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Abstract

Neural Machine Translation (NMT) systems
face significant challenges when working with
low-resource languages, particularly in domain
adaptation tasks. These difficulties arise due
to limited training data and suboptimal model
generalization, As a result, selecting an opti-
mal model for translation is crucial for achiev-
ing strong performance on in-domain data, par-
ticularly in scenarios where fine-tuning is not
feasible or practical. In this paper, we investi-
gate strategies for selecting the most suitable
NMT model for a given domain using bandit-
based algorithms, including Upper Confidence
Bound, Linear UCB, Neural Linear Bandit, and
Thompson Sampling. Our method effectively
addresses the resource constraints by facilitat-
ing optimal model selection with high confi-
dence. We evaluate the approach across three
African languages and domains, demonstrating
its robustness and effectiveness in both scenar-
ios where target data is available and where it
is absent.

1 Introduction

Advancements in multilingual machine translation
models have significantly expanded language cov-
erage, enabling translations even for low-resource
languages. These models have also demonstrated
strong performance in general domains, such as
News, Movies, and more (Barrault et al., 2020)
(Saunders, 2022a). Additionally, with the rise
of large language models, methods like few-shot
learning and in-context learning have shown no-
table improvements in domain adaptation tasks
(Garcia et al., 2023) (Aycock and Bawden, 2024).
Despite these advancements, the performance of
these models remains highly dependent on the qual-
ity and scope of pre-training data as well as the
model size, particularly for low-resource languages.
It is common for a model to perform well in one
domain but struggle in another, which presents a
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Figure 1: Motivation for Reinforcement Learning for
model selection in machine translation: (a) Using a
large dataset for training may be inefficient or imprac-
tical for low-resource settings, (b) BLEU scores vary
significantly across domains, making model selection
unreliable, (c) Reinforcement learning enables efficient
model selection with fewer data and statistical signifi-
cance.

significant challenge in the selection of the most
suitable NMT system for a given task.

A commonly used approach for domain adapta-
tion in Neural Machine Translation (NMT) tasks
is fine-tuning NMT models on in-domain data us-
ing various strategies (Chu and Wang, 2018). As
shown in Figure 1 (a), this approach faces signif-
icant challenges, particularly in low-resource set-
tings where in-domain data is scarce. Moreover,
fine-tuning often leads to a degradation in perfor-
mance on general-domain data due to the issue of
catastrophic forgetting (Thompson et al., 2019),
further complicating the task of maintaining robust
model performance across different domains.

Selection-based approaches have gained signifi-
cant attention in recent Neural Machine Translation
(NMT) systems, where the task is to identify the
best possible model from a given set. A widely
adopted method for this is the use of a Selection
Block (SB) (Salazar et al., 2020) (Liu and Liu,
2021), which reranks models based on the spe-
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cific task at hand. In recent years, reinforcement
learning (RL)-based approaches have emerged as
promising techniques for optimizing the selection
of these models (Prasad et al., 2025). However,
a limitation of many of these approaches is their
reliance on large amounts of data to demonstrate
performance gains over individual NMT systems.

One potential approach is to select the best
model, which is trained on a general-domain
dataset, and assume it will perform well on the
in-domain dataset without the need for fine-tuning.
Typically, one would evaluate models on the test
dataset using common machine translation metrics,
such as BLEU, to determine the best-performing
model. However, in resource-constrained settings,
these metrics can exhibit high variance, and there
is often limited control over the statistical signif-
icance of the observed differences. This issue is
illustrated in Figure 1 (b), where the mean of these
metrics might provide a misleading impression of
the best NMT system. In such cases, a few out-
lier examples could skew the BLEU score, leading
to the wrong selection of the model. Moreover,
a single evaluation does not capture the full vari-
ability in system performance, particularly when
working with a small validation set. This under-
scores the need for model selection methods that
not only choose the best NMT systems but also
provide a statistical basis for the selection process,
thereby mitigating the risks of misleading conclu-
sions based on limited data.

To address the above challenges of model selec-
tion for Domain adaptation in resource-constrained
settings, one possible approach could be to esti-
mate the most optimal NMT system using fewer
data samples, thereby reducing the reliance on large
datasets. This can be achieved through the use of
bandit-based algorithms (Zhou, 2016) (Bouneffouf
et al., 2020), which allow for efficient exploration
and exploitation of model performance, facilitating
the identification of the best-performing system for
the given domain with minimal data. As shown in
Figure 1 (c), by leveraging these techniques, it is
possible to make more informed decisions about
model selection, even when In-domain data avail-
ability is limited, ensuring effective performance
in low-resource scenarios. Our key contributions
are summarized as follows:

• We propose a bandit-based approach to es-
timate optimal systems for a domain in a
resource-constraint setting.

• We evaluate our approach on English to multi-
ple African languages in multiple domains
and report the performance of the popular
bandit algorithms when applied to domain-
specific model selection task.

2 Related works and Motivation

Domain Adaptation in Neural Machine Trans-
lation (NMT) refers to methods aimed at adjust-
ing translation models trained on general-domain
data to perform effectively in specific target do-
mains with distinctive characteristics (Saunders,
2022b). Effective domain adaptation typically ad-
dresses data scarcity and domain mismatch (Pang
et al., 2024) issues through data-centric and model-
centric approaches. Data-centric strategies include
back-translation using monolingual target data
(Poncelas et al., 2019; Jin et al., 2020), forward-
translation and self-learning (Chinea-Ríos et al.,
2017), and synthetic data generation via noise intro-
duction or lexicon-based methods (Vaibhav et al.,
2019; Hu et al., 2019; Peng et al., 2020; Zhang
et al., 2022). Model-centric approaches introduce
domain-specific parameters or modules like do-
main tagging, embedding manipulation, adapter-
based methods, and pointer-generators leveraging
dictionaries (Kobus et al., 2017; Stergiadis et al.,
2021; Pham et al., 2019; Bapna and Firat, 2019;
Chen et al., 2021).

In low-resource scenarios, approaches such as
data augmentation through bilingual lexicon-based
replacements, transfer learning, and pretrained
multilingual models have been employed (Nag
et al., 2020; Liu et al., 2021). However, despite
significant progress in both DA and low-resource
NMT, domain adaptation techniques remain
underexplored and challenging specifically for
low-resource languages, where often the only
available parallel data are very limited (Siddhant
et al., 2022; Ranathunga et al., 2023).

Selection-Based Approach Recently, various
selection methods have been introduced prior to
the fusion step in multi-agent candidate selection.
Significant research has focused on summarization
tasks, including training reranking models based
on evaluation metrics (Ravaut et al., 2023), em-
ploying contrastive learning for effective candidate
ranking (Liu and Liu, 2021), and utilizing pairwise
ranking methods to directly compare candidate
summaries (Jiang et al., 2023). In the field of
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Figure 2: Block diagram of the proposed bandit-based
model selection strategy.

neural machine translation (NMT), recent studies
by (Prasad et al., 2025) have explored model
selection strategies using a DQN-based approach.
However, all these selection methods require
substantial amounts of parallel data for effective
training. Notably, limited research has investigated
contextual bandit (Lu et al., 2010) approaches,
which require significantly less data, to generalize
agent selection based on provided context in
low-resource machine translation scenarios.

Motivation for Bandit based approach A ma-
jor challenge in Low-Resource Machine Transla-
tion (LRMT) is the scarcity of high-quality train-
ing datasets. This issue is further compounded
in domain-specific translation, where the data be-
comes even more limited. While general-domain
NMT systems exhibit reasonable performance
across a broad range of tasks, their efficacy sig-
nificantly fluctuates across different domains and
languages. To mitigate this variability and iden-
tify the most effective NMT model for a given task
with limited data, an optimal selection strategy is
essential. This strategy must not only consider the
available training data but also provide statistically-
backed confidence in the model’s selection.

Bandit-based approaches have been widely ex-
plored in recommendation systems, where recom-
mendations are generated based on past interac-
tions with users (Silva et al., 2022). This methodol-
ogy is well-suited for selecting optimal NMT sys-
tems in scenarios where only a small in-domain
dataset is available, utilizing an appropriate re-
ward function for NMT performance (Boursier and
Perchet, 2024) (Nguyen et al., 2017). Furthermore,
reference-less reward mechanisms offer a promis-
ing avenue for applying these bandit-based meth-
ods in target-free domain-specific machine transla-

tion tasks, as demonstrated by recent works (Obu-
chowski et al., 2024).

3 Methodology

As previously discussed, selecting the best model
from a pool by evaluating a subset of data and then
applying it to the entire test set is both computa-
tionally expensive and unreliable. Determining the
necessary sample size to ensure the optimality of
the chosen model becomes extremely important
in such cases. Hence we take a more principled
way to dynamically choose the machine translation
model on-the-fly by treating the model selection
process as a multi-armed bandit problem. We ex-
plore popular bandit algorithms designed for regret
minimization, which, under mild theoretical as-
sumptions, are proven to achieve (near-)optimal
cumulative rewards over time. Below, we provide
a brief overview of our methodology, as illustrated
in Figure 2.

Each source sentence x is passed through
a Language-agnostic BERT Sentence Encoder
(LaBSE) to obtain a feature vector which we denote
by overloading x ∈ Rd. This vector x acts as the
context vector in the contextual bandit algorithms
considered in this work. The MT system pool act
as the arms {M1,M2, . . . ,Mn} in our multi-armed
bandit setup. Once the arm is chosen by the MAB
algorithm, the corresponding MT system is chosen
to translate the source sentence x to obtain y in
the target language. Next, a reward is generated
depending on x, y and whether a reference gold
translation is available (see the next section for
detail on ‘reward’) to obtain a scalar r.

Next, we provide a brief explanation of the arm
selection strategy and update rules for each of the
bandit algorithms we explore.

Upper Confidence Bound (UCB): UCB (Auer
et al., 2002) relies on the principle of Optimism in
the Face of Uncertainty (OFU). It selects the arm
that maximizes an ‘upper confidence bound’ of its
estimated reward.

Select arm:

at := argmax
a∈{M1,M2,...,Mn}

(
µ̂a(t) + α

√
log t

Na(t)

)

Update empirical means of all arms.

where µ̂a(t) is the empirical reward obtained from
pulling arm a till round t, Na(t) is the number
of times arm a is pulled till round t, and α is a
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confidence parameter.
Thompson Sampling (TS): Thompson Sampling
(Thompson, 1933) is a Bayesian approach where
we maintain a posterior distribution over each arm’s
expected reward and sample from it. In particular,
in our case we maintain a Beta distribution over
each arm’s reward which has two parameters α, β
which are initially set to 0. The arm selection and
parameter update rules are as follows:

Select arm:

at := argmax
a∈{M1,M2,...,Mn}

θa ∼ P (·|αa, βa)

Update:

αa ← αa + r, βa ← βa + 1− r

Linear UCB (LinUCB): LinUCB (Li et al.,
2010; Abbasi-yadkori et al., 2011) extends UCB
to contextual bandits, assuming that rewards fol-
low a linear function of the context/feature vector
xt ∈ Rd as explained before . In particular, we
make the following assumption on the reward func-
tion that ∀t ≥ 1, r := xT θa + noise for all arms
a.

Select arm:

at := argmax
a∈{M1,M2,...,Mn}

(
xTt θ̂a + α

√
xTt A

−1
a xt

)

where, Aa :=
t∑

s=1
1{as == a}xsxTs , ba :=

t∑
s=1

1{as == a}rsxs and θ̂a := A−1
a ba is the

Least Squares estimate of the true parameter θa
of arm a.

Neural LinUCB (NL): Neural LinUCB (Xu
et al., 2020) is a deep-learning extension of Lin-
UCB, replacing the linear model with a neural net-
work that maps features to a latent representation
before applying LinUCB. In particular we replace
the context vector x by a neural network f(x : w)
parameterized by w. The arm selection strategy
and the update rule remain the same as in LinUCB
with x replaced with f(x;w).
Rewards: The rewards serve as the primary sig-
nal in bandit-based settings, guiding both the
learning process and decision-making of the al-
gorithms. The main objective in a Multi-Armed
Bandit (MAB) problem is to maximize rewards by
balancing exploration and exploitation.

In Neural Machine Translation (NMT), model
performance is typically evaluated using standard

metrics such as BLEU and COMET. These met-
rics are particularly crucial for assessing how
well a model translates within a specific domain.
BLEU measures how accurately the model trans-
lates domain-specific vocabulary, while COMET
evaluates the semantic similarity of the model’s
output to the reference translation within the given
domain. Using these metrics, we consider two
types of reward signals as follows:

• When parallel data is present: When we
have source along with the reference (gold)
translation, we consider a combination of
BLEU (Post, 2018) and a reference-based
comet as shown below. Note that both
the BLEU and comet scores have been
normalized to lie between [0,1].

Reward = λ · BLEU + (1− λ) · COMET.

Here λ is a hyperparameter in [0,1]. In our
experiments, we find that λ = 0.4 achieves
the best results in our case.

• Target-free scenario: When only the source
sentence is present, and the target is absent,
which is typically the case in low-resource
languages, especially in domain translation
task, we use a reference-less MT metric like
CometKiwi (Rei, 2022) (normalized between
[0,1]), as the reward signal.

The λ is a controllability parameter that enables us
to control the influence of metrics on reward, and
reward_norm is the normalization value to normal-
ize the metrics.

4 Experimental Setup

Datasets and Evaluation metrics: For our ex-
periments, we utilize parallel datasets for English-
to-African language translation, focusing on three
African languages: English-to-Yoruba (en-yo),
English-to-Swahili (en-sw) and English-to-Igbo
(en-ig). We sample 1,000 parallel samples for vali-
dation (seed data for model convergence) and test-
ing each. The datasets span three domains: News,
Movies, and Religious texts.

• News Domain: We use the Lafand-MT dataset
(Adelani et al., 2022), which contains paral-
lel data for English-to-16 African languages,
gathered from various news corpora.
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Datasets News Igbo News Yoruba News Swahili Movies Igbo Movies Yoruba Movies Swahili Religious Igbo Religious Yoruba Religious Swahili
Aya101 12.98 5.20 23.53 7.48 3.847 23.98 19.03 11.53 5.04

Gemma2 9B 8.17 3.55 24.24 5.21 1.97 25.07 9.48 2.12 3.9
Llama 3.1 8B 4.59 3.28 17.24 2.85 1.09 10.90 6.79 3.43 2.25

Madlad 6.91 1.11 8.92 7.087 1.19 24.47 3.19 1.36 32.36
NLLB 19.73 9.67 27.57 9.60 12.90 30.78 34.72 14.96 28.01
UCB 19.83 9.539 28.275 9.6 12.90 30.78 34.72 14.96 32.36
TS 19.48 9.74 26.95 9.36 12.88 27.29 34.34 14.34 32.54

LinUCB 19.73 9.54 27.80 9.80 12.90 29.9 34.8 13.7 32.45
NL 19.74 9.67 27.57 9.24 13.12 24.37 34.72 15.67 32.39

Table 1: Performance on BLEU metrics when Parallel data is present.

Datasets News Igbo News Yoruba News Swahili Movies Igbo Movies Yoruba Movies Swahili Religious Igbo Religious Yoruba Religious Swahili
Aya101 12.98 5.20 23.53 7.48 3.847 23.98 19.03 11.53 5.04

Gemma2 9B 8.17 3.55 24.24 5.21 1.97 25.07 9.48 2.12 3.9
Llama 3.1 8B 4.59 3.28 17.24 2.85 1.09 10.90 6.79 3.43 2.25

Madlad 6.91 1.11 8.92 7.087 1.19 24.47 3.19 1.36 32.36
NLLB 19.73 9.67 27.57 9.60 12.90 30.78 34.72 14.96 28.01
UCB 19.83 9.53 28.27 7.48 12.90 30.78 34.72 14.96 28.01
TS 19.48 9.74 26.95 9.33 12.89 27.95 34.34 14.34 32.54

LinUCB 18.5 9.67 27.5 8.9 12.90 29.7 34.54 11.51 32.67
NL 19.73 9.67 27.57 7.48 12.90 23.98 34.72 11.53 32.36

Table 2: Performance on BLEU metrics in Target-Free scenario

• Movies Domain: We leverage the OpenSub-
titles dataset (Lison and Tiedemann, 2016),
which includes parallel translations of dia-
logues from various movies and TV shows.
This domain is essential for capturing infor-
mal language usage and conversational nu-
ances in translations.

• Religious Texts Domain: We compile a
dataset from various sources, including
CCAligned (El-Kishky et al., 2020) and Tanzil
(available at https://tanzil.net/), which
contains Quran translations in multiple lan-
guages. This domain is particularly valuable
for translating formal, religious content.

To assess the performance of the models, we rely
on BLEU (Papineni et al., 2002), a widely accepted
metric in machine translation. BLEU effectively
measures the degree of overlap between the model-
generated translations and reference translations,
capturing the adequacy of domain-specific vocabu-
lary translation, which is specifically effective for
In-Domain Translations
Models: We test the effectiveness of our approach
by using baselines, which also act as arms for ban-
dits. The models used are a Mixture of LLMs
and Foundational models like Aya101 (Üstün et al.,
2024), NLLB200 3.3B (NLLB) (Team, 2022),
Madlad400 10B (Madlad) (Kudugunta et al., 2023),
Gemma2 9B (et al., 2024b) and Llama3.1 8B (et
al., 2024a) all the model used for experiments are
in its based or pre-trained state.
Choice of Hyper-parameters: For evaluation of
our proposed bandit-based strategies, we use four

Algorithm Parameter Value
UCB λ [0.4-0.6]
Thompson Sampling Prior Distribution Beta(0,0)

LinUCB
α
λ

1.5
0.4

Neural LinUCB Arm model network
2 layer MLP
with 50 neurons each

Table 3: Values of hyper-parameters used in our experi-
ments.

popular arm-selection bandit algorithms that are
UCB, LinUCB, Neural Bandit, Thompson Sam-
pling as discussed in detail in Sec. 3. The values of
the hyper-parameters specific to each bandit strat-
egy are given in Table 3. The selection of Hyper-
parameters was done based on hit and trail method,
where initial few sentences of validations were used
for convergence of algorithm and the algorithm was
tested on rest of the remaining sentences.

5 Results

When parallel data is present: The hyper-
parameters are tuned on the validation set and
freezed for all the algorithms. The Bandit-based
models explored the reward that is a weighted
summation of BLEU and reference-based Comet
on the exploration set (Section 3 Rewards), the
performance is evaluated using 1000 test samples
per domain and language. As shown in Table
1, most of the Bandit-based approaches, when
selecting the optimal arm, either perform on par
with or surpass the best possible NMT model,
demonstrating the effectiveness of our proposed
method. On average, UCB (Upper Confidence
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Bound) achieves superior performance across all
languages and domains, outperforming the best
model, NLLB, by an average improvement of
2.68% in BLEU score. Additionally, in specific
cases—such as Neural Linear Bandit (NL) in the
Movies domain for Yoruba, UCB in the News
domain for Igbo and Swahili, and Thompson
Sampling (TS) in the News domain for Yoruba,
Religious, and Swahili the Bandit-based algorithms
surpass the performance of the best possible NMT
model. This suggests that these algorithms can
occasionally select alternative NMT systems,
resulting in slight but notable improvements in
translation quality. In summary, the results indicate
that Bandit-based approaches can effectively
identify the best-performing NMT models, even
with very small training sets, highlighting the
robustness and utility of our proposed training
strategy.

Results on Target-free Scenario: In this experi-
ment, we explore the scenario where target trans-
lations for the in-domain dataset are unavailable, a
common challenge in low-resource language set-
tings. Such cases can be addressed using reference-
less rewards (Section 3 Rewards), specifically lever-
aging CometKiwi-based metrics for NMT evalua-
tion. The exploration of the Bandit-based models
follows the same setup as discussed previously,
with testing performed on 1000 samples. As shown
in Table 2, the Bandit-based approaches success-
fully identify the best arms for translations even in
the absence of target translations for reward gener-
ation. Among the various Bandit algorithms, UCB
performs the best, followed by LinUCB and NL.
Notably, in some instances, the Bandit-based selec-
tion slightly outperforms the individual best mod-
els, underscoring the flexibility of our approach.
This demonstrates that our method can effectively
be applied to model selection in target-free domain
translation task where reference translations are not
available.

6 Conclusion

In this paper, we presented a bandit-based approach
for selecting the most suitable NMT model for do-
main adaptation, particularly in low-resource set-
tings. Our method effectively balances exploration
and exploitation by leveraging strategies such as
Upper Confidence Bound, Linear UCB, Neural Lin-
ear Bandit, and Thompson Sampling, enabling op-

timal model selection with high confidence. Exper-
imental results across multiple African languages
and domains confirm the robustness of our ap-
proach, demonstrating its effectiveness both in the
presence and absence of target domain data. Our
findings highlight the potential of bandit-based
methods to improve NMT performance in resource-
constrained environments, paving the way for a
more efficient and adaptive model selection pro-
cess.
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