: To assess
how typographical noise affects responses, we com-
pute BERTScore between the model’s outputs for
clean and noisy inputs. Unlike BLEU (Papineni
et al., 2002), which relies on n-grams, BERTScore
leverages contextual embeddings from pre-trained
models to measure semantic similarity.

However, BERTScore’s effectiveness for Yorùbá
is limited by the poor quality of its language em-
beddings in multilingual models, as low-resource
languages often lack sufficient training data for
robust representations. As a result, while it can
measure similarity, it sometimes fails to reflect how
dissimilar two Yorùbá sentences truly are, necessi-
tating additional evaluation methods.
LLM-as-a-Judge Evaluation: Given
BERTScore’s limitations, we use an LLM-
as-a-Judge approach, leveraging Google’s Gemini
2.0 Flash for human-like evaluation. This method
assesses whether the models maintain meaningful
understanding despite noise. The system prompt
provided to the LLM acting as judge is show in
Appendix B.

The evaluation process follows these steps:

1. The clean question and the noisy-response
pair are fed to the model.

2. The model scores the response, based on the
following:

• Fluency: Grammatical correctness and
naturalness.

• Comprehension: Understanding of the
question.

• Accuracy: Correctness of the response.

3. The model also classifies responses as either:

• A valid attempt at answering the ques-
tion.

• A refusal or failure to understand, includ-
ing responses like: "Mo nílò àlàyé síwájú
sí" ("I need more clarification.") or "Èmi
kò lè dáhùn ìbéèrè yìí." ("I can’t provide
an answer.").

This helps us to calculate the refusal rate:

Refusal Rate(RR) =
Number of refusals

Total questions asked

By combining BERTScore with LLM-based
evaluation, we obtain a more comprehensive as-
sessment of model performance, capturing both se-
mantic similarity and human-like judgment across
varying levels of typographical noise.

5 Results and Findings

Table 2 presents the main results on the effect of
varying levels of typographical noise in Yorùbá sen-
tences on LLM, using different evaluation metrics
across the three models.

5.1 Overall Performance Trend

The findings reveal that typographical noise
severely affects comprehension and accuracy once
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Gemini 2.0 Flash Claude 3.7 Sonnet GPT-4o

Figure 2: LLM-as-Judge Evaluation of Fluency, Comprehension, and Accuracy Across Error Rates

Gemini 2.0 Flash Claude 3.7 Sonnet GPT-4o

Figure 3: BERTScore (F1) Evaluation Across Error Rates and Error Types

it exceeds 20% - all models show comparable diffi-
culty in extracting meaning from increasingly dis-
torted inputs. Fluency remains relatively stable
across all models, indicating that while the mod-
els can still generate well-formed sentences, they
often misinterpret noisy inputs or in other cases
simply say they cannot answer or need more infor-
mation in a well-written sentence. Similarly, the
refusal rate increases significantly after the 20%
noise level, indicating that the models refuse to
respond as the noise increases. This suggests that,
past a certain threshold, models prioritize avoid-
ing incorrect responses over attempting a response
based on uncertain input.

5.2 Which type of error has the most
significant effect on performance?

Different error types impact performance in dif-
ferent ways, as seen in Figure 3. From the graph,
we note that insertion errors introduce minor noise,
but do not significantly degrade comprehension. In
contrast, replacement errors cause the most sub-
stantial drop, as they alter the core word structures.
Random and swap errors produced mixed results,
but followed a general downward trend.

5.3 Which of the models is more robust?

No one model stands out to be more robust, in-
stead each exhibits some unique trends. For ex-
ample, in Table 2, we note that at higher noise

levels (30-40%) GPT-4o tends to attempt answer-
ing the question even when comprehension is very
low, but Gemini tries to play it safe by declining
to give an answer. From Figure 2, we can see that
claude performs slightly better in comprehension
than GPT-4o at lower noise levels (10-20%) but
deteriorates faster at higher noise rates. Gemini
maintains the highest stability in fluency, but its
accuracy and comprehension decline significantly
at 30% noise and beyond.

5.4 What kind of performance do we see for
English

A similar evaluation was conducted on the English
translations of the Yorùbá sentences using the same
error injection strategy, revealing a stark contrast
in model robustness. While Yorùbá comprehension
drops rapidly with increasing noise levels, As ex-
pected, English maintains high accuarcy and com-
prehension scores, this is shown in Appendix A.
This further illustrates the fact that LLMs are sig-
nificantly more resilient to typographical noise in
English due to greater training data exposure and fa-
miliarity with noisy text variations in high-resource
languages.

6 Conclusion

This study highlights the critical challenge of main-
taining robustness in LLMs under typographical
noise within low-resource languages, specifically
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focusing on Yorùbá, a tonal language highly sensi-
tive to orthographic nuances such as diacritics. Our
experimental results underscore the vulnerability
of state-of-the-art models (GPT-4 Omni, Gemini
2.0 Flash, and Claude 3.7 Sonnet) to typograph-
ical errors in Yorùbá QA tasks. These findings
highlight the urgent need for noise-aware training,
emphasizing typographical robustness, particularly
for low-resource languages like Yorùbá. We recom-
mend for the creation of dedicated, noisy Yorùbá
QA benchmarks and noise-aware training strategies
to improve real-world robustness of multilingual
LLMs.

Limitations

Our research has several limitations that future stud-
ies could address. Firstly, the use of synthetic typo-
graphical errors may not fully capture the complex-
ity and variability of real-world user-generated typ-
ing errors. Collecting genuine noisy Yorùbá data
would enhance ecological validity and applicabil-
ity of findings. Additionally, although the dataset
scales up to 2400 samples from an initial set of
50 QA pairs, incorporating more QA pairs would
likely enhance generalizability and robustness as-
sessments. Additionally, better semantic similarity
metrics tailored specifically to Yorùbá should be
developed, given the limitations of multilingual
BERTScore. Lastly, periodic re-evaluation using
updated LLMs is necessary to reflect continuous
advancements in model robustness.
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B System Prompt for LLM-as-Judge
Evaluation

LLM-as-Judge System Prompt

You are an expert evaluator of Yoruba language re-
sponses. You will be shown a question in Yoruba and
the response provided by an AI system. Your task is
to rigorously assess the quality of the response.
Important Considerations:

• Yoruba Language Expertise: Assume the
role of a native Yoruba speaker with deep lin-
guistic knowledge.

• 25-Word Limit: The AI’s response is con-
strained to a maximum of 25 words.

1. Response Status (Choose One):

• A. Direct Answer: The AI provides an answer,
even if incorrect.

• B. Explicit Refusal/Uncertainty: The AI ex-
plicitly refuses to answer or asks for clarifica-
tion.

Evaluation Criteria (Score 1-5):

• Fluency: Is the response grammatically correct
and natural?

• Accuracy: Does the response correctly address
the question?

• Comprehension: Does the response demon-
strate an understanding of the question?
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