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Abstract

Hausa Natural Language Processing (NLP) has
gained increasing attention in recent years, yet
remains understudied as a low-resource lan-
guage despite having over 120 million first-
language (L1) and 80 million second-language
(L2) speakers worldwide. While significant
advances have been made in high-resource lan-
guages, Hausa NLP faces persistent challenges
including limited open-source datasets and in-
adequate model representation. This paper
presents an overview of the current state of
Hausa NLP, systematically examining exist-
ing resources, research contributions, and gaps
across fundamental NLP tasks: text classifica-
tion, machine translation, named entity recogni-
tion, speech recognition, and question answer-
ing. We introduce HAUSANLP1, a curated cata-
log that aggregates datasets, tools, and research
works to enhance accessibility and drive further
development. Furthermore, we discuss chal-
lenges in integrating Hausa into large language
models (LLMs), addressing issues of subopti-
mal tokenization, and dialectal variation. Fi-
nally, we propose strategic research directions
emphasizing dataset expansion, improved lan-
guage modeling approaches, and strengthened
community collaboration to advance Hausa
NLP. Our work provides both a foundation for
accelerating Hausa NLP progress and valuable
insights for broader multilingual NLP research.

1 Introduction

The limits of my language mean the lim-
its of my world. – (Wittgenstein, 1994)

Natural Language Processing (NLP) has made
significant progress and revolutionized the way lan-
guage technology is used in our daily lives. From
voice assistants and chatbots to machine transla-
tions, text classification, information extraction,
and question-answering, NLP enables us to inter-
act with machines in a more natural way (Cambria

1https://catalog.hausanlp.org

Figure 1: HausaNLP Catalogue: A repository of
datasets, tools, and research papers on Hausa NLP, de-
veloped to improve access to and discovery of Hausa
language resources

and White, 2014). One of the recent advances
in NLP is emergence of large language models
(LLMs) such as ChatGPT, which demonstrated im-
pressive performance in various NLP tasks, such as
dialogue generation and arithmetic reasoning (Qin
et al., 2023). However, much of this progress has
been concentrated on a limited set of high-resource
languages (e.g., English and Chinese), where large-
scale pre-training corpora are readily available (van
Esch et al., 2022). As a result, many languages re-
main underrepresented in NLP research, including
Hausa.

Hausa is a major Chadic language with rich lin-
guistic and cultural significance within the Afroasi-
atic family. Originally written in Arabic script
(Ajami) during the pre-colonial era, the language
has been romanized and now uses the Latin script
as its primary writing system. Yet, Arabic influ-
ence remains evident in Hausa through loanwords
from Arabic (El-Shazly, 1987; Newman, 2022).
Most Hausa speakers are found in northern Nige-
ria and southern Niger. However, its influence has
expanded through trade and migration, reaching
countries such as Cameroon, Ghana, Benin, Togo,
Chad, and Sudan (Inuwa-Dutse, 2023). Hausa has a
global presence and is broadcast by several interna-
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tional media outlets such as BBC, Deutsche Welle,
Voice of America, Voice of Russia, China Radio
International, and Radio France Internationale in
Hausa —the most predominant language broadcast
internationally in West Africa.

Despite its importance, diversity, and cultural
heritage, Hausa has received relatively little atten-
tion in NLP research (Zakari et al., 2021; Muham-
mad et al., 2025c; Parida et al., 2023). This slows
progress in language technology research and de-
velopment in Hausa and further widens the gap.
Recent work on HausaNLP is mostly community-
driven efforts such as machine translation (Adelani
et al., 2022a; Abdulmumin et al., 2022b), sentiment
analysis (Muhammad et al., 2022, 2023), emotion
detection (Muhammad et al., 2025c), hate speech
detection (Muhammad et al., 2025a), and named
entity recognition (Adelani et al., 2022c). However,
numerous NLP tasks for Hausa remain understud-
ied, primarily due to the lack of available corpora.

Open-source corpora are key drivers of advance-
ments in NLP. However, Hausa, a well-documented
language, lacks open-source corpora that can be
used for many NLP tasks. Further, the few avail-
able Hausa corpora are dispersed and difficult to
access. Therefore, creating and aggregating open-
source corpora for Hausa is crucial for the progress
of HausaNLP. To address these challenges, this
paper makes the following contributions:

• HausaNLP Catalogue: We introduce Hau-
saNLP Catalogue, a centralized repository
of datasets, tools, and research papers de-
signed to improve accessibility and accelerate
progress in Hausa NLP research.

• Comprehensive Review: We present a re-
view of Hausa NLP research, analyzing cur-
rent progress and identifying key challenges
in the field.

• Future Directions: We explore promising
research opportunities and outline recommen-
dations to advance Hausa NLP technologies.

We release the HausaNLP Catalogue as an open,
community-driven platform to centralize and accel-
erate Hausa NLP research. The catalogue serves
as a living resource for discovering and sharing
datasets, tools, and papers, with ongoing contribu-
tions from researchers and practitioners worldwide.

2 Hausa Language

Hausa is the language of the Hausa people (Hau-
sawa), primarily spoken in West Africa’s sub-
Saharan region, with the largest populations in
northern Nigeria and southern Niger. Significant
Hausa-speaking communities exist across North-
ern Ghana, Togo, Cameroon, and parts of Sudan,
Chad, Mali, Ivory Coast, Libya, Saudi Arabia, and
the Central African Republic (Bello, 2015). With
approximately 120 million first-language (L1) and
80 million second-language (L2) speakers, Hausa
ranks among Africa’s most widely spoken lan-
guages, second only to Swahili in total speaker
count (Hegazy et al.).

While some argue that Hausa may surpass
Swahili in total speakers (Newman, 2022), Swahili
maintains broader institutional recognition as an
official language in four East African nations: Tan-
zania, Kenya, Uganda, and Rwanda. In contrast,
Hausa had limited official recognition until recently,
when Niger declared it an official language (El-
Shazly, 1987).

Linguistically, Hausa belongs to the Chadic
branch of the Afroasiatic language family and
is spoken by over 200 million people either as
a first language or as a second language, mak-
ing it a prominent lingua franca in the region
(Yakasai, 2025). Hausa has several dialect varia-
tions, which are broadly categorized into two major
groups: western and eastern dialects. Furthermore,
Hausa has regional variations influenced by contact
with non-Hausa languages, leading to phonological,
morphological, syntactic, and lexical differences
(Bello, 2015).

Phonologically, Hausa is a tonal language with
three pitch contrasts that distinguish word mean-
ings and grammatical categories. It has 48
phonemes and 36 standard alphabets (Caron, 2012).
Morphologically, Hausa uses root-and-pattern tem-
plates and affixation to support complex morpho-
logical processes including inflection, derivation,
modification, reduplication, clipping, blending, and
compounding. It also has numerous loanwords
from contact language such as Arabic (Ahmed and
B., 1970). Syntactically, Hausa follows a subject-
verb-object (SVO) word order and uses diverse
typological constructions. The language has devel-
oped two writing systems: Ajami (Arabic-based
script) and Boko (Latin-based script), both actively
used in print, broadcasting, and digital media.

Despite its linguistic richness, Hausa remains a
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low-resource language in NLP due to limited anno-
tated corpora and tools, hindering the development
of language technologies.

3 Current State of Hausa NLP

Several existing works have explored various NLP
tasks in Hausa, including text classification, ma-
chine translation, named entity recognition, and au-
tomatic speech recognition, as shown in Figure 2.
This section reviews prior work on Hausa NLP,
discusses available datasets, and identifies future
research directions.

3.1 Text Classification
Text classification is a method for automatically cat-
egorizing texts into distinct, predetermined classes.
It is a supervised learning approach, as the classes
must be known beforehand to train the model. Text
classification can take various forms; however, in
the context of Hausa texts, prior studies have pri-
marily focused on sentiment analysis, toxicity de-
tection, or topic classification

Sentiment Analysis Sentiment analysis is a text
classification method of categorizing based on the
sentiment contained in the text. The method is
usually a binary classification, into positive and
negative classes, or three classes, into positive, neg-
ative, and neutral classes.

Several studies have explored sentiment analy-
sis in Hausa. Abubakar et al. (2021) introduced
a sentiment analysis model for Hausa texts, lever-
aging a corpus of political tweets. Their approach
incorporated Hausa lexical features and sentiment
intensifiers, achieving an accuracy of 0.71 when
employing the SVM classifier. Nevertheless, the
dataset size of merely around 200 tweets in the
study is grossly inadequate for training supervised
learning models.

Muhammad et al. (2022) proposed the first large-
scale sentiment dataset for the Hausa language
among other Nigerian languages. The paper col-
lected and annotated around 30,000 tweets in the
Hausa language. The authors proposed novel meth-
ods for tweet collection, filtering, processing, and
labeling methods. Additionally, contrary to the
other study, they leverage fine-tuning LLMs, attain-
ing a weighted F1-score of 0.81.

Further, Sani et al. (2022) combined machine
learning and lexicon-based approaches, achieving
86% accuracy with TF-IDF but struggling with syn-
tactic and semantic nuances. Shehu et al. (2024)
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Figure 2: Taxonomy of Hausa NLP Research Progress:
Tasks and Associated Publications
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integrated CNN, RNN, and HAN with a lexicon
dictionary, but the approach yielded a lower ac-
curacy of 68.48%, highlighting the limitations of
the bag-of-words model. Mohammed and Prasad
(2024) introduced a manually annotated lexicon
dataset for social media and product reviews, useful
for lexicon-based models but unsuitable for data-
driven approaches. To address language-specific
challenges, Abdullahi et al. (2024) implemented
a normalization process for handling Hausa ab-
breviations and acronyms, improving the perfor-
mance of MNB and Logistic Regression. Mean-
while, Ibrahim et al. (2024) proposed a Deep
CNN model for aspect and polarity classification in
Hausa movie reviews, achieving 92% accuracy but
struggling with multi-aspect classification. These
studies highlight progress in Hausa sentiment anal-
ysis while emphasizing the need for better feature
representation, richer datasets, and advanced tech-
niques to handle linguistic complexities.

Future research in Hausa sentiment analysis
should focus on high-quality annotated datasets
to improve benchmarking (Liu et al., 2024), and
domain adaptation to enhance model generaliza-
tion across different contexts (Hays et al., 2023;
Singhal et al., 2023), Cross-lingual sentiment clas-
sification offers potential for transferring knowl-
edge from high-resource languages while address-
ing cultural nuances (Chan et al., 2023; Rakhmanov
and Schlippe, 2022b; Yusuf et al., 2024). Further,
aspect-based sentiment analysis (ABSA) is cru-
cial for entity-level sentiment detection (Ibrahim
et al., 2024; Obiedat et al., 2021), while multimodal
approaches integrating text, audio, and visuals re-
main underexplored (Zhu et al., 2023; Gandhi et al.,
2023; Parida et al., 2023). Sentiment analysis using
code-mixed remains underexplored in HausaNLP
(Shakith and Arockiam, 2024; Yusuf et al., 2023).
Finally, explainable sentiment analysis should be
explored to improve model transparency (Diwali
et al., 2023). Advancing these areas will signifi-
cantly strengthen Hausa NLP research and applica-
tions.

Emotion analysis in text Unlike sentiment anal-
ysis, which aims to interpret text and assign po-
larities (positive, negative, or neutral), emotion
analysis focuses on extracting and analyzing fine-
grained emotions, known as affects (e.g., happi-
ness, sadness, fear, anger, surprise, and disgust).
Muhammad et al. (2025b) is the first work on emo-
tion detection in Hausa. The authors developed

a text-based emotion dataset in 29 languages, in-
cluding Hausa. The dataset is annotated into six
emotion classes (anger, fear, joy, sadness, surprise,
and disgust) and further categorized into intensity
levels: 0 (indicating no emotion), 1 (low emo-
tion), 2 (medium emotion), and 3 (high emotion).
This dataset was used in the SemEval shared task
(Muhammad et al., 2025b).

Toxicity detection Toxicity detection is a text
classification task of detecting toxicity in text. The
toxicity could be in the form of hate speech, ha-
rassment, and threats. The only work on toxicity
detection in Hausa texts is by (Zandam et al., 2023).
In the work, the authors developed an online threat
detection dataset using both Facebook and Twitter
posts. The developed dataset is quite limited with
around 801 instances. The Hausa threat detection
models are based on machine learning algorithms,
achieving the best performance of 0.85 with a ran-
dom forest algorithm.

Fake news detection The advancement of the
internet and social media has accelerated news
dissemination, offering both benefits and draw-
backs. While crucial information reaches the public
swiftly, the downside includes the widespread cir-
culation of fake news. It is increasingly become
difficult to distinguish actual news and fake news
in the cyberspace. As a result, fake news detection
has become an important area of research.

The work of Imam et al. (2022) focused on the
creation of fake news detection corpus for Hausa
news articles. They developed a corpus of 2600
news articles comprising of real and fake news
selected from key topics like: Business, health,
entertainment, sports, politics and religion.

Topic Classification News topic classification
is a text classification task in NLP that involves
categorizing news articles into different categories
like sports, business, entertainment, and politics.
For Hausa news articles, Adelani et al. (2023) fo-
cused on topic classification for African langauges’
news articles including Hausa articles. They used
both classical machine learning algorithms, and
pre-trained LLMs. The best performing model is
AfroXLMR-large attaining a weighted F1-score of
0.92.
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3.2 Machine Translation

3.2.1 Text Translation
Adelani et al. (2022a) leveraged pre-trained models
for African news translation, focusing on 16 under-
represented African languages including the Hausa
language. For the Hausa language, The Hausa
Khamenei 2 corpus contained 5,898 sentences, was
used. The study demonstrated the effectiveness of
fine-tuning pre-trained models on a few thousand
high-quality bitext for adding new languages like
Hausa to the models.

Nowakowski and Dwojak (2021) and Chen et al.
(2021) participated in the WMT 2021 News Trans-
lation Task (Akhbardeh et al., 2021). This involves
building a machine translation system for English
and Hausa language pairs. The Nowakowski and
Dwojak (2021) focused on thorough data clean-
ing, transfer learning, iterative training, and back-
translation. The work experimented with NMT and
PB-SMT, using the base Transformer architecture
for the NMT models. On the other hand, (Chen
et al., 2021) used an iterative back-translation ap-
proach on top of pre-trained English-German mod-
els and investigated vocabulary embedding map-
ping.

Akinfaderin (2020) explored English-Hausa
machine translation by training LSTM and
transformer-based model using the JW300 (Agić
and Vulić, 2019) corpus. Abdulmumin et al.
(2022a) participated in WMT 2022 Large-Scale
Machine Translation Evaluation for the African
Languages Shared Task (Adelani et al., 2022b).
The work made an attempt to improve Hausa-
English (along with other language pairs) machine
translation using data filtering techniques. The idea
relies on filtering out the noisy or invalid parts of
a large corpus, keeping only a high-quality subset
thereof. The results show that the performance of
the models improved with increased data filtering,
indicating the removal of noisy sentences enhanced
translation quality.

3.2.2 Multi-Modal Machine Translation
Multimodal machine translation (MMT) focuses
on translating languages using multiple modali-
ties of information, not just text. This typically
involves combining text with other data sources,
such as images, speech, and video. MMT aims
to enhance translation quality by incorporating in-

2https://www.statmt.org/wmt21/
translation-task.html

formation from other modalities. The goal is to
leverage these additional modalities to improve the
overall translation process.

Abdulmumin et al. (2022b) presents the Hausa
Visual Genome (HaVG), a multi-modal dataset
that contains the description of an image or a sec-
tion within the image in Hausa and its equivalent
in English. HaVG was formed by translating the
English description of the images in the Hindi Vi-
sual Genome (HVG) into Hausa automatically. Af-
terward, the synthetic Hausa data was carefully
post-edited considering the respective images. The
dataset comprises 32,923 images and their descrip-
tions.

3.2.3 Sentence Alignment
Automatic sentence alignment is the process of
identifying which sentences in a source text cor-
respond to which sentences in a target text. This
task is crucial for creating parallel corpora, where
each sentence in one language is aligned with its
equivalent translation in another language. Various
approaches, including length-based, lexicon-based,
and translation-based methods, are employed for
sentence alignment. Evaluating alignment qual-
ity involves assessing accuracy and effectiveness,
considering factors like language pairs and genre.

Abdulmumin et al. (2023) addresses the chal-
lenge of limited qualitative datasets for English-
Hausa machine translation by automatic sentence
alignment. The work presented a qualitative paral-
lel sentence aligner that leverages the closed-access
Cohere multilingual embedding 3. For evaluation,
the work used the MAFAND-MT (Adelani et al.,
2022a), FLORES (Goyal et al., 2022), a new cor-
pus of 1000 Hausa and English news articles each.
The proposed method showed promising results.

3.3 POS
Part-of-speech tagging (POS) is one of the first
steps in NLP that involves the tagging (or labeling)
of each word in a sentence with the correct part of
speech to indicate their grammatical behaviours for
computational tasks (Martinez, 2012). POS tagging
is very crucial in many NLP tasks like sentiment
analysis and information extraction.

While considerable amount of work has been
done on POS tagging, only a couple of studies
are on Hausa POS tagging. Tukur et al. (2020)
proposed a technique for POS tagging of Hausa

3https://docs.cohere.com/docs/
multilingual-language-models
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sentences using the Hidden Markov Model. They
evaluated the model using a manually collected and
annotated Hausa corpus sourced from from radio
stations. While the study is worthwhile, both the
dataset and model are not publicly available.

Awwalu et al. (2021) presents a study on Cor-
pus Based Transformation-Based Learning for
Hausa language POS tagging. The research in-
volves corpus development for Hausa language
POS tagset. Various models and techniques such
as Transformation-Based Learning (TBL), Hidden
Markov Model (HMM), and N-Gram models are
employed for POS tagging. The main findings in-
dicate that the TBL tagger outperforms HMM and
N-Gram taggers in terms of accuracy levels, show-
casing the effectiveness of hybrid generative and
discriminative taggers.

Dione et al. (2023) created MasakhaPOS, a large
POS dataset for 20 diverse African languages. They
address the challenges of using universal depen-
dencies (UD) guidelines for these languages, and
compare different POS taggers based Conditional
Random Field (CRF) and several multilingual Pre-
trained Language Models (PLMs). For the Hausa
part of the project, the data was sourced from Kano
Focus and Freedom Radio to a total of 1504 sen-
tences (train: 753, test:150, and dev: 601).

3.4 Text Summarization

Text summarization is the process of automatically
generating a concise and coherent summary of a
longer text while retaining its key information and
main points (El-Kassas et al., 2021).

Text summarization plays a crucial role in var-
ious applications such as information retrieval,
document summarization, news aggregation, and
content recommendation systems, helping users
quickly grasp the main points of lengthy documents
or articles.

(Bashir et al., 2017) perhaps conducted one the
the earliest works on text summarization for Hausa
langauge. The work focused on text summariza-
tion based on feature extraction using Naive Bayes
model. However, the validity of the work is limited
by the small data size of 10 documents from news
articles, with each document containing over 600
words. The work of (Bichi et al., 2023) focus on
graph-based extractive text summarization method
for Hausa text. The study focus on graph-based
extractive single-document summarization method
for Hausa text by modifying the PageRank algo-

rithm using the normalized common bigrams count
between adjacent sentences as the initial vertex
score. They evaluated the proposed approach using
a manually annotated dataset that comprises of 113
Hausa news articles on various genres. Each news
article had two manually generated gold standard
summaries, with the length of summaries being
20% of the original article length.

3.5 Question and Answering

Question and Answering (QA) is a branch of nat-
ural language processing (NLP) that deals with
building systems that can automatically answer
questions posed by humans in natural language.
QA systems can be useful for various applications,
such as virtual assistants, customer support, search
engines, and education (Rogers et al., 2023).

Parida et al. (2023) developed a Hausa Visual
Question Answering (VQA) dataset called HaVQA.
The dataset is a multi-modal dataset for visual
question-answering (VQA) tasks in the Hausa lan-
guage. The dataset was created by manually trans-
lating 6,022 English question-answer pairs, which
are associated with 1,555 unique images from the
Visual Genome dataset. The paper employed state-
of-the-art language and vision models for Visual
Question Answering and achieved the best perfor-
mance with the Data-Efficient Image Transformers
model proposed by Facebook with a WuPalmer
score of 30.85.

(Ogundepo et al., 2023) developed AfriQA, a
dataset for cross-lingual open-retrieval question an-
swering for 10 African languages, including the
Hausa language. The dataset was developed from
Wikipedia articles and manually elicited questions.
For Hausa language, the final corpus consist of
1171 instances split into 435 training, 436 devel-
opment and 300 test sets. The findings of the ex-
periments proves how challenging multilingual re-
trieval is even for state-of-the-art QA models.

3.6 Named Entity Recognition

Named entity recognition (NER) is a technique of
NLP that identifies and classifies named entities in
a text, such as person names, organizations, loca-
tions, and dates. NER can be useful for various
tasks, such as information extraction, search en-
gines, chatbots, and machine translation. There
are different methods and tools for NER, such
as dictionary-based, rule-based, machine learning-
based, and hybrid systems (Li et al., 2022).
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Adelani et al. (2021) and Adelani et al. (2022c)
created the largest NER corpus for African lan-
guages titled MasakhaNER 1.0 and MasakhaNER
2.0. MasakhaNER 1.0 covers 10 African languages,
while MasakhaNER 2.0 expanded the corpus to
include 10 South African languages, making a to-
tal of 20 languages. MasakhaNER 1.0 consists of
2,720 sources from VOA news while MasakhaNER
2.0 consists of 8,165 sourced from Kano Focus
and Freedom Radio news channels. Both studies
explored various experiments using pretrained lan-
guage models and other techniques like transfer
learning and zero-shot learning.

The work of Hedderich et al. (2020) investigates
transfer learning and distant supervision with mul-
tilingual transformer models on NER and topic
classification in Hausa, isiXhosa and Yoruba lan-
guages. The study show that transfer learning from
a high-resource language and distant supervision
are effective techniques for improving performance
in low-resource settings for African languages.

3.7 Automatic Speech Recognition (ASR)

Automatic speech recognition (ASR) is a technol-
ogy that allows computers to convert spoken lan-
guage into text. ASR can be used for various pur-
poses, such as voice control, transcription, transla-
tion, and accessibility (Yu and Deng, 2016).

Schlippe et al. (2012) focused on developing
a Hausa Large Vocabulary Continuous Speech
Recognition (LVCSR) system by collecting a cor-
pus of Hausa speech data from native speakers in
Cameroon and text data from prominent Hausa
websites. The data collected for the study in-
cluded approximately 8 hours and 44 minutes of
speech data from 102 native speakers of Hausa
in Cameroon. Additionally, the text corpus con-
sists of roughly 8 million words. The study found
that modeling tones and vowel lengths significantly
improved recognition performance, leading to a
reduction in word error rates.

(Abubakar et al., 2024) focuses on develop-
ing a diacritic-aware automatic speech recognition
model for the Hausa language. The model uses
a large corpus of speech data from the Mozilla
Common Voice dataset, which includes a variety of
diacritical words and sentences. The Whisper-large
model outperforms existing models, achieving a
word error rate of 4.23% and a diacritic coverage
of 92%. It also has a precision of 98.87%, with a
2.1% diacritic error rate, demonstrating its effec-

tiveness in accurately transcribing Hausa speech.
However, Due to the absence of prior ASR sys-
tems specifically focused on diacritization in the
Hausa language, the authors were unable to make
direct comparisons with their results. This lack of
benchmarks may limit the ability to fully assess
the effectiveness of their proposed model against
existing technologies

Future efforts should prioritize developing real-
time ASR systems for continuous Hausa speech
recognition, enhancing usability across everyday
communication and diverse industries. Optimizing
computational resources and designing efficient
algorithms will enable high-performance ASR sys-
tems with reduced power requirements. Further,
exploring ASR techniques less reliant on diacritics
can broaden usability for varied contexts and users.
Finally, integrating ASR with NLP and machine
translation can pave the way for comprehensive
tools to better serve Hausa-speaking communities.

4 Hausa Representation in Large
Language Models (LLMs)

Large language models (LLMs) have made sig-
nificant strides in supporting multilingual tasks,
including those involving low-resource languages
like Hausa. Multilingual models such as AfrIB-
ERTa (Ogueji et al., 2021) mBERT (Devlin et al.,
2019), InkubaLM (Tonja et al., 2024) XLM-R
(Conneau et al., 2020), and BLOOM (Workshop
et al., 2023) have incorporated Hausa into their
training data, albeit to varying degrees. These
models leverage cross-lingual transfer learning to
improve performance on languages with limited
resources. However, the extent of Hausa represen-
tation in these models is often constrained by the
scarcity of high-quality, diverse datasets.

The availability and quality of training data are
critical factors influencing the performance of large
language models (LLMs) on Hausa language tasks.
Like many low-resource languages, Hausa faces
challenges such as data scarcity, representational
bias, and inadequate dataset construction. Exist-
ing datasets are often limited in scale and diversity,
particularly in capturing dialectal variations and in-
formal text (e.g., social media content). Sani et al.
(2025b) highlight these challenges, emphasizing
the impact of dialectal variation and tokenization
on Hausa sentiment analysis. Their findings under-
score the need for more diverse and high-quality
datasets to enhance model performance. Without
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sufficient data, LLMs struggle to achieve robust
performance in handling Hausa text, as highlighted
by Zhao et al. (2024) and Acikgoz et al. (2024).

In addition to data scarcity, Hausa’s linguistic
features pose significant challenges for tokeniza-
tion and language modeling. The language’s rich
morphology, tonal variations, and complex noun
pluralization systems complicate the process of ac-
curately representing it in LLMs. Diacritics and
tonal markers, which are critical for meaning, of-
ten lead to suboptimal tokenization, resulting in
poor representations of the language (Abubakar
et al., 2024; Jaggar, 2006). Furthermore, the di-
alectal diversity within Hausa adds another layer of
complexity. Models trained on formal Hausa text
frequently struggle to process informal or dialectal
variations, as noted by Sani et al. (2025b). This lim-
its their applicability in real-world scenarios where
such variations are common.

Another critical issue is bias and representation
in existing LLMs. Studies comparing LLM outputs
with native speaker responses have revealed dis-
crepancies in how cultural nuances and emotional
tones are captured (Ahmad et al., 2024). These bi-
ases can lead to outputs that are misaligned with the
cultural and linguistic expectations of Hausa speak-
ers, further reducing the utility of LLMs for this
language. Addressing these challenges requires in-
novative approaches, including improved tokeniza-
tion strategies, dialectal adaptation techniques, and
data augmentation methods. By tackling these is-
sues, researchers can develop more robust and in-
clusive models that better serve Hausa speakers and
other low-resource language communities

A promising direction is the development of spe-
cialized, lightweight models tailored specifically
to Hausa. These custom models could provide
more accurate and efficient solutions for Hausa-
specific applications (Yang et al., 2024). Addi-
tionally, federated prompt tuning offers a pathway
to enhance data efficiency and facilitate mutual
improvements across languages, benefiting low-
resource languages like Hausa (Zhao et al., 2024).
Synthetic data generation also presents a valuable
opportunity to address data scarcity. By creat-
ing high-quality synthetic datasets, researchers can
overcome the limitations of limited real-world data
and improve the performance of the model (Mah-
goub et al., 2024). Together, these approaches,
ranging from architectural innovations and special-
ized models to federated learning and synthetic

data, have the potential to significantly advance
Hausa representation in LLMs, making them more
robust, efficient, and culturally relevant for Hausa
speakers.

5 Conclusion

Advancing Hausa NLP requires a multifaceted
approach that addresses both technical and
community-driven challenges. Below, we outline
key areas for future research and development.

Future research should investigate the interplay
between tokenization strategies and model initial-
ization to optimize the learning efficiency of Hausa
LLMs. Techniques inspired by the BabyLM Chal-
lenge (Hu et al., 2024) could be adapted to Hausa,
focusing on sample-efficient pretraining and de-
velopmentally plausible corpora. Such approaches
could mitigate data scarcity while improving model
performance, particularly in low-resource settings.

Innovative architectures that support dynamic re-
tokenization based on context could significantly
enhance the representation of Hausa’s linguistic
features. These models would adapt tokenization to
better capture dialectal variations and morpholog-
ical complexity, improving generalization across
diverse Hausa texts. This is especially important
given the language’s rich morphology and tonal
variations, which are often underrepresented in cur-
rent models.

Building on the work of Wolf et al. (2023), future
studies could explore encoding prosodic features
into embeddings to improve the contextual under-
standing of Hausa. Although prosody carries infor-
mation beyond text, its integration could enhance
model performance, particularly in low-resource
settings. This approach could also facilitate better
handling of tonal variations in Hausa, which are
critical for accurate language representation.

Creating richer and more diverse datasets for
Hausa is essential for advancing NLP applications.
Future efforts should focus on curating datasets that
capture both formal and informal text, as well as di-
alectal variations. Techniques such as data augmen-
tation, synthetic data generation, and crowdsourc-
ing could help address data scarcity and improve
model robustness. Expanding digital resources
through initiatives like web crawling and commu-
nity contributions (Schlippe et al., 2012; Ibrahim
et al., 2022) will also play a crucial role.
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Engaging the Hausa-speaking community in
dataset creation and model evaluation is vital for en-
suring that LLMs reflect the linguistic and cultural
nuances of Hausa. Collaborative efforts between
researchers, linguists, and native speakers could
lead to more representative and inclusive models.
Community-driven approaches can also help ad-
dress biases and improve the cultural and emotional
representation of Hausa in NLP systems (Ahmad
et al., 2024).

Multilingual and cross-lingual transfer learn-
ing offers promising opportunities to leverage re-
sources from related languages to enhance Hausa
NLP. For instance, the work of Erasmo Ndomba
et al. (2025) demonstrates that language-specific
tokenizers outperform multilingual tokenizers in
tasks like sentiment and news classification for
African languages. Interestingly, their findings
reveal that a tokenizer trained on Swahili outper-
formed one trained on Hausa for Hausa-specific
tasks, highlighting strong cross-linguistic connec-
tions between these languages. This suggests that
shared linguistic structures and features among
African languages can be harnessed to improve
model performance. Future research should ex-
plore these cross-linguistic bonds further, leverag-
ing multilingual capabilities and federated learning
techniques to enhance Hausa NLP (Zhao et al.,
2024).

Adapting and fine-tuning existing LLMs to bet-
ter handle the unique linguistic features of Hausa
is another critical area for future work (Acikgoz
et al., 2024; Abubakar et al., 2024). Additionally,
addressing biases and ensuring culturally aware
models will be essential for creating systems that
accurately represent the emotions and nuances of
the Hausa language (Ahmad et al., 2024).
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Table 1: Publicly available Hausa datasets

SN Source Domain Task Size Repository

1 (Muhammad
et al., 2022)

Tweets Sentiment
Analysis

30k https://github.com/hausanlp/
NaijaSenti/blob/main/README.md

2 Rakhmanov
and Schlippe
(2022a)

Teachers’
evaluation

Sentiment
Analysis

40k https://github.com/MrLachin/
HESAC

3 (Aliyu et al.,
2022)

Tweets Hate speech
detection

6k https://github.com/hausanlp/
HERDPhobia

3 Adelani et al.
(2023)

News Topic classi-
fication

3k https://github.com/
masakhane-io/masakhane-news

4 (Inuwa-
Dutse, 2023)

Tweets/News Machine
translation,
raw texts

https://github.com/ijdutse/
hausa-corpus/tree/master

5 (Dione et al.,
2023)

News POS tagging 1,504 sents. https://github.com/
masakhane-io/masakhane-pos/
tree/main/data/hau

6 (Bichi et al.,
2023)

News Summarization 113 articles https://journals.plos.org/
plosone/article/file?type=
supplementary&id=10.1371/
journal.pone.0285376.s001

7 (Ogundepo
et al., 2023)

Wikipedia Question An-
swering

1171 https://github.com/
masakhane-io/afriqa

8 (Adelani
et al., 2021,
2022c)

NER News 2,720 & 8,165 https://github.com/
masakhane-io/masakhane-ner/

9 Adelani et al.
(2022a)

Machine
Translation

News https://github.com/
masakhane-io/lafand-mt/tree/
main

10 (Akhbardeh
et al., 2021)

Machine
Translation

News & Reli-
gious

Numerous https://data.statmt.org/wmt21/
translation-task/

11 (Goyal et al.,
2022)

Machine
Translation

Wikimedia ∼2000 https://github.com/
openlanguagedata/flores

12 (Vegi et al.,
2022)

Machine
Translation

Web Crawl https://github.com/pavanpankaj/
Web-Crawl-African?tab=
readme-ov-file

13 (Sani et al.,
2025a)

News Text Classifi-
cation

5172 https://github.com/TheBangis/
hausa_corpus

191

https://github.com/hausanlp/NaijaSenti/blob/main/README.md
https://github.com/hausanlp/NaijaSenti/blob/main/README.md
https://github.com/MrLachin/HESAC
https://github.com/MrLachin/HESAC
https://github.com/hausanlp/HERDPhobia
https://github.com/hausanlp/HERDPhobia
https://github.com/masakhane-io/masakhane-news
https://github.com/masakhane-io/masakhane-news
https://github.com/ijdutse/hausa-corpus/tree/master
https://github.com/ijdutse/hausa-corpus/tree/master
https://github.com/masakhane-io/masakhane-pos/tree/main/data/hau
https://github.com/masakhane-io/masakhane-pos/tree/main/data/hau
https://github.com/masakhane-io/masakhane-pos/tree/main/data/hau
https://journals.plos.org/plosone/article/file?type=supplementary&id=10.1371/journal.pone.0285376.s001
https://journals.plos.org/plosone/article/file?type=supplementary&id=10.1371/journal.pone.0285376.s001
https://journals.plos.org/plosone/article/file?type=supplementary&id=10.1371/journal.pone.0285376.s001
https://journals.plos.org/plosone/article/file?type=supplementary&id=10.1371/journal.pone.0285376.s001
https://github.com/masakhane-io/afriqa
https://github.com/masakhane-io/afriqa
https://github.com/masakhane-io/masakhane-ner/
https://github.com/masakhane-io/masakhane-ner/
https://github.com/masakhane-io/lafand-mt/tree/main
https://github.com/masakhane-io/lafand-mt/tree/main
https://github.com/masakhane-io/lafand-mt/tree/main
https://data.statmt.org/wmt21/translation-task/
https://data.statmt.org/wmt21/translation-task/
https://github.com/openlanguagedata/flores
https://github.com/openlanguagedata/flores
https://github.com/pavanpankaj/Web-Crawl-African?tab=readme-ov-file
https://github.com/pavanpankaj/Web-Crawl-African?tab=readme-ov-file
https://github.com/pavanpankaj/Web-Crawl-African?tab=readme-ov-file
https://github.com/TheBangis/hausa_corpus
https://github.com/TheBangis/hausa_corpus

