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Abstract

The performance of Automatic Speech Recog-
nition (ASR) depends on the availability of
transcribed speech datasets—often scarce or
non-existent for many of the world’s lan-
guages. This study investigates alternative
strategies to bridge the data gap using zero-
shot cross-lingual transfer, leveraging translit-
eration as a method to utilize data from other
languages. We experiment with transliteration
from various source languages and demonstrate
ASR performance in a low-resourced language,
Ambharic. We find that source data that align
with the character distribution of the test data
achieve the best performance, regardless of
language family. We also experiment with
fine-tuning with minimal transcribed data in
the target language. Our findings demonstrate
that transliteration, particularly when combined
with a strategic choice of source languages, is
a viable approach for improving ASR in zero-
shot and low-resourced settings.

1 Introduction

Automatic Speech Recognition (ASR) is an essen-
tial technology used in digital accessibility, video
captioning, and virtual assistants. The performance
of ASR models depends on the availability of large
transcribed speech data for supervised training;
yet, such data is lacking for the majority of the
world’s languages. Attempts to address this data
resource gap include data augmentation techniques
via self-training and speech synthesis (Bartelds
et al., 2023; Kahn et al.), transfer learning by multi-
lingual pre-training alongside high-resourced lan-
guages (Radford et al., 2022), or zero-shot transfer
(Zelasko et al., 2020; Feng et al., 2021). Zero-
shot approaches are particularly appealing in low-
resourced settings as they eliminate the require-
ment of aligned data in the target language.
Languages use different writing scripts; hence,
direct zero-shot transfer to the target language writ-
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ing system may not be possible. Prior works ad-
dress this challenge by relying on phonetic tran-
scriptions, namely the International Phonetic Al-
phabet (IPA), as a universal system that can be
applied zero-shot to unseen languages (e.g. Feng
et al., 2021). While IPA representations are benefi-
cial for building text-free speech recognition sys-
tems for unwritten languages, they are not suitable
for use cases where users interact directly with the
ASR output, such as automatic dictation or video
captioning, as most people cannot decode IPA. An-
other challenge in zero-shot ASR is that languages
have different phonetic distributions. In such cross-
lingual settings, a deeper investigation of the choice
of transfer languages can improve performance (Do
et al., 2022; Khare et al., 2021).

We explore how to best utilize transliteration as
a mechanism for zero-shot ASR transfer. We fo-
cus on a single low-resourced language, Amharic,
as a target language, and experiment with Ara-
bic, Xhosa, French, and Spanish as our trans-
fer languages. We selected Arabic and Xhosa
based on language family and shared phonetic dis-
tribution(§3.1), and French and Spanish as high-
resourced but unrelated languages. We automati-
cally transliterate the transcriptions of the transfer
languages to our target language script and experi-
ment with zero-shot transfer with wav2vec2 XLS-R
and GMM-HMM models (§3.3). While zero-shot
speech recognition generally has high error rates
(Gao et al., 2021), our approach demonstrates im-
provements over prior work and gives insights into
best practices for cross-lingual transfer.!

Contributions Our results demonstrate how
transliteration can be used for effective zero-shot
transfer even when the source language does not
fully cover the phonemes of the target language
(§5.2). With only 22 hours of data from transfer

'Data, code and models will be aviable at

https://github.com/hhnigatu/ASR-via-Translitration
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languages—which is just 4% of the data size used
in prior work—zero-shot transfer through translit-
eration results in performance gains over existing
baselines (§5.3). In addition, with 10 minutes up
to one hour of target language data, we find that
transliteration offers an effective means for data
augmentation, resulting in up to ~30% absolute
reduction in CER compared to augmentation with
source language scripts (§5.4).

2 Related Work

In this section, we describe prior work on zero-shot
ASR, the use of transliteration for ASR transfer,
Ambharic ASR, and the impact of transfer language
selection in cross-lingual ASR.

Zero-Shot ASR: Prior work has explored zero-
shot cross-lingual ASR, mainly relying on IPA-
based transcriptions and measuring Phoneme Error
Rates (PER) (Xu et al., 2022) or Phonetic Token
Error Rates (PTER) (Zelasko et al., 2020). Cross-
lingual settings involve shared acoustic models
trained on single or multiple languages and tested
on an unseen language(s). However, performance
in this zero-shot setting has high error rates, in
the 70-90% range (Gao et al., 2021). Prior work
has relied on linguistic knowledge to improve zero-
shot ASR under these constraints: Xu et al. (2022)
mapped phonemes across transfer and target lan-
guages based on edit distance between articula-
tory features to capture Out-Of-Vocabulary (OOV)
phonemes in the target language. Gao et al. (2021)
improve zero-shot ASR by adding language em-
beddings to capture “phylogenetic similarity and
phone inventory” of the target language, in addi-
tion to masking phonetic tokens that do not exist
in the target language. However, IPA-based cross-
lingual ASR requires mapping back to the original
orthography of the target languages when used in
user-facing applications. Additionally, PER and
PTER do not reflect the performance at the word
level, which is the basic unit for many languages.

Ambharic ASR: Prior works have investigated
both zero-shot and supervised ASR systems for
Ambharic. Tachbelie et al. (2014) found that us-
ing morphemes in lexical and language modeling
led to improved performance gain for Amharic
with GMM-HMM models. In multilingual set-
tings, Whisper (Radford et al., 2022) which con-
tains 32 hours of Amharic speech with translated
English corpus reports a 140% WER. MMS (Pratap
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et al., 2023) which contains Amharic speech data
achieved 52.9% WER with CTC decoding and
30.1% WER with an external language model for
Ambharic. Previous work (Feng et al., 2021) in-
cluded Ambharic in a cross-lingual setting and found
that, when using a monolingual 3-gram language
model for decoding, the PER for Amharic was
74.8% on the Babel (Gales et al., 2014) data. Ze-
lasko et al. (2020) got a similar performance for
Ambharic in zero-shot cross-lingual transfer with a
PTER of 75.2% on the Babel dataset.

Transfer Language Selection: Prior work
showed that phonetic similarity of transfer and tar-
get languages improves performance (Khare et al.,
2021; Tachbelie et al., 2020a). Phonemes that are
not shared between transfer and target languages
suffer in cross-lingual ASR (Li et al., 2022; Khare
et al., 2021). Do et al. (2022) found that languages
that had higher Angular Similarity of Phoneme
Frequencies (ASPF) scores were better transfer lan-
guages for cross-lingual Text-To-Speech (TTS) as
compared to selecting a transfer language based
on language family. Tachbelie et al. (2020b) used
phonetic overlap to select a transfer language for
training an acoustic model and test ASR perfor-
mance on the target language. However, Tachbelie
et al. (2020b) used a phonetic dictionary and lan-
guage model in the target language.

Transliteration: When the transfer language or-
thography is different from the target language,
one potential solution is to use transliteration. By
transliterating all transcripts in a multilingual set-
ting to a single writing system, models can benefit
from cross-lingual transfer more effectively (Datta
et al.). Transliteration has also been used as a data
augmentation strategy: Khare et al. (2021) found
that further pre-training a model on transliterated
English data before finetuning on target language
data improved performance for all languages in
their experiments except Amharic. To the best of
our knowledge, zero-shot transfer with translitera-
tion has not been explored.

3 Transliteration-Based Zero-Shot ASR
for Amharic

As described in the previous section, most previ-
ous works on zero-shot ASR are based on pho-
netic transcriptions, which limits the usability of
the resulting ASR system. In addition, previous
works show relatively poor performance in zero-



shot Amharic ASR, even as measured in phoneme
error rates, compared to other languages. We uti-
lize transliteration as a means to achieve zero-shot
ASR directly in the target language orthography.
Additionally, we experiment with four transfer lan-
guages, looking at phonetic coverage and approxi-
mation through transliteration. We experiment with
fine-tuning a XLS-R model for zero-shot ASR. Ad-
ditionally, we experiment with GMM-HMM mod-
els with a Language Model (LM) trained in the
target language data. We report performance in
terms of Word Error Rate (WER), Character Error
Rate (CER), and Phone Token Error Rate (PTER).

3.1 Source & Target Languages

There are several strategies for selecting transfer
languages in cross-lingual speech systems, such
as using similarity in unigram phonetic distribu-
tion for ASR (Khare et al., 2021), or Angular
Similarity of Phoneme Frequencies (ASPF) (Do
et al., 2022). Mismatch in phonetic inventories
between source and target languages presents a
challenge for cross-lingual zero-shot ASR, which
degrades performance (§2). We experiment with
transfer language (1) from the same language fam-
ily (Arabic) (2) maximum unigram phonetic cov-
erage (Xhosa), and (3) unrelated higher resourced
languages (Spanish and French).

Target Language: Ambharic is an Afro-Semitic
language spoken in Ethiopia. It is written using the
Ge’ez script (Adugna, 2023) and has an Abugida®
writing system, which consists of consonant-vowel
sequences written as a unit. Ambharic has 38
phonemes (31 consonants and 7 vowels) (Leslau,
2000). It includes glottalized sounds or ejectives’
that are not found in many higher-resourced lan-
guages (Tachbelie et al., 2014).

Source Language: Arabic is an Afro-Semitic
language, which is the same language family as
Ambharic. The Arabic language has only three vow-
els with long and short versions (ara, 2023) and
short vowels are not always marked in writing as
they are in the form of diacritics (Contributors to
Wikimedia projects, 2023).

Source Language: Xhosa is a Niger-Congo lan-
guage spoken in Southern Africa. It uses the Latin
script and is known for having a heavy load of click
sounds*. Xhosa has 30 common phonemes with
Ambaric, the highest coverage from all of our other

Zhttps://www.omniglot.com/writing/ethiopic.htm
3https ://wals.info/chapter/7
*https://www.omniglot.com/writing/xhosa.htm
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transfer languages. Specifically, Xhosa covers the 5
ejective phonemes (k’, p’,t’, /tg’/,/lf’/ ) in Ambharic
that are not found in any of the other three transfer
languages.

Source Language: Spanish is an Indo-European
language that uses the Latin script. It has 5 vowels
and fewer than 20 consonants (Hualde, 2005); it
only covers 21 out of the 38 phonemes in Amharic.
Spanish is considered a high-resourced language
based on the availability of data, the number of
speakers, and the availability of language technolo-
gies.

Source Language: French is an Indo-European
language that also uses the Latin script. It is also
considered a high-resourced language. French cov-
ers 23 of the 38 phonemes of Amharic.

3.2 Transliteration

We transliterate the transfer language transcriptions
to the target language script. None of the languages
fully cover the phonemes in the target language (see
Table 2). There are also phonemes in the source
languages that do not exist in Amharic. In both
cases, the transliteration process approximates the
phonemes to the target language in a way that max-

imizes coverage; as an example, the Arabic
/y/ character is transliterated into the Ge’ez ‘ﬂ’/gg
For Xhosa, French, and Spanish we used the
google-transliteration-api® and for Arabic,
we built a rule-based transliterator.

Language | Original Word | Lexicon Entry Pronunciation
Arabic =3 ech. ™ CAd A A
/rahima/ rahima rahima
Xhosa waguqa PrP @ Al AP A
/waguk!a/ /waguk’a/ waguk’a
Ambharic m+TS M+ TR PRI AT A
t’ok’ometa t’ok” ometa t’ok’ ometa

Table 1: Sample lexicon entries for training (Arabic
and Xhosa) and testing (Amharic). We show both
original and IPA transcriptions for readability.

3.3 Models

GMM-HMM are traditional ASR models, in
which the distribution of acoustic features at each
time step is modeled as Gaussian Mixture Mod-
els (GMMs), and the transitions between phones
(or sub-phones) are modeled using HMMs. For
inference, a word-level grammar transducer G, a
pronunciation lexicon L, context dependency graph
C, and learned HMM states H are used to create a
WEST graph for decoding. To use this architecture

Spypi.org/project/google-transliteration-api


https://wals.info/chapter/7
pypi.org/project/google-transliteration-api

in zero-shot transfer, we create a training lexicon
using the transliterated words from our transfer
languages. Each entry in the lexicon consists of
a transliterated source language word, along with
the sequence of Ge’ez characters which we use
in place of phonemes. For the pronunciation lex-
icon, we split the consonant-vowel sequences of
the Ge’ez script so each resulting character repre-
sents a single phoneme®. Table 1 presents sample
lexicon entries. For decoding, we use an Ambharic
lexicon and language model. Hence, the L and
G graphs at test time include words in the target
language, which are combined with the H and C
graphs trained on the transliterated transfer lan-
guage data to create our decoding graph. This way,
the model is equipped with knowledge of the target
language without the need for aligned speech data.

XLS-R-53 is a self-supervised end-to-end neu-
ral acoustic model pre-trained on 56k hours of 53
languages (Conneau et al., 2021). The model can
be fine-tuned for speech recognition by adding a
linear projection layer and optimizing it using the
CTC loss (Conneau et al., 2021). For our pro-
posed transliteration-based zero-shot ASR, we use
the audio and transliterated transcripts from the
source languages to fine-tune the XLS-R model.
Hence, the model is trained to directly predict the
graphemes of our target language.

4 Experimental Settings

In this section, we describe the datasets we used
for our experiments, the training settings for our
models and the language combinations we tried.

4.1 Datasets

Table 2 shows the datasets we used for each of
our transfer languages. For Arabic, the majority of
speech data sets do not contain diacritics (Aldar-
maki and Ghannam, 2023), which is a shortcom-
ing that may negatively impact the effectiveness
of transliteration’. Hence, we used the CIArTTS
dataset (Kulkarni et al., 2023), which consists of
read speech by a single male speaker in Classical
Arabic and is transcribed with complete diacritics.
To control for the effect of data size on perfor-
mance, we downsample all train sets to match the
size of the smallest set, which is around 12 hours.

SFor instance, ¢- /ra/ is split into C /t/ and A /a/ characters.
"We performed preliminary experiments without diacritic
marks and obtained poor performance.
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For Amharic, we use two publicly available
datasets: FLEURS (Conneau et al., 2022) and
ALFFA (Tachbelie et al., 2014). FLEURS is a
102-way parallel read corpus of sentences trans-
lated from English Wikipedia with about 12 hours
of speech per language. The Amharic test set of
FLEURS includes 516 utterances. In all our ex-
periments with the FLEURS test set, we ran both
the hypothesis and predictions through Whipser’s
normalizer®. ALFFA contains about 20 hours of
Ambharic speech from the news domain. The tran-
scriptions for ALFFA have been segmented using
Morfessor (Creutz and Lagus, 2005) to obtain mor-
phemes; we manually reconstructed the test set
transcriptions, which has 359 utterances, as we are
interested in word-level performance. We also used
the Babel dataset (Gales et al., 2014), which con-
tains scripted phone conversation data, to compare
to prior work. We resampled all data to 16 kHz.

4.2 GMM-HMM Model

Training We trained triphone GMM-HMM mod-
els using the Kaldi® toolkit on the transliterated Ara-
bic and Xhosa data'®. As described in §3, we used
the transliterated words in the two languages to cre-
ate the training lexicon. For decoding in Amharic,
we created a lexicon using text data in the Ambharic
language from (Azime and Mohammed, 2021). For
experiments using a single source language for
training, we used the same training lexicon with
transliterated words from both languages to avoid
OQV characters in decoding. Hence, phonemes
that are not in Arabic but are in Xhosa, for exam-
ple, would be initialized but not trained.

Monolingual vs Multilingual Transfer For our
GMM-HMM experiments, we selected the lan-
guages with the highest and lowest phonetic cov-
erage with our target language: Arabic and Xhosa.
We trained monolingual models using data from
each language and multilingual transfer models
with data combined from the two languages.

4.3 wav2vec2 XLS-R

Training As described in §3, we fine-tune XLS-
R using transliterated data from our transfer lan-
guages. We used the XLS-R 53 model (Conneau

8https ://pypi.org/project/whisper-normalizer

9https ://kaldi-asr.org

%We experimented with speaker adaptive training (SAT),
but found that speaker-independent triphone models perform
better. This is in line with prior work (Rouhe et al., 2022) with
low-resourced languages using GMM-HMM.


https://pypi.org/project/whisper-normalizer
https://kaldi-asr.org

Language | Language Family | No. of Common | Source Dataset Domain Hours
Phonemes
Arabic Afro-Semitic 19 CIACTTS (Kulkarni et al., 2023) Religious 12
French Indo-European 23 VoxPopuli (Wang et al., 2021) Parliament | 211
Spanish Indo-European 21 Common Voice 9.0 (Ardila et al., 2020) | Diverse 408*
Xhosa Niger-Congo 30 NCHLT isiXhosa Speech Corpus | Diverse 56
(de Vries et al., 2014)

Table 2: Comparison of phoneme overlap and datasets used for transfer languages. Xhosa has the highest
number of common phonemes with Amharic, while Spanish has the lowest. The datasets vary by domain and
duration, with the Spanish dataset showing the number of validated hours. All datasets were down-sampled to match

the size of the Arabic dataset for uniformity.

(a) Xhosa

(b) Arabic

(c) French (d) Spanish

Figure 1: Log frequency of characters in the train sets (yellow) compared with the FLEURS test set (blue).
Only characters that have a minimum relative frequency of 0.01 in all sets are included in the visualization.

ALFFA FLEURS

WER CER | WER CER

Arabic 9723  84.07 | 9793 8731

GMM-HMM | Xhosa 9294 7574 | 93.17 76.24
Combined | 9223 75.12 | 93.16 77.40

Arabic 100.33  86.67 | 100.10  82.72

XLS-R Xhosa 9991 78.70 | 9991 77.88
Combined | 99.85 73.46 | 99.81 73.72

XLS-R+LM | Combined | 99.14 7798 | 99.17  78.57

Table 3: Zero-shot performance on test sets for
Ambharic using GMM-HMM and XLS-R models We
report performance on training with Arabic only, Xhosa
only, or both (combined) data.

et al., 2021) which has 317M parameters. The
model was trained on a total of 56K hours of data
from 53 languages, which includes Arabic, French,
and Spanish but not Amharic or Xhosa''. We ex-
perimented with different learning rates [3e-5, 1le-4,
le-6, 3e-4] and used a linear learning rate scheduler
with 500 steps as warmup. We trained for a max-
imum of 18.5K steps, with early stopping based
on the performance on the validation set. All our
experiments were conducted on two 24GB Titan
RTX GPUs with CUDA Version 11.2.

"The model includes Arabic data from Common Voice.
While Xhosa is not included, XLS-R training data include
Zulu, a related and mutually intelligible language to Xhosa
(Spiegler et al., 2010).
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Monolingual vs Multilingual Transfer We ex-
periment with monolingual transfer where we train
on an equal amount of transliterated data from each
of the transfer languages separately. This results in
four models trained on transliterated transcripts and
speech data in each of the transfer languages. Then,
we trained on pairs of the four languages resulting
in 6 unique pairs for multi-lingual transfer.

Comparison with GMM-HMM Models To
compare with the GMM-HMM models, we used
data from (Azime and Mohammed, 2021) to train
a trigram language model for decoding using the
SIRLM'? toolkit. The shallow fusion with this ex-
ternal LM is used only in comparison with GMM-
HMM performance, ensuring our results in other
settings are fully zero-shot.

5 Results

In this section, we report the results of the various
experimental settings described above.
5.1 Transfer with GMM-HMM

As Table 3 shows, we find that the GMM-HMM
models outperform the XLS-R models in zero-shot
settings in terms of WER. The XLS-R model, on

2http://www.speech.sri.com/projects/srilm
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ALFFA FLEURS

WER CER | WER CER

Arabic 100.33  86.67 | 100.10 82.72

Monolingual Xhos_a 9991 78.70 | 9991 77.88
Spanish 101.67 7525 | 121.72 81.46

French 116.95 87.29 | 140.81 84.09

French-Arabic 98.79  85.57 | 100.11  87.57

Multilingual French—Xhos_a 99.19 82.10 | 99.95 87.29
French-Spanish | 99.51  73.14 | 105.19 74.08

Spanish-Arabic | 99.87  69.70 | 115.06 72.71

Spanish- Xhosa | 99.63  69.61 | 103.24 70.39

Arabic-Xhosa 99.85 7346 | 99.81 73.72

Table 4: Performance of models trained on monolingual and multilingual settings. Models trained on Spanish
and Xhosa data significantly outperform the models trained on Arabic and French. Pairing the least-performing
transfer languages with the better-performing ones improves performance.

Training Set | ALFFA | FLEURS
Arabic 7.65% 1.78%
French 11.23% | 4.02%
Spanish 2.05% 0.08%
Xhosa 3.12% 0.03%

Table 5: Percentage of characters that are not found
in the test sets but are found in the training set of the
transliterated data. Each percentage quantifies how
much percent of the total number of characters in the
total training set the unique characters account for.

the other hand, achieved similar or slightly better
CER, but much higher WER, as the model was
unable to predict correct words in the target lan-
guage. In the GMM-HMM set-up, we enforce
the language structure during test time through an
Ambharic lexicon and an Amharic LM. Adding an
external LM for decoding with the XLS-R model
improved the WER but only slightly, which shows
the advantage of the HMM model where target
language structure can be incorporated at decod-
ing time. We see these patterns in examples for
both test sets using the Arabic-Xhosa combined
model in Figure 2. While the full sentences do not
make sense, we see highlighted in green full words
that were captured by the GMM-HMM model. In
the ALFFA example in Figure 2, we see the first
word highlighted in red having a similar sound with
the word in the hypothesis but a completely unre-
lated meaning: the word in the hypothesis says
“ye biraw” meaning “The beer” while the word
in the prediction says “ye birow” meaning “The
bureau.” Table 3 also presents results using Arabic-
only and Xhosa-only data for training; we find that
the Xhosa-only models outperform the Arabic-only
models. This is likely due to the higher coverage
of Ambharic phonemes in Xhosa compared to Ara-

Hypothesis: ¢(1--hcir: £ eohhAF @ NAP? AT haTe: (LU Good-1 (1AL 1CT° @ T YIC AT £U
EOLA RS €100 NI A2 oo £ Caveav @ RIVle AEITOA ADEUY RS, ek RECHTFPA
GMM-HMM: ¢4 heivd-£3- haras €74A (1LI)A Tih Go0240 (AL A1AeF® oG A+671 e-ah @+

S0 AE PTITINTIG G0 TOA 195 DAL R OPESA

Hypothesis: ¢iLs.@ A5400d 1% e2-hi1 P4 LELINTT® To99° KLY €P) AP ALHGH
Py s

GMM-HMM: ¢0.C 7 @:4L9° NAd-d-h 49 (LELTATI® TTPTITTA: NAA FOCHTTyel: PA G71F° 5719

Figure 2: Samples showing the predictions of the
GMM-HMM model trained on Arabic-Xhosa data.
While the full sentences of the predictions do not make
sense, highlighted in green are words and characters
that the model correctly predicted.

bic. The best performance is achieved when both
languages are combined.

5.2 Transfer with XLS-R

Monolingual Transfer We find that the mono-
lingual XLS-R model trained on Xhosa outper-
forms all the other models for both dataset, ex-
cept for CER on the ALFFA dataset where the
Spanish-trained model outperforms (see Table 4).
The French model is the least-performing model
in both settings across both metrics. Interestingly,
French performs worse than Spanish despite hav-
ing a higher overlap with Amharic phonemes. We
hypothesize the good performance of the Xhosa
model can be explained by the coverage of 30 out
of 38 of the Amharic phonemes by Xhosa. Addi-
tionally, since we did soft approximation through
transliteration (§3.2), we hypothesize that even if
the phoneme is not present in the language, the
transliteration might still approximate the character
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Method LM No. Languages | Train Data Hours | PER/PTER
Prior Work

Feng et al. (2021) Cross Mono-tg 3-gram 12 554.40 74.80
Zelasko et al. (2020) Cross None 12 554.40 75.20
Ours

Xhosa-Arabic None 2 22 76.32
Spanish-Xhosa None 2 22 73.54

Table 6:

Comparison of our top two best performing models with prior work reported performance. With just

4% of training data size and two transfer languages, our best performing model outperforms the reported PTER in

zero-shot ASR for Ambharic.

representing the phoneme.

To understand the performance gap further, we
looked at the distribution of the characters in the
test sets and the transliterated training data of each
of the languages. Figure 1 shows radar plots of
each distribution in terms of log frequencies (the
log is used to enable interpretable visualization
of the power distribution of characters). Due to
the large number of composite characters in the
Ambharic script, we only show the characters that
have a minimum relative normalized frequency of
0.01 in each set. The plots show a clear pattern:
both Xhosa and Spanish train sets have better cover-
age of the frequent characters in the test set. Arabic
is missing many of the frequent characters, and
French includes a high relative frequency of char-
acters that are infrequent in the test set. As Table
5 shows, both French and Arabic have characters
that are not found in the test set that account for a
higher percentage of their total number of charac-
ters. For example, characters that are in the training
set of transliterated French but not in the ALFFA
test set account for 11.23% of the total. On the
other hand, for both Spanish and Xhosa training
sets, the characters that exist in the training set but
do not exist in the test set account for less than
4% of the total. This analysis suggests that char-
acter distribution plays a larger role than phoneme
coverage in zero-shot performance.

Multilingual Transfer In testing with models
trained by combining two languages, we find that
the combination of Spanish and Xhosa gives the
best performance, which is expected since the two
languages had the top two best performances in
the single-language setting. The combination of
the least-performing models resulted in an improve-
ment over performance in either of the languages in-
dependently for ALFFA ( 86.67% with Arabic only
and 87.29% in French only to 85.57% in French-
Arabic combined) However, for FLEURS, the per-
formance degraded, with a 3% absolute increase
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of CER from the French-only model and 5% in-
crease in the CER from the Arabic-only model. We
also find that pairing the least performing transfer
languages with the better performing languages im-
proves performance on the single-language models:
pairing Arabic and Xhosa data reduced CER from
the Arabic-only model by a 10% absolute drop for
both test sets.

5.3 Comparison with Baselines

We compare with two prior works that experiment
with Ambharic in zero-shot: Feng et al. (2021)
trained hybrid DNN-HMM models with training
data from 12 phonetically diverse languages and
tested cross-lingually on Amharic. Zelasko et al.
(2020) trained an end-to-end ASR model with CTC
loss on 12 languages and tested on Amharic. Both
works train models with IPA transcriptions and re-
port Phone Error Rate (PER) and Phone Token Er-
ror Rate (PTER) respectively on the Babel dataset.
In Table 6, we show the reported results for our
two best models on Babel and compare them to the
baselines. Since our models are trained to predict
graphemes of the target language, we use Langua-
geNet grapheme-to-phone (g2p)'3 converter, which
is also used in (Zelasko et al., 2020), to covert our
model predictions and Babel hypothesis to IPA.
We then calculate PTER on the IPA transcriptions.
With just 4% of training data size compared to prior
work, our best-performing model trained with only
two languages outperforms the baselines.

5.4 Few-Shot Fine-Tuning

As noted in Section 2, performance in zero-shot
cross-lingual ASR typically has high error rates,
even at the phoneme level. Hence, we investigate
the performance of further fine-tuning of the ASR
models in low-resource settings, where we only
use 10 minutes to 1 hour of target language data.
In this setting, the transliterated data serve as a

Bhttps://github.com/uiuc-sst/g2ps



WER/CER without LM WER/CER with LM
ALFFA FLEURS ALFFA FLEURS

Ambharic Only 101.08 79.77 | 101.16 7832 | 99.32 84.74 | 9891 81.74

10 minutes | Source script + Amharic | 101.94 7838 | 104.06 7691 | 99.12 81.32 | 99.12 78.52
Transliterated + Amharic | 102.87 71.42 | 10298 70.72 | 98.80 66.99 | 97.72 70.21

Amharic Only 100.52  80.38 | 101.35 80.37 | 99.57 83.02 | 99.44 80.67

20 minutes | Source script + Amharic | 101.61  69.54 | 100.72 68.17 | 99.02 71.19 | 97.47 68.13
Transliterated + Amharic | 95.32  42.22 | 92.41 40.34 | 8341 38.10 | 80.24 36.42

Ambaric Only 101.29  74.68 | 100.55 73.96 | 98.89 79.23 | 98.64 78.08

30 minutes | Source script + Amharic | 99.54 51.86 | 98.84 49.37 | 91.37 50.16 | 89.09 46.73
Transliterated + Amharic | 91.46 36.75 | 88.25 33.88 | 76.00 32.04 | 70.01 28.46

Ambharic Only 83.55 3034 | 7477 26.29 | 64.30 26.76 | 5595 23.19

1 hour Source script + Amharic | 99.54 51.01 | 99.41 47.48 | 77.10 3531 | 71.85 30.90
Transliterated + Amharic | 82.57  30.19 | 75.51 26.54 | 66.67 25.77 | 5791 21.47

Table 7: Performance of XLS-R further fine-tuned with small amounts of Amharic data, from 10 minutes to 1
hour. We compared direct fine-tuning on Ambharic data, vs. fine-tuning first with transfer language data, original

script, or transliterated script.

form of data augmentation, where the model is first
fine-tuned on the source languages, then further
optimized on the target language. For these experi-
ments, we used a linear learning rate scheduler with
100 steps as warmup and we trained models with
smaller steps depending on data size to avoid over-
fitting. For comparison, we (1) directly fine-tune
XLS-R on the target Amharic data and (2) fine-tune
XLS-R with transfer language data without translit-
eration then further fine-tune on Ambharic data. The
results are shown in Table 7.

We note how further fine-tuning with small
amounts of supervised data in the target language
results in significant performance improvements.
With 20 minutes or more, we observe large reduc-
tions in error rates. We observe that the model
trained on the transliterated data outperforms both
the model trained on original source transcripts (up
to 30% absolute reduction in CER) as well as the
model directly fine-tuned on Amharic data alone.
The performance gap between the three setups is
most pronounced as the data is smaller, indicating
the benefits of using transliteration with carefully
selected transfer languages for low-resource ASR.
Compared to zero-shot, we observe roughly 40%
and 10% absolute reduction in CER and WER, re-
spectively with 30 minutes of Ambharic data.

6 Discussion

Our experiments show how to use transliteration for
zero-shot transfer in low-resourced settings. With
just a fraction of the training data size compared to
prior work, our best-performing model outperforms
the reported performance on Amharic in a zero-shot
setting. Additionally, by training on transliterated
data, we predict directly in the target language or-
thography.
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Error rates in zero-shot ASR are generally high
for direct use of the systems (Gao et al., 2021).
However, zero-shot approaches give us insights to
how to best select transfer languages when we have
limited data available. In line with prior work, we
find that languages that have high unigram phonetic
coverage with the target language are better trans-
fer languages. Further, we find that through soft
approximation via transliteration, even languages
that do not have high phonetic coverage can be
good transfer languages. Our analysis reveals that
transfer languages with the least post-transliteration
rate of Out-Of-Vocabulary (OOV) characters in the
target test set perform best as transfer languages,
regardless of their language family or degree of
inherent phonetic coverage.

In zero-shot settings, GMM-HMM models result
in significantly lower WER, which is ascribed to
the fact that the models incorporate the target lan-
guage lexicon in decoding, unlike the end-to-end
models that lack such linguistic knowledge with-
out supervised training. However, CER is much
lower using the XLS-R model. In low-resource
settings, with 10 minutes to 1 hour of training data
in the target language, transliteration results in im-
proved performance compared to direct fine-tuning
on the target language or using the transfer lan-
guages without transliteration.

7 Conclusion

In this study, we explored the use of translitera-
tion for zero-shot and low-resource cross-lingual
ASR transfer. We find that, with careful selection
of source languages, using ~22 hours of source
data, we can build zero-shot ASR systems that can
transcribe words directly in the target language or-
thography. With small amounts of transcribed data



in the target language, large reductions in error
rates can be achieved through using transliteration
for data augmentation.

Limitations

While our results show promising results for zero-
shot transfer for Amharic, there are several avenues
for improvement. First, the Arabic and French data
are domain-limited. The Arabic data is further con-
strained by having a single speaker. As discussed
in Section 4.1, we could not find multi-speaker
diverse domain data with diacritic markers for Ara-
bic. While this is a limitation, it is also reflective
of the real state of building language technologies
for low-resourced languages. Our current work
explores how far we can go with data and tools
that are currently available to us in a low-resourced
setting. For future work, we will explore using
automated methods for adding diacritic markers
to existing Arabic datasets. Additionally, we were
limited to trying multilingual transfers with just
two transfer languages due to compute resource
constraints. However, our results still demonstrate
that our transliteration-based approach outperforms
the previously reported performance for zero-shot
ASR for Amharic. Future work can explore adding
more languages and trying more combinations of
languages in the multi-lingual setting. Addition-
ally, our work focused on just one target language;
future work could explore our approach on more
languages.
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