
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 4: Student Research Workshop), pages 608–656

July 28-29, 2025 ©2025 Association for Computational Linguistics

LibVulnWatch: A Deep Assessment Agent System and Leaderboard for
Uncovering Hidden Vulnerabilities in Open-Source AI Libraries

Zekun Wu1,2* Seonglae Cho1,2* Umar Mohammed1 Cristian Munoz1

Kleyton Costa1 Xin Guan1 Theo King1 Ze Wang1,2

Emre Kazim1,2 Adriano Koshiyama1,2†

1Holistic AI 2University College London

Abstract
Open-source AI libraries are foundational to
modern AI systems, yet they present signifi-
cant, underexamined risks spanning security,
licensing, maintenance, supply chain integrity,
and regulatory compliance. We introduce LIB-
VULNWATCH, a system that leverages recent
advances in large language models and agen-
tic workflows to perform deep, evidence-based
evaluations of these libraries. Built on a graph-
based orchestration of specialized agents, the
framework extracts, verifies, and quantifies risk
using information from repositories, documen-
tation, and vulnerability databases. LIBVUL-
NWATCH produces reproducible, governance-
aligned scores across five critical domains, pub-
lishing results to a public leaderboard for on-
going ecosystem monitoring. Applied to 20
widely used libraries—including ML frame-
works, LLM inference engines, and agent or-
chestration tools—our approach covers up to
88% of OpenSSF Scorecard checks while sur-
facing up to 19 additional risks per library,
such as critical RCE vulnerabilities, missing
SBOMs, and regulatory gaps. By integrat-
ing advanced language technologies with the
practical demands of software risk assessment,
this work demonstrates a scalable, transparent
mechanism for continuous supply chain evalu-
ation and informed library selection.

1 Introduction

The rapid adoption of AI systems in high-stakes
domains has intensified the need for robust tech-
nical governance and risk assessment. While
policy frameworks increasingly call for trans-
parency, accountability, and safety, a persistent
gap remains between these governance objectives
and the engineering practices required to realize
them (Reuel et al., 2025). Open-source libraries
and frameworks, which underpin most modern ma-
chine learning systems, introduce complex legal,

*Equal contributions
†Corresponding author

security, maintenance, and regulatory risks that
are often overlooked by conventional assessment
tools (Wang et al., 2025; Alevizos et al., 2024).
These tools typically provide surface-level checks
and lack the depth needed to uncover nuanced vul-
nerabilities in the AI software supply chain.

Recent progress in large language models and
agentic workflows has enabled new approaches
to structured, evidence-based analysis across di-
verse domains. In this work, we introduce LIB-
VULNWATCH, a system that leverages these ad-
vances to perform deep, multi-domain evaluations
of open-source AI libraries. The system coor-
dinates specialized agents to assess five critical
risk domains—licensing, security, maintenance,
dependency management, and regulatory compli-
ance—drawing on verifiable evidence from reposi-
tories, advisories, and documentation.

To enable continuous ecosystem monitoring and
evidence-based decision-making, we publish every
assessment on a public leaderboard1. Evaluating
20 widely used AI libraries—including ML frame-
works, inference engines, and agent orchestration
tools—LIBVULNWATCH demonstrates:

• Up to 88% coverage of OpenSSF Scorecard
checks;

• Up to 19 additional risks per library, includ-
ing RCEs, missing SBOMs, and compliance
gaps;

• Governance-aligned, reproducible scores
for transparent comparison and risk manage-
ment.

By integrating advanced language technologies
with the practical demands of software risk assess-
ment, LIBVULNWATCH offers a scalable, trans-
parent mechanism for operationalizing governance
principles in open-source AI infrastructure.

1The leaderboard and all per-library assessment re-
ports are publicly available on Hugging Face at https://
huggingface.co/spaces/holistic-ai/LibVulnWatch.

608

https://huggingface.co/spaces/holistic-ai/LibVulnWatch
https://huggingface.co/spaces/holistic-ai/LibVulnWatch

2 Related Work

Research on vulnerabilities in AI pipelines has ex-
panded beyond adversarial inputs and data poison-
ing to encompass system-level risks in the software
supply chain (Wang et al., 2025). Studies have ana-
lyzed large-scale LLM supply chain issues, reveal-
ing flaws in application and serving components,
while others have documented recurring bugs in
widely used frameworks such as TensorFlow and
PyTorch (Chen et al., 2023). LLM-based vulnera-
bility detection has shown promise for code anal-
ysis (Zhou et al., 2024), though challenges such
as false positives and domain adaptation remain.
Broader supply chain threats—including depen-
dency confusion and package hijacking—are well-
documented (Ladisa et al., 2023; Ohm et al., 2020).

Efforts to assess open-source project hygiene,
such as the OpenSSF Scorecard (Zahan et al.,
2023), provide valuable surface metrics but often
lack the depth required for comprehensive vulner-
ability analysis. Recent advances in multi-agent
orchestration frameworks, including LangChain
and LangGraph (LangChain AI, 2025a,b), have en-
abled more structured and scalable approaches to
information extraction and evaluation, forming the
basis for several assessment pipelines.

3 Methodology

Our approach leverages recent advances in lan-
guage models and multi-agent systems to address
complex challenges in software risk assessment.
By adapting NLP techniques for information ex-
traction, knowledge synthesis, and structured rea-
soning, we operationalize key Technical AI Gover-
nance capacities through a multi-stage evaluation
pipeline. This section details the pipeline’s archi-
tecture, risk assessment framework, evaluation pro-
tocol, and benchmarking procedures.

3.1 Risk Assessment Framework

We define a comprehensive risk assessment frame-
work adapted from established open-source and AI
risk taxonomies. It encompasses five governance-
relevant domains, each with specific factors for
evaluation:

• License Analysis: Assessing license type
(e.g., MIT, Apache 2.0, GPL), version, com-
mercial use compatibility, distribution rights,
patent grant provisions, attribution require-
ments, and overall conformance with open-
source compliance standards.

• Security Assessment: Evaluating known
Common Vulnerabilities and Exposures
(CVEs) within the last 24 months (count and
severity), the existence and adequacy of a se-
curity disclosure policy, responsiveness to se-
curity issues, evidence of security testing (e.g.,
CI/CD test coverage), and the handling of re-
leased binaries or signed artifacts.

• Maintenance Indicators: Analyzing release
frequency and the date of the latest release,
the number and activity levels of contributors
(including diversity and organizational back-
ing), issue resolution metrics (e.g., response
times, recent commit activity), and the project
governance model and packaging workflow.

• Dependency Management: Examining Soft-
ware Bill of Materials (SBOM) availability
and format (e.g., CycloneDX, SPDX), direct
and transitive dependency counts, policies and
tools for dependency updates, and the identifi-
cation of known vulnerable dependencies.

• Regulatory Considerations: Reviewing doc-
umentation for alignment with relevant com-
pliance frameworks (e.g., GDPR, AI Act), the
availability of explainability features (espe-
cially for AI/ML libraries), stated data privacy
provisions, and the presence of audit docu-
mentation or support for audit readiness.

Each of these five domains, as depicted as parallel
tracks at the top of Figure 1, is operationalized as
a distinct assessment module within the agentic
workflow, guided by engineered prompts enforc-
ing key concept coverage and quantifiable metric
extraction.

3.2 Agentic Workflow

Our system employs a structured, agentic workflow
implemented as a DAG using a modern agent or-
chestration framework. Our implementation was in-
spired by the Open Deep Research repository2. We
redesigned the graph design and defined domain-
specific prompts that adapt language model capa-
bilities to the specific knowledge requirements of
security, licensing, and compliance assessment. All
experiments used gpt-4.1-mini (costing approx.
$0.10 per library). OpenSSF Scorecard (Zahan
et al., 2023) checks were run on the primary GitHub
repository of each target library, and we used the
Google Search API for evidence retrieval.

2https://github.com/langchain-ai/open_deep_
research

609

https://github.com/langchain-ai/open_deep_research
https://github.com/langchain-ai/open_deep_research

The automated workflow addresses particu-
lar challenges of applying language models to
evidence-based assessment, including factuality
verification and domain-specific knowledge ex-
traction. It begins with high-level search-based
planning, followed by domain-specific iterative re-
trieval until sufficient evidence is gathered for each
of the five domains. These are processed in paral-
lel to generate draft findings, which are combined
into a full report including an executive summary.
The report is then validated by identifying the main
GitHub repository, running the Scorecard, and com-
paring outputs using an LLM. This approach en-
sures modularity, consistency, and parallelism. In-
tegrating the LLM’s text understanding, structured
data handling, and search capabilities, the over-
all agentic workflow is illustrated in Figure 1 and
comprises the following key stages:

• Planning: An initial Assessment Planner
agent (top of Figure 1) generates a detailed as-
sessment plan for the target library, adhering
strictly to the five core risk domains detailed
in Section 3.1 and formulates initial research
queries.

• Iterative Evidence Gathering and Drafting
(Per Domain): For each of the five risk do-
mains, operating in parallel:

– Query Generation: Targeted search
queries are formulated.

– Evidence Retrieval: A dedicated agent
iteratively performs searches against au-
thoritative sources (e.g., official docu-
mentation, security databases, repository
metadata using specialized query pat-
terns via Search API / Local RAG) to
aggregate evidence. This includes the
use of advanced search operators and
repository-specific query patterns (e.g.,
for GitHub) to extract structured data and
metrics where direct API access is not as-
sumed.

– Draft Findings: The retrieved evidence
is synthesized into initial draft findings
for the specific domain.

– Quality Check & Refinement Loop: A
quality check (QC) assesses if sufficient
evidence has been gathered and if the
findings meet predefined criteria. If the
QC is not passed and the maximum
search depth (k) has not been reached,
the process loops back to generate re-
fined queries and retrieve more evidence.

This iterative loop continues until the QC
is passed or the depth limit is reached.

This entire synthesis process is strictly gov-
erned by prompts engineered to adapt lan-
guage understanding capabilities to the soft-
ware security context, enforcing structured
reporting (e.g., with sections for an executive
overview, emergency issues, and a detailed
table of findings with columns for Risk Factor,
Observed Data, Rating, Reason for Rating,
and Key Control), quantification, evidence
citation, and handling of missing informa-
tion. The specific instruction sets (prompts)
used for each key agent are detailed in Ap-
pendix A.2.

• Synthesis & Report Compilation: Once
drafting for all domains is complete (marked
as Done in Figure 1), a final agent synthesizes
the individual domain findings into a consol-
idated, structured report. This includes an
executive summary, a risk dashboard, high-
lighted emergency issues, prioritized controls,
and a mitigation strategy.

• Benchmark Validation: Before final publi-
cation, the generated report undergoes a val-
idation step. This involves identifying the
main repository of the target library, running
the OpenSSF Scorecard, and comparing the
Scorecard output with the agentś report (often
using an LLM for an Archive Evaluation) to
assess alignment and novelty, as depicted in
Figure 1.

• Public Reporting and Ecosystem Monitor-
ing: The validated and finalized report is pro-
grammatically published to a public leader-
board, which is implemented as an interac-
tive Gradio application hosted on Hugging
Face Spaces (see Appendix A.1 for details
and screenshots). This facilitates Ecosystem
Monitoring and accountability by dynamically
ranking libraries by Trust Score and highlight-
ing key risks. We follow responsible disclo-
sure practices for any new, non-public vulner-
abilities identified during the assessment.

3.3 Evaluated AI Libraries

We evaluated 20 diverse open-source AI libraries
spanning the AI lifecycle, selected for represen-
tative coverage (see Table 1 for list and scores).
Libraries were chosen from three key functional
categories, aiming for diversity in function, com-
munity size, maturity, and impact:

610

Figure 1: Workflow of the automated agent. Each risk
domain (License, Security, Maintenance, Dependency,
Regulatory) runs in parallel, with controlled-depth evi-
dence retrieval and drafting. The results are synthesized
into a report, benchmarked using the OpenSSF Score-
card, and then published with monitoring.

• Core ML/DL Frameworks: PyTorch
(Paszke et al., 2019), TensorFlow (Abadi et al.,
2016), ONNX (ONNX, 2025), Huggingface
Transformers (Wolf et al., 2020), and JAX
(Bradbury et al., 2025).

• LLM Inference & Orchestration Tools:
TensorRT (NVIDIA, 2025), LlamaIndex (Liu,
2022), SGLang (Zheng et al., 2023), vLLM
(Kwon et al., 2023), LangChain (LangChain
AI, 2025a), and Text Generation Inference
(Hugging Face, 2025).

• AI Agent Frameworks: Browser Use
(Müller and Žunič, 2024), CrewAI (Cre-
wAI, 2025), MetaGPT (Zhang and colleagues,
2024), LangGraph (LangChain AI, 2025b),
SmolAgents (Roucher et al., 2025), Stage-
hand (Browserbase, 2025), Composio (Com-

posio, 2025), Pydantic AI (Pydantic, 2025),
and Agent Development Kit (Google, 2025).

Each library underwent the full protocol; results
are public.

3.4 Risk Scoring
We employ a 1-5 numerical scale for risk rating
within each of the five governance-relevant do-
mains outlined above (Section 3.1), where 1 in-
dicates High Risk, 3 Medium Risk, and 5 Low
Risk. As detailed in the workflow description (Sec-
tion 3.2), each rating requires justification tied to
specific, verifiable evidence thresholds defined in
the prompts. The risk scoring within each do-
main is anchored by the following criteria de-
rived from the agent system prompts:

• Low Risk (Score 5) is indicated by: License:
Permissive (e.g., MIT, Apache 2.0, BSD) with
clear terms and compatibility; Security: No
CVEs in the past 24 months, a robust secu-
rity policy, and rapid fixes (e.g., <7 days);
Maintenance: More than 10 active contribu-
tors, monthly or more frequent releases, and
prompt issue response (e.g., <24 hours); De-
pendencies: SBOM available, fewer than 20
direct dependencies, and evidence of auto-
matic updates; Regulatory: Clear compliance
documentation and a complete audit trail.

• Medium Risk (Score 3) is indicated by: Li-
cense: Moderate restrictions or unclear patent
provisions; Security: 1-3 minor CVEs in the
past 12 months, a basic security policy, and
moderate response times (e.g., 7-30 days);
Maintenance: 3-10 active contributors, quar-
terly releases, and issue response times of 1-7
days; Dependencies: Partial SBOM, 20-50
direct dependencies, and some transitive vis-
ibility; Regulatory: Incomplete compliance
documentation or partial audit readiness.

• High Risk (Score 1) is indicated by: License:
Restrictive terms (e.g., GPL/AGPL), incom-
patible terms, or other legal concerns; Secu-
rity: Critical or multiple CVEs, a missing
security policy, or slow response times (e.g.,
>30 days); Maintenance: Fewer than 3 ac-
tive contributors, infrequent releases (e.g., >6
months), or poor issue response; Dependen-
cies: No SBOM, more than 50 direct depen-
dencies, or known vulnerable transitive de-
pendencies; Regulatory: Missing compliance
documentation or failure to meet essential reg-
ulations.

611

Critically, the absence of necessary informa-
tion for assessment (e.g., no public security pol-
icy or SBOM) on any key risk factor is also ex-
plicitly defined as a High Risk indicator (Score
1). Furthermore, the system is designed to crit-
ically evaluate all available information to iden-
tify the most significant or concerning risk fac-
tor within each domain, even if other factors ap-
pear satisfactory, ensuring a thorough and conser-
vative risk posture. Intermediate scores (2 or 4)
may be assigned based on the agent’s assessment
when evidence suggests a risk level between these
defined thresholds. The overall Trust Score pro-
vides a composite measure by aggregating the five
domain scores (Li, Se,Ma,De,Re): Trust(l) =
1
5

∑
d∈{Li,Se,Ma,De,Re} d(l).

3.5 Benchmarking and Novelty Analysis
We use the OpenSSF Scorecard (Zahan et al., 2023)
as a baseline to evaluate our agent. This involves
identifying the main repository, running the Score-
card, and comparing its output with our agentś
report to derive two key metrics:

• Baseline Alignment(%): The percentage
of relevant Scorecard checks addressed in
the agentś report, calculated against applica-
ble checks (i.e., excluding checks with non-
conclusive scores such as ?́)́ from the Score-
card output. This is calculated as Coverage =

matched checks
applicable checks × 100.

• Novelty Yield (#): The number of unique,
meaningful issues or deeper contextual in-
sights identified by the agent but not explicitly
surfaced by the Scorecard. This is defined as
Yield = # unique agent-only findings.

4 Results

Our methodology identified novel vulnerabilities
in Open-source AI libraries, often missed by static
analysis. Benchmarking against OpenSSF Score-
card (Zahan et al., 2023), detailed in Section 4.1,
quantified alignment and unique contextual find-
ings. Section 4.3 presents illustrative examples.
For a detailed example of a full assessment output
(the analysis report) for the JAX library, please see
Appendix A.3; its corresponding baseline evalua-
tion is presented in Appendix A.4.

4.1 Benchmarking and Alignment Analysis
We benchmarked our agentic system against the
OpenSSF Scorecard to evaluate alignment and iden-
tify unique contributions. Table 1 presents key

metrics defined in Section 3—Baseline Alignment
(overlap with Scorecard checks) and Novelty Yield
(unique findings)—across all evaluated libraries,
grouped by functional category and including cat-
egory averages. While observed Baseline Align-
ment for most libraries ranged from 55% to 88%,
indicating substantial overlap, the agentic system
consistently surfaced a significant Novelty Yield
(typically 5-13 unique findings per library) not cap-
tured by baseline tools.

The agents showed particular strengths in con-
necting disparate information sources and contextu-
alizing findings, though they sometimes missed for-
mal contributor declarations, CI testing evidence,
binary artifact identification, and explicit security
testing policies flagged by the baseline. This sug-
gests opportunities for complementary approaches
combining structured checks with context-aware
reasoning. Examples of critical risks identified
through contextual analysis that went beyond con-
ventional automated scans, contributing to Novelty
Yield, include:

• Complex RCEs from insecure defaults or sub-
tle data processing flaws.

• Systemic SBOM absence and supply chain/-
transitive dependency risks.

• Pervasive regulatory/privacy compliance gaps
(GDPR, HIPAA, AI Act).

• Widespread lack of governance mechanisms
(audit trails, explainability, privacy controls).

• Undocumented telemetry/data collection (e.g.,
in one AI agent framework).

• Potential patent risks from unclear/insufficient
licensing for core ML algorithms.

4.2 Aggregated Domain Risk Findings and
Patterns

Table 2 presents the detailed library-by-library trust
scores across the five primary domains and the com-
posite Trust Score. The context-sensitive analysis
enabled by our approach revealed nuanced patterns
across evaluated libraries that would be difficult to
detect with traditional rules-based assessment. Ag-
gregate Trust Scores varied by category, with Core
ML/DL frameworks generally scoring higher than
newer AI Agent frameworks, potentially reflect-
ing greater maturity. Common weaknesses were
observed across the ecosystem, particularly in:

• Dependency Management: Widespread ab-
sence of SBOMs hindering transparency,
poorly managed transitive dependencies, and
lack of automated vulnerability scanning were

612

Table 1: Baseline Alignment and Novelty Yield Across
Libraries

Library
Baseline

Alignment (%)
Novelty
Yield (#)

Core ML/DL Frameworks 77.1 6.8

PyTorch 88.2 8
JAX 61.1 12
Tensorflow 72.2 5
ONNX 87.5 5
Huggingface Transformers 76.5 4

LLM Inference & Orchestration 73.7 7.8

TensorRT 68.8 5
LlamaIndex 82.4 7
SGLang 73.3 5
vLLM 73.3 7
LangChain 72.2 19
Text Generation Inference 72.2 6

AI Agent Frameworks 76.2 9.1

Browser Use 88.2 7
CrewAI 71.4 13
MetaGPT 57.1 7
LangGraph 77.8 7
SmolAgents 73.3 9
Stagehand 83.3 6
Composio 68.8 5
Pydantic AI 88.2 10
Agent Development Kit 77.9 7

common.
• Regulatory Considerations: Significant

gaps existed regarding comprehensive docu-
mentation for GDPR/HIPAA/AI Act compli-
ance and features for model explainability or
audit logging.

• Security: Many libraries exhibited vulnerabil-
ities like RCEs, unsigned releases, and inse-
cure CI/CD pipelines, with newer frameworks
often lacking mature disclosure policies.

• License Analysis: While often permissive,
nuanced risks like potential patent issues or
conflicts with restrictive licenses (e.g., AGPL)
were found, and formal patent grants were
frequently missing.

• Maintenance Indicators: Established li-
braries showed robust core maintenance, but
patterns of unmaintained sub-projects or
less transparency/slower resolution in newer
frameworks posed risks.

4.3 Illustrative Case Studies

To further illustrate the capabilities of LIBVUL-
NWATCH, we present five case studies highlighting
how semantic understanding and contextual analy-
sis revealed insights that would be challenging to

Table 2: Detailed Risk Assessment Scores Across Li-
braries and Domains (Li: License, Se: Security, Ma:
Maintenance, De: Dependency, Re: Regulatory, Trust:
Trust Score; Scale: 1-5, higher is better)

Library Li Se Ma De Re Trust

Core ML/DL Frameworks 13.0

PyTorch 5 1 3 1 3 13
JAX 5 3 4 1 1 14
Tensorflow 5 1 3 1 3 13
ONNX 5 1 3 1 1 11
Transformers 5 1 4 1 3 14

LLM Inference & Orchestration 11.8

TensorRT 5 1 5 1 3 15
LlamaIndex 5 1 3 1 3 13
SGLang 5 1 3 1 1 11
vLLM 3 1 4 1 1 10
LangChain 5 1 1 1 3 11
Text Generation Infer-
ence

5 1 3 1 1 11

AI Agent Frameworks 11.4

CrewAI 5 1 3 1 1 11
MetaGPT 5 1 5 1 1 13
LangGraph 1 1 3 1 3 9
SmolAgents 5 1 1 1 1 9
Stagehand 5 3 1 1 1 11
Composio 1 1 5 1 3 11
Browser Use 5 1 4 1 3 14
Pydantic AI 5 1 3 1 1 11
Agent Development Kit 5 3 4 1 1 14

capture through traditional assessment approaches.

License Analysis: LangGraph

Our system identified that while LangGraph spec-
ifies an MIT license in its repository, a more
comprehensive analysis revealed connections to
LangChainś Terms of Use that potentially affect
its licensing status. By understanding semantic
relationships between documentation sources and
interpreting licensing implications, the system pro-
vided a more holistic assessment than tools like
the OpenSSF Scorecard, which primarily consider
repository-level licensing information (see Fig-
ure 2).

Regulatory Considerations: Browser Use

For the Browser Use library, designed for web in-
teraction tasks, LIBVULNWATCH linked its charac-
teristics to emerging requirements under the EU
AI Act. The systemś ability to connect library
functionality with regulatory frameworks enabled
it to identify needs for clear documentation regard-
ing data handling, agent capabilities, and poten-
tial risks, which are critical for compliance with
high-risk AI system regulations (summarized in
Figure 3). This showcases the value of language

613

Figure 2: LangGraph License Analysis from the Gener-
ated Report, highlighting potential complexities arising
from related Terms of Use.

understanding in assessing alignment with evolving
regulatory landscapes.

Figure 3: Browser Use Regulatory Analysis from the
Generated Report, connecting library features to EU AI
Act considerations.

Security Analysis: JAX

In the domain of security, LIBVULNWATCH cor-
rectly identified that the JAX library had no re-
ported CVEs for the past two years. More impor-
tantly, through semantic analysis of GitHub Ac-
tion links and repository structure, the system high-
lighted that JAX lacks an explicit, dedicated secu-
rity Continuous Integration (CI) workflow, a subtle
but important finding for long-term security pos-
ture that requires reasoning beyond simple pattern
matching (Figure 4).

Figure 4: JAX Security Analysis from the Generated
Report, noting absence of CVEs but also lack of explicit
security CI.

Maintenance Analysis: vLLM
For vLLM, an LLM inference and serving library,
the system analyzed recent GitHub contributions,
issue resolution times, and release frequency to as-
sess its maintenance trends. By extracting and syn-
thesizing temporal patterns from repository meta-
data, the system provided a quantitative overview
of project activity, as shown in Figure 5, demon-
strating how language models can integrate struc-
tured data analysis with contextual understanding.

Figure 5: vLLM Maintenance Analysis from the Gener-
ated Report, summarizing repository activity trends.

Dependency Management: Huggingface
Transformers
LIBVULNWATCH examined the Huggingface
Transformers libraryś dependency management
practices. Leveraging its ability to interpret diverse
information sources, the system evaluated the avail-
ability of a Software Bill of Materials (SBOM),
analyzed stated policies regarding dependency up-

614

dates, and assessed the overall approach to man-
aging a complex dependency network. Figure 6
illustrates a segment of this analysis, demonstrat-
ing how language-driven assessment can bridge
technical details with governance requirements.

Figure 6: Huggingface Transformers Dependencies
Analysis from the Generated Report.

5 Discussion and Future Work

Our findings reveal a critical gap: many tech-
nically advanced AI libraries exhibit significant
shortcomings in enterprise readiness, particularly
in supply chain security and regulatory prepared-
ness (Section 4.2). This underscores a pressing
need for more nuanced assessment methodolo-
gies. The agent-based approach we introduced
(Section 3.2), rooted in language understanding,
proved effective in identifying complex vulnera-
bilities—such as RCEs, supply chain flaws, and
governance gaps—that elude conventional checks.
The substantial Novelty Yield achieved (Table 1,
Section 4.1) quantifies this unique contribution,
demonstrating how NLP can uncover critical risks
requiring deep contextual interpretation, a finding
further supported by the patterns detailed in Sec-
tion 4.2.

Benchmarking our system (Section 4) against
established tools like the OpenSSF Scorecard pro-
vides a crucial perspective. While the observed
Baseline Alignment (Section 4.1, Table 1) con-
firms our method’s capacity to recognize standard
risk indicators, the consistent generation of novel
insights highlights the added value of recontextu-
alizing NLP for specialized domains. The varia-
tions in alignment and novelty across library cate-
gories (Table 2, Section 3.3) suggest that a library’s

functional niche and maturity, rather than mere
complexity, influence its risk profile when assessed
through this deeper, language-aware lens.

This work offers a clear demonstration of how
advanced language understanding capabilities can
transform risk assessment methodologies, mov-
ing beyond traditional rule-based paradigms (Sec-
tion 3). The system’s proficiency in interpreting
diverse documentation, synthesizing disparate in-
formation, and reasoning about nuanced implica-
tions (Figure 1) facilitates a depth of analysis pre-
viously unattainable with conventional tools. Cru-
cially, this approach enables the identification of
emergent, cross-cutting patterns, such as systemic
deficiencies in regulatory alignment (Section 4.2),
thereby offering insights into broader ecosystemic
challenges that demand interdisciplinary attention.

Looking ahead, our research points towards sev-
eral avenues for intensifying NLP’s impact in this
and related domains. Enhancing the semantic inter-
pretation of code and API interactions, grounded in
our current risk framework (Section 3.1), promises
more precise intra-implementation vulnerability de-
tection. The successful application of this NLP-
driven framework (Section 3) to software assess-
ment strongly motivates its adaptation to other com-
plex ecosystems, such as healthcare informatics or
financial technologies, where similar governance
and risk assessment challenges persist. Further
exploration of few-shot adaptation could democra-
tize such deep assessment capabilities. Ultimately,
integrating structured verification techniques with
the contextual reasoning inherent in language mod-
els could address current limitations while ampli-
fying the discovery of impactful, novel risks, as
evidenced by our Novelty Yield results (Table 1,
Section 4.1).

Collectively, these contributions signal a
paradigm shift: viewing the evaluation of complex
systems not merely as a static analysis task, but as
a dynamic knowledge synthesis challenge. This
perspective directly leverages recent breakthroughs
in language understanding and structured reason-
ing. By effectively bridging NLP with the distinct
domain of software governance, LIBVULNWATCH

(Section 3, Section 4) provides not only actionable
insights for AI library evaluation but also a robust,
transferable methodology for tackling multifaceted
governance and risk assessment problems across
diverse disciplinary boundaries.

615

6 Limitations

Despite the capabilities of LIBVULNWATCH, sev-
eral limitations warrant discussion, offering av-
enues for future research and refinement.

Refined Agent Capabilities and Scope While
LIBVULNWATCH demonstrates broad alignment
with the OpenSSF Scorecard (as discussed in Sec-
tion 4.1), its agentic reasoning did not consistently
capture all specific checklist items, such as the pres-
ence of binary artifacts or formal contributor agree-
ments. This suggests that for comprehensive cover-
age of all standard security hygiene factors, future
iterations could benefit from incorporating more
specialized, non-agentic tools or targeted heuristics
for these highly structured data points, comple-
menting the agentś deep analysis of more nuanced
risks.

Dynamic Nature of Open-Source and Informa-
tion Availability The accuracy and completeness
of LIBVULNWATCH assessments are intrinsically
tied to the availability and quality of public infor-
mation concerning the target libraries. As open-
source projects evolve rapidly, any assessment in-
herently represents a snapshot in time (e.g., data
for this paper reflects May 2025, a point also noted
in Section 5). While continuous monitoring via the
planned public leaderboard (Section 3.2) aims to
mitigate the staleness of information, the depth
of analysis will always be constrained by what
projects choose to disclose publicly and the recency
of indexed information by search APIs.

LLM Dependence and Evaluation Robustness
LIBVULNWATCH leverages the capabilities of
LLMs (specifically gpt-4.1-mini) for complex in-
formation extraction and synthesis. Consequently,
the quality and consistency of assessments can be
influenced by the LLMś inherent knowledge enve-
lope, reasoning limitations, potential training data
biases, and sensitivity to prompt engineering, as ac-
knowledged in Section 5. Although our framework
emphasizes evidence-backed findings and struc-
tured reporting to mitigate subjectivity and ensure
verifiability (Section 3.2), future work could ex-
plore ensembles of diverse LLMs, more rigorous
calibration of prompt variance, or techniques for ex-
plicitly surfacing LLM uncertainty in assessments.

Scalability and Resource Implications for Deep,
Continuous Analysis Performing deep, source-
grounded analysis for a large number of libraries

on a continuous basis presents computational re-
source considerations. While individual library as-
sessments with gpt-4.1-mini are relatively cost-
effective (approx. $0.10 per library, as detailed in
Section 3.2), scaling this to thousands of libraries
with high frequency would necessitate significant
infrastructure. Future optimizations might involve
adaptive assessment depths based on library criti-
cality or observed change frequency, or the devel-
opment of more efficient caching mechanisms for
retrieved evidence.

Ecosystem-Level Constraints on Assessment
Depth A significant constraint, external to LIB-
VULNWATCH itself, is the current state of docu-
mentation within the open-source AI ecosystem.
The pervasive lack of comprehensive and standard-
ized documentation regarding regulatory compli-
ance (e.g., GDPR, AI Act alignment), detailed pri-
vacy practices, and robust model/data explainabil-
ity inherently limits the depth and certainty of as-
sessments in these critical governance domains.
While our system is designed to identify such gaps
(a pattern noted in Section 4.2)—which itself is
a valuable finding—it cannot create information
that does not exist. This limitation underscores a
broader need for community-driven standards and
improved transparency from library developers to
enable more thorough governance evaluations.

7 Ethical Considerations

The development and deployment of LIBVUL-
NWATCH raise several ethical considerations that
we have aimed to address throughout its design and
proposed usage.

Responsible Disclosure and Vulnerability Re-
porting As stated in our methodology (Sec-
tion 3.2), LIBVULNWATCH is designed to identify
potential vulnerabilities in open-source AI libraries.
We are committed to responsible disclosure prac-
tices. For any new, previously non-public vulnera-
bilities, particularly critical ones such as the RCEs
mentioned in our results (Section 4.1), our protocol
involves adhering to the ACL Co-ordinated Disclo-
sure Policy. This includes contacting the develop-
ers of the affected library privately, providing them
with the necessary details, and allowing a mini-
mum 30-day period for them to address the issue
before any public disclosure of the specific, novel
vulnerability details. All such communications and
their timelines would be documented herein or in a

616

publicly available appendix upon final publication
if such instances arise during ongoing or future
assessments.

Potential for Misuse While LIBVULNWATCH

aims to improve the security and governance of
the AI ecosystem by highlighting risks, any tool
that identifies vulnerabilities could potentially be
misused by malicious actors. To mitigate this, our
public leaderboard (as referenced in Section 3.2)
focuses on aggregated, governance-aligned scores
and known risk patterns rather than detailing zero-
day exploits. The primary goal is to incentivize
proactive security improvements and inform devel-
opers and users, with responsible disclosure han-
dling specific sensitive findings. Furthermore, the
types of vulnerabilities it highlights (e.g., missing
SBOMs, licensing issues, gaps in regulatory doc-
umentation) are often systemic issues that benefit
from public awareness to drive broader improve-
ments.

LLM Capabilities, Biases, and Reproducibility
The assessment quality of LIBVULNWATCH is in-
herently linked to the capabilities and potential
biases of the underlying Large Language Model
(LLM), gpt-4.1-mini, as noted in our limitations
(Section 5). While we employ engineered prompts
and a structured, evidence-based framework (Sec-
tions 3.1 and 3.2) to guide the LLM and ensure
verifiability (e.g., quantification mandate, evidence
requirement), the interpretation and synthesis per-
formed by the LLM may still be subject to its train-
ing data biases or inherent limitations. We strive for
transparency by detailing our methodology, includ-
ing the use of specific LLM agents and prompts
(though full prompt details are beyond the scope of
this paper, the principles are outlined). The gener-
ated reports, with direct citations to evidence, are
designed to be reproducible and allow for indepen-
dent verification of findings.

Data Privacy LIBVULNWATCH is designed to
assess publicly available open-source AI libraries.
The data sources it utilizes, as described in Sec-
tion 3.2, include public code repositories, official
documentation, security databases, and information
retrieved via public web search APIs. The system
does not require access to private codebases or non-
public user data, minimizing direct data privacy
risks related to proprietary information.

Impact of Public Ranking and Scoring Publish-
ing a leaderboard with risk scores for AI libraries

can have a significant societal impact. Our inten-
tion is to foster transparency, accountability, and
drive improvements in the security and governance
of the AI software supply chain. However, we
recognize that scores could be misinterpreted or
place undue pressure on developers of libraries that
score lower. To mitigate this, LIBVULNWATCH

emphasizes a multi-dimensional assessment across
five domains (Section 3.1), detailed justifications
for scores, and evidence-backed findings, rather
than a single opaque metric. The OpenSSF Score-
card benchmarking (Section 3.5) also provides a
recognized baseline for comparison. We believe
the benefits of increased transparency and informed
decision-making for users and developers outweigh
the potential downsides, especially given the criti-
cal nature of these libraries in AI systems.

Fairness and Objectivity We have designed the
assessment framework to be as objective as possi-
ble by mandating structured reporting, quantifica-
tion of metrics, and direct evidence for all claims
(Section 3.2). The risk rating criteria (Section 3.4)
are predefined to ensure consistency across evalua-
tions. While the LLM introduces a layer of inter-
pretation, the requirement for verifiable evidence
aims to ground the assessments in factual data.

We believe that by adhering to these principles,
LIBVULNWATCH can serve as a valuable and eth-
ical tool for enhancing the trustworthiness of the
open-source AI ecosystem.

References
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul A. Tucker, Vijay Vasudevan, Pete Warden, and
3 others. 2016. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), pages 265–283.

Vasileios Alevizos, George A. Papakostas, Akebu
Simasiku, Dimitra Malliarou, Antonis Messinis, Sab-
rina Edralin, Clark Xu, and Zongliang Yue. 2024.
Integrating artificial open generative artificial in-
telligence into software supply chain security. In
2024 5th International Conference on Data Analytics
for Business and Industry (ICDABI), page 200–206.
IEEE.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake

617

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1109/icdabi63787.2024.10800301
https://doi.org/10.1109/icdabi63787.2024.10800301

VanderPlas, Skye Wanderman-Milne, and 1 others.
2025. Jax: composable transformations of python+
numpy programs. https://github.com/google/
jax. Accessed: 2025-05-12.

Browserbase. 2025. Stagehand: The production-ready
framework for ai browser automations. https://
github.com/browserbase/stagehand. Accessed:
2025-05-12.

Junjie Chen, Yihua Liang, Qingchao Shen, Jiajun Jiang,
and Shuochuan Li. 2023. Toward Understanding
Deep Learning Framework Bugs. ACM Transac-
tions on Software Engineering and Methodology,
32(6):135:1–135:31.

Composio. 2025. Composio: Production-ready toolset
for ai agents. https://github.com/ComposioHQ/
composio. Accessed: 2025-05-12.

CrewAI. 2025. CrewAI: Fast and flexible multi-
agent automation framework. https://github.
com/crewAIInc/crewAI. Accessed: 2025-05-12.

Google. 2025. Agent Development Kit: An open-
source, code-first python toolkit for building, evaluat-
ing, and deploying sophisticated ai agents with flex-
ibility and control. https://github.com/google/
adk-python. Accessed: 2025-05-12.

Hugging Face. 2025. Text Generation Infer-
ence: Large language model text generation
inference. https://github.com/huggingface/
text-generation-inference. Accessed: 2025-
05-12.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Ef-
ficient memory management for large language
model serving with pagedattention. arXiv preprint
arXiv:2309.06180.

Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and
Olivier Barais. 2023. SoK: Taxonomy of Attacks on
Open-Source Software Supply Chains. In Proceed-
ings of the 2023 IEEE Symposium on Security and
Privacy (SP), pages 1509–1526.

LangChain AI. 2025a. LangChain: Large language
model application framework. https://github.
com/langchain-ai/langchain. Accessed: 2025-
05-12.

LangChain AI. 2025b. LangGraph: An open-
source ai agent orchestration framework. https:
//docs.langchain.com/docs/langgraph. Ac-
cessed: 2025-05-12.

Jerry Liu. 2022. LlamaIndex.
https://github.com/jerryjliu/llama_index.

Magnus Müller and Gregor Žunič. 2024. Browser use:
Enable ai to control your browser. https://github.
com/browser-use/browser-use.

NVIDIA. 2025. TensorRT: High-performance deep
learning inference on nvidia gpus. https://github.
com/NVIDIA/TensorRT. Accessed: 2025-05-12.

Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael
Meier. 2020. Backstabber’s Knife Collection: A Re-
view of Open Source Software Supply Chain Attacks.
In Proceedings of the 17th International Conference
on Detection of Intrusions and Malware, and Vulner-
ability Assessment (DIMVA), pages 23–43.

ONNX. 2025. ONNX: Open neural network ex-
change. https://github.com/onnx/onnx. Ac-
cessed: 2025-05-12.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
and 2 others. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Pydantic. 2025. Pydantic AI: shim to use pydan-
tic with llms. https://github.com/pydantic/
pydantic-ai. Accessed: 2025-05-12.

Anka Reuel, Benjamin Bucknall, Stephen Casper, Tim-
othy Fist, Lisa Soder, Onni Aarne, Lewis Hammond,
Lujain Ibrahim, Alan Chan, Peter Wills, Markus
Anderljung, Ben Garfinkel, Lennart Heim, Andrew
Trask, Gabriel Mukobi, Rylan Schaeffer, Mauricio
Baker, Sara Hooker, Irene Solaiman, and 14 others.
2025. Open problems in technical AI governance.
Transactions on Machine Learning Research. Survey
Certification.

Aymeric Roucher, Albert Villanova del Moral, Thomas
Wolf, Leandro von Werra, and Erik Kaunismäki.
2025. ‘smolagents‘: a smol library to build
great agentic systems. https://github.com/
huggingface/smolagents.

Shenao Wang, Yanjie Zhao, Zhao Liu, Quanchen Zou,
and Haoyu Wang. 2025. SoK: Understanding Vulner-
abilities in the Large Language Model Supply Chain.
arXiv preprint arXiv:2502.12497.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clément Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Téven
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45. Association for Com-
putational Linguistics.

Nusrat Zahan, Parth Kanakiya, Brian Hambleton,
Shohanuzzaman Shohan, and Laurie Williams. 2023.

618

https://github.com/google/jax
https://github.com/google/jax
https://github.com/browserbase/stagehand
https://github.com/browserbase/stagehand
https://github.com/ComposioHQ/composio
https://github.com/ComposioHQ/composio
https://github.com/crewAIInc/crewAI
https://github.com/crewAIInc/crewAI
https://github.com/google/adk-python
https://github.com/google/adk-python
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://docs.langchain.com/docs/langgraph
https://docs.langchain.com/docs/langgraph
https://doi.org/10.5281/zenodo.1234
https://github.com/browser-use/browser-use
https://github.com/browser-use/browser-use
https://github.com/NVIDIA/TensorRT
https://github.com/NVIDIA/TensorRT
https://github.com/onnx/onnx
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://github.com/pydantic/pydantic-ai
https://github.com/pydantic/pydantic-ai
https://openreview.net/forum?id=1nO4qFMiS0
https://github.com/huggingface/smolagents
https://github.com/huggingface/smolagents
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Openssf scorecard: On the path toward ecosystem-
wide automated security metrics. IEEE Security &
Privacy, 21(6):76–88.

[first names omitted for brevity] Zhang and colleagues.
2024. Metagpt: Meta programming sota autonomous
multi-agent cooperative llm workflows. arXiv
preprint arXiv:2404.14496.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos
Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark
Barrett, and Ying Sheng. 2023. Sglang: Efficient
execution of structured language model programs.
arXiv preprint arXiv:2312.07104.

Xin Zhou, Sicong Cao, Xiaobing Sun, and David Lo.
2024. Large Language Model for Vulnerability De-
tection and Repair: Literature Review and the Road
Ahead. ACM Transactions on Software Engineering
and Methodology. To appear.

619

https://doi.org/10.1109/MSEC.2023.3279773
https://doi.org/10.1109/MSEC.2023.3279773
https://arxiv.org/abs/2404.14496
https://arxiv.org/abs/2404.14496
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104

A Appendix

A.1 Interactive Leaderboard Interface and Implementation
This subsection describes the LIBVULNWATCH vulnerability assessment leaderboard and presents screen-
shots of its key functionalities. The leaderboard is implemented as an interactive web application using
Gradio (?) and is publicly deployed on Hugging Face Spaces. It allows users to search, filter, and view
detailed vulnerability assessment reports for a wide range of open-source AI libraries. Users can also find
guidelines and submit new libraries for assessment through this interface. The figures below illustrate the
main views of the leaderboard, including search and filtering capabilities (Figure 7), library submission
guidelines (Figure 8), the tabular display of assessed libraries with links to reports (Figure 9), and the new
library submission form (Figure 10).

Figure 7: The main LIBVULNWATCH leaderboard view,
showing search and filtering options for assessed AI
libraries across five risk domains.

Figure 8: Guidelines and prerequisites for submitting
a new library for assessment on the LIBVULNWATCH
platform.

Figure 9: Tabular display of assessed libraries, including
details such as license, maintenance status, and direct
links to individual vulnerability reports.

Figure 10: The LIBVULNWATCH interface for sub-
mitting a new open-source AI library for vulnerability
assessment and inclusion in the leaderboard.

A.2 Agent Prompts
This section details the core instruction sets (prompts) provided to the various specialized agents within the
LIBVULNWATCH system. These prompts guide the agents in their respective tasks of planning, querying,
writing, and evaluating risk assessment information.

A.2.1 Initial Query Formulation for Report Planning

Listing 1: Initial Query Formulation for Report Planning. This agent generates initial search queries to gather
context for planning the overall report structure.
You are performing comprehensive open source risk management assessment following industry best practices.

<Library input >
{topic}

620

</Library input >

<Report organization >
{report_organization}
</Report organization >

<Task >
Your goal is to generate {number_of_queries} web search queries that will gather comprehensive information for assessing the

↪→ risks of this open source library according to enterprise security standards.

IMPORTANT: The library input may be either a library name (e.g., "TensorFlow", "React") or a repository URL (e.g., "https ://
↪→ github.com/tensorflow/tensorflow "). Adjust your queries accordingly.

<High -Quality Source Guidelines >
Prioritize authoritative and reliable sources by targeting queries toward:
- Official documentation (GitHub repos , project websites , official guides)
- Security databases (NVD , CVE records , security bulletins)
- Industry research (research papers , security firm reports)
- Regulatory bodies (NIST , ISO , CIS documentation)
- Technical forums with verification (StackOverflow with high votes)

Avoid low -quality sources like:
- General blogs without technical expertise
- Marketing materials
- Outdated repositories (>2 years without updates)
- Non -technical news articles

Use site: operators to target specific high -quality domains (e.g., site:github.com , site:nvd.nist.gov).
</High -Quality Source Guidelines >

The queries should comprehensively cover these key risk areas:

1. LICENSE VALIDATION:
- License type (MIT , Apache 2.0, GPL , etc.)
- Commercial use compatibility
- License history and changes
- Attribution requirements
- Patent grant provisions

2. SECURITY ASSESSMENT:
- Common Vulnerabilities and Exposures (CVEs)
- Security patch frequency and responsiveness
- Vulnerability scanning reports
- OWASP dependency risks
- Historical security incidents

3. MAINTENANCE HEALTH:
- Release frequency and consistency
- Number of active contributors (current vs. historical)
- Issue response time metrics
- Pull request acceptance rate
- Governance model (individual , community , foundation)

4. DEPENDENCY MANAGEMENT:
- Software Bill of Materials (SBOM) availability
- Transitive dependency tracking
- Dependency update policies
- Supply chain security measures
- CI/CD integration for dependency scanning

5. REGULATORY COMPLIANCE:
- Explainability requirements (especially for AI libraries)
- Industry -specific regulatory frameworks applicable
- Data privacy implications
- Export control restrictions
- Audit readiness documentation

Make the queries specific , technical , and designed to retrieve quantifiable metrics from authoritative sources wherever
↪→ possible. Use site: operators to target specific high -quality domains when appropriate.

</Task >

<Format >
Call the Queries tool
</Format >

A.2.2 Report Structure Planning Instructions

Listing 2: Report Structure Planning Instructions. This agent generates the structured plan for the report, outlining
the sections to be created.
I want a comprehensive open source risk assessment report that meets enterprise governance standards and regulatory compliance

↪→ requirements.

<Library input >
The library to assess is:
{topic}
</Library input >

<Report organization >
The report should follow this organization:
{report_organization}
</Report organization >

<Context >
Here is context to use to plan the sections of the risk assessment report:
{context}

621

</Context >

<Task >
Generate a detailed structure for an enterprise -grade open source risk assessment report on the provided library.

IMPORTANT: The library input may be either a library name (e.g., "TensorFlow", "React") or a repository URL (e.g., "https ://
↪→ github.com/tensorflow/tensorflow "). Identify the specific library from the input.

Your plan should include specialized sections that cover ALL of the following risk domains based on industry best practices:

1. KEY RISK DOMAINS (each requiring full assessment as separate sections):
- LICENSE ANALYSIS - Terms , compatibility , patent provisions
- SECURITY ASSESSMENT - CVE history , patch frequency , testing
- MAINTENANCE INDICATORS - Release cadence , contributors , support
- DEPENDENCY MANAGEMENT - SBOM , transitive risks , updates
- REGULATORY CONSIDERATIONS - Compliance frameworks , explainability

NOTE:
- The EXECUTIVE SUMMARY will be generated automatically after all sections are written , so DO NOT include it in your section

↪→ list.
- RISK MITIGATION RECOMMENDATIONS will be included in the Executive Summary , so DO NOT create it as a separate section.

Each section should have the fields:
- Name - Name for this section of the report.
- Description - Brief overview of what this section assesses.
- Research - Whether to perform web research for this section. IMPORTANT: All main sections MUST have Research=True.
- Content - The content of the section , which you will leave blank for now.

Ensure the structure focuses on quantifiable metrics and evidence -based assessment rather than general descriptions. The
↪→ report should be highly actionable , non -redundant , and concise.

</Task >

<Feedback >
Here is feedback on the report structure from review (if any):
{feedback}
</Feedback >

<Format >
Call the Sections tool
</Format >

A.2.3 Domain-Specific Query Formulation Instructions

Listing 3: Domain-Specific Query Formulation Instructions. This agent generates specific search queries for a given
section of the report.
You are an enterprise security analyst specializing in open source risk governance and compliance.

<Library input >
{topic}
</Library input >

<Section topic >
{section_topic}
</Section topic >

<Task >
Generate {number_of_queries} highly specific search queries to gather comprehensive data for assessing the open source risks

↪→ of this library , focusing specifically on {section_topic }.

IMPORTANT: The library input may be either a library name (e.g., "TensorFlow", "React") or a repository URL (e.g., "https ://
↪→ github.com/tensorflow/tensorflow "). Always include the library name explicitly in your queries.

<Advanced GitHub Data Extraction >
Since we do not have API access , use these specialized search patterns to extract public repository metrics:

1. For contributor metrics:
- "[Library] github.com/[org]/[repo]/ graphs/contributors" (finds contributor pages)
- "[Library] [org]/[repo] number of contributors [year]" (finds specific counts)
- "[Library] [org]/[repo] top contributors" (finds lead maintainer information)

2. For issue statistics:
- "[Library] github.com/[org]/[repo]/ issues?q=is:issue+is:open+sort:updated -desc" (finds open issues)
- "[Library] github.com/[org]/[repo]/ issues?q=is:issue+is:closed" (finds closed issues)
- "[Library] average issue resolution time" (finds resolution metrics)

3. For release history:
- "[Library] github.com/[org]/[repo]/ releases" (finds release pages)
- "[Library] latest release version number date" (finds current version)
- "[Library] release frequency [year]" (finds release cadence)

4. For security practices:
- "[Library] github.com/[org]/[repo]/ security/advisories" (finds security advisories)
- "[Library] github.com/[org]/[repo]/blob/master/SECURITY.md" (finds security policies)
- "[Library] CVE [year] vulnerability" (finds published vulnerabilities)

5. For dependency information:
- "[Library] github.com/[org]/[repo]/blob/master/requirements.txt" (finds Python dependencies)
- "[Library] github.com/[org]/[repo]/blob/master/package.json" (finds JS dependencies)
- "[Library] github.com/[org]/[repo]/ network/dependencies" (finds dependency graphs)

6. For license details:
- "[Library] github.com/[org]/[repo]/blob/master/LICENSE" (finds license file)
- "[Library] github.com/[org]/[repo]/blob/master/LICENSE.md" (alternative license file)
- "[Library] license type changed history" (finds license changes)

</Advanced GitHub Data Extraction >

622

<High -Quality Source Guidelines >
Prioritize authoritative and reliable sources by targeting queries toward:
- Official documentation (GitHub repos , project websites , official guides)
- Security databases (NVD , CVE records , security bulletins)
- Industry research (research papers , security firm reports)
- Regulatory bodies (NIST , ISO , CIS documentation)
- Technical forums with verification (StackOverflow with high votes)

Avoid low -quality sources like:
- General blogs without technical expertise
- Marketing materials
- Outdated repositories (>2 years without updates)
- Non -technical news articles

Your queries should specifically target these high -quality sources when possible.
</High -Quality Source Guidelines >

Based on the section topic , craft specialized queries from these categories:

LICENSE ANALYSIS:
- "[Library] license type commercial use compatibility site:github.com OR site:opensource.org"
- "[Library] license change history site:github.com/[org]/[repo]"
- "[Library] patent grant provisions license text"
- "[Library] license compliance requirements site:spdx.org OR site:github.com"
- "[Library] GPL/LGPL/AGPL compatibility analysis"
- "[Library] attribution requirements license text site:opensource.org"

SECURITY ASSESSMENT:
- "[Library] CVE history last 3 years site:nvd.nist.gov OR site:cve.mitre.org"
- "[Library] security vulnerabilities mitigated site:github.com/[org]/[repo]/ security"
- "[Library] CVSS score recent vulnerabilities site:nvd.nist.gov"
- "[Library] security disclosure policy site:github.com/[org]/[repo]"
- "[Library] security patch response time average"
- "[Library] supply chain security scorecard"

MAINTENANCE HEALTH:
- "[Library] release frequency metrics site:github.com/[org]/[repo]/ releases"
- "[Library] active contributors count trend site:github.com/[org]/[repo]/ graphs/contributors"
- "[Library] issue resolution time average site:github.com/[org]/[repo]/ issues"
- "[Library] pull request acceptance rate site:github.com/[org]/[repo]/ pulls"
- "[Library] documentation quality assessment site:github.com/[org]/[repo]/wiki"
- "[Library] governance foundation or company site:github.com OR site:[official -site]"

DEPENDENCY MANAGEMENT:
- "[Library] SBOM availability CycloneDX or SPDX site:github.com/[org]/[repo]"
- "[Library] transitive dependencies count analysis"
- "[Library] dependency vulnerability scanning site:github.com/[org]/[repo]/ security/dependabot"
- "[Library] dependency freshness policy site:github.com/[org]/[repo]"
- "[Library] CI/CD dependency scanning integration site:github.com/[org]/[repo]/. github/workflows"
- "[Library] vulnerable dependencies percentage report"

REGULATORY COMPLIANCE:
- "[Library] regulatory compliance frameworks site:[official -site] OR site:github.com/[org]/[repo]"
- "[Library] explainability for AI models documentation site:github.com/[org]/[repo]"
- "[Library] data privacy implications GDPR CCPA CPRA site:github.com/[org]/[repo]"
- "[Library] export control classification ECCN"
- "[Library] NIST SSDF compatibility assessment"
- "[Library] audit readiness documentation site:github.com/[org]/[repo]"

<Data Extraction Instructions >
For each query , focus on extracting specific numerical metrics:
- Always search for EXACT numbers when available: "X contributors" not "many contributors"
- Look for timestamps and dates: "Last release: March 15, 2024" not "recent release"
- Search for explicit vulnerability counts: "3 CVEs in 2023" not "some vulnerabilities"
- Seek percentages and ratios: "85% test coverage" not "good test coverage"

For repositories , use google dorks to find specific file content:
- Use 'inurl:github.com/[org]/[repo] filetype:md SECURITY ' to find security documentation
- Use 'inurl:github.com/[org]/[repo] "license"' to find license information
- Use 'inurl:github.com/[org]/[repo] "requirements.txt" OR "package.json"' to find dependencies
</Data Extraction Instructions >

Generate queries that return quantitative metrics , statistical data , and factual evidence from authoritative sources. Use site
↪→ : operators when appropriate to target specific high -quality domains.

</Task >

<Format >
Call the Queries tool
</Format >

A.2.4 Draft Findings Generation Instructions for Report Sections

Listing 4: Draft Findings Generation Instructions for Report Sections. This agent synthesizes information from web
search results to write a specific section of the report, adhering to strict formatting and citation requirements.
Write a highly focused assessment of open source risk.

<Task >
1. Analyze the library based on the section name and topic.
2. Focus ONLY on observed facts with proper citations.
3. Use the most concise format possible while addressing all key risk factors.
4. IMPORTANT: For each risk factor , assign at least one HIGH risk rating if evidence justifies it. Never rate all factors as

↪→ only Low/Medium.
</Task >

623

<Streamlined Structure >
[Section Name]

Executive Overview
[1 sentence summary of risk level and justification]

[ALERT] Emergency Issues

** Critical Issue **: [Most serious high -risk finding with citation link for critical information only](url)

Key Facts & Observations
Risk Factor	Observed Data	Rating (⋆)	Reason for Rating	Key Control
[Factor 1]	[Specific metric/fact with citation link](url)	⋆⋆⋆⋆⋆	[Why this is low risk]	[Solution]
[Factor 2]	[Specific metric/fact with citation link](url)	⋆⋆⋆	[Why this is medium risk]	[Solution]
[Factor 3]	[Specific metric/fact with citation link](url)	⋆	[Why this is high risk]	[Solution]
</Streamlined Structure >

<Coverage Requirements >
Based on your section topic , address ALL relevant key concepts:

LICENSE ANALYSIS:
- License type (MIT , Apache , GPL , etc.) with version
- Commercial use & distribution rights
- Patent grant provisions
- Attribution requirements
- Conformance with open source compliance standards

SECURITY ASSESSMENT:
- CVEs in past 24 months (count , severity)
- Security disclosure policy existence
- Response time for security issues
- Security testing evidence (CI/CD test coverage)
- Released binaries or signed artifacts and release notes

MAINTENANCE INDICATORS:
- Latest release date
- Release frequency (releases per month/year)
- Active contributor count (diversity and organizational backing)
- Issue resolution metrics (recent commit activity and issue engagement details)
- Packaging workflow for publishing

DEPENDENCY MANAGEMENT:
- SBOM availability (Yes/No, format)
- Direct dependency count
- Transitive dependency management
- Vulnerable dependency count
- Existence of dependency update tools/policies

REGULATORY CONSIDERATIONS:
- Compliance frameworks supported
- Explainability features for AI/ML
- Data privacy provisions
- Audit documentation availability
- AI governance and key AI regulations

CRITICAL: Ensure EVERY metric has a specific value , NOT general statements.
</Coverage Requirements >

<Writing Guidelines >
- Extract the library name from the input (may be name or repository URL)
- Use ONLY observed facts and metrics with citations:

- "Last release: March 15, 2024" not "recent release"
- "243 active contributors" not "many contributors"
- "No CVEs in past 24 months" not "good security record"

- STRICT CITATION REQUIREMENTS:
- ONLY make claims that are EXPLICITLY stated in the source material
- DO NOT infer , assume , or extrapolate beyond what 's directly stated in the sources
- If source material does not explicitly mention a metric , acknowledge this as "No data available on X" and rate accordingly
- Maintain clear traceability between each claim and the exact source
- For missing but important information , indicate "Not specified in documentation" rather than guessing

- CITATION FORMAT AND FREQUENCY:
- ONLY use inline markdown hyperlinks for direct URLs: `[fact](source -url)`
- IMPORTANT: EVERY row in the Key Facts & Observations table MUST have at least one citation link
- For multiple facts in a single row , include a citation link for the most significant facts
- Cite official documentation , repository pages , security databases , and other authoritative sources whenever possible
- Include citations for:

* ALL license details , terms , and provisions
* ALL security vulnerabilities and patches
* ALL maintenance metrics and observations
* ALL dependency numbers and management approaches
* ALL regulatory tools and frameworks

- If information was found on a source without a public URL (e.g., local analysis), clearly state this but still provide the
↪→ observation

- ALWAYS link to primary sources rather than secondary sources when possible (e.g., GitHub repo over blog post)
- Include SPECIFIC links to exact locations (e.g., link to specific GitHub issue page , not just GitHub home)
- Example: Instead of just "[TensorFlow GitHub](https :// github.com/tensorflow/tensorflow)", use "[TensorFlow has 58 ,000+

↪→ stars](https :// github.com/tensorflow/tensorflow)"

- Risk Rating Format:
- ALWAYS use star ratings only: ⋆⋆⋆⋆⋆, ⋆⋆⋆, ⋆
- Low risk: ⋆⋆⋆⋆⋆
- Medium risk: ⋆⋆⋆
- High risk: ⋆

- Risk Rating Reasons:
- Provide a concise 1-sentence explanation for EACH risk rating

624

- Explicitly reference the specific criteria that determined the rating
- For HIGH risks , clearly state what threshold was exceeded or requirement not met
- For LOW risks , explain what positive factors led to this favorable rating
- When rating based on ABSENCE of information , clearly state this as the reason

- Risk Level Distribution:
- IMPORTANT: The most realistic assessment MUST include at least ONE HIGH risk item
- Do not artificially inflate risk; base it on evidence
- If no clear high risk is found , identify the MOST concerning factor and explain why it poses high risk
- Absence of critical information itself can justify a high risk rating

- Emergency Issues:
- Include ONLY if HIGH risk with immediate impact potential is EXPLICITLY supported by sources
- Otherwise omit this section entirely
- Always include a specific , actionable solution
- Never speculate about emergency scenarios not directly evidenced in sources

- Format using markdown with HTML color tags for emergency section
- Limit to maximum 350 words total
- Omit any redundant explanations or theoretical discussions
</Writing Guidelines >

<Risk Rating Criteria >
For each risk factor , apply these specific criteria:

LOW RISK (⋆⋆⋆⋆⋆):
- License: Permissive (MIT , Apache 2.0, BSD) with clear terms and compatibility
- Security: No CVEs in past 24 months , robust security policy , rapid fixes (<7 days)
- Maintenance: >10 active contributors , monthly+ releases , <24hr issue response
- Dependencies: SBOM available , <20 direct dependencies , automatic updates
- Regulatory: Clear compliance documentation , complete audit trail

MEDIUM RISK (⋆⋆⋆):
- License: Moderate restrictions or unclear patent provisions
- Security: 1-3 minor CVEs (12mo), basic security policy , moderate response (7-30 days)
- Maintenance: 3-10 contributors , quarterly releases , 1-7 day issue response
- Dependencies: Partial SBOM , 20-50 direct dependencies , some transitive visibility
- Regulatory: Incomplete compliance docs , partial audit readiness

HIGH RISK (⋆):
- License: Restrictive (GPL/AGPL), incompatible terms , legal concerns
- Security: Critical/multiple CVEs , missing security policy , slow response (>30 days)
- Maintenance: <3 contributors , infrequent releases (>6mo), poor issue response
- Dependencies: No SBOM , >50 direct dependencies , vulnerable transitive deps
- Regulatory: Missing compliance docs , fails essential regulations
- IMPORTANT: Absence of critical information on any key risk factor should be rated as HIGH RISK
</Risk Rating Criteria >

<Final Check >
1. Verify EVERY row in your Key Facts & Observations table has at least one citation link
2. Confirm all relevant risk metrics for your section are addressed
3. Ensure star ratings are used correctly
4. Confirm at least ONE high -risk (⋆) item is identified
5. Ensure EVERY risk rating has a clear reason explaining the rating
6. Ensure total length is under 350 words
7. Remove any theoretical or duplicated content
8. Verify each observation has a specific control/solution
9. Double -check that NO claims are made without explicit source evidence
10. Verify that absence of information is properly acknowledged and rated accordingly
11. Do NOT include a separate Sources section - use inline links for critical facts only
12. Do NOT use numbered citations [1], [2], etc. - ONLY use inline hyperlinks
13. Ensure there are NO notes/references/sources sections at the end of your report
14. Check that EVERY required risk factor for your section has been addressed with specific metrics
</Final Check >

A.2.5 Quality Assessment Instructions for Draft Sections

Listing 5: Quality Assessment Instructions for Draft Sections. This agent evaluates the quality of a written section
and generates follow-up queries if information is missing or insufficient.
You are a Chief Information Security Officer reviewing an open source risk assessment report section:

<Library input >
{topic}
</Library input >

<section topic >
{section_topic}
</section topic >

<section content >
{section}
</section content >

<task >
Rigorously evaluate whether this section meets enterprise security standards for open source risk assessment. Apply the

↪→ following STRICT evaluation criteria:

1. QUANTIFICATION: Does the section provide PRECISE metrics (exact dates , counts , percentages , time periods)?
2. EVIDENCE: Is every risk claim supported by cited source evidence?
3. RISK RATING: Is each risk factor explicitly rated (Low/Medium/High) with clear justification?
4. ACTIONABILITY: Are the recommendations specific , technical , and implementable?
5. ENTERPRISE RELEVANCE: Does the assessment address governance , compliance , and security concerns at an enterprise level?

For a PASS grade , the section must meet ALL criteria above with no significant gaps.

625

If any criteria are not fully met , generate {number_of_follow_up_queries} targeted follow -up search queries to obtain the
↪→ missing information. These queries should be highly specific and designed to retrieve quantitative data.

</task >

<format >
Call the Feedback tool and output with the following schema:

grade: Literal ["pass","fail"] = Field(
description =" Evaluation result indicating whether the risk assessment meets enterprise standards ('pass ') or needs

↪→ revision ('fail ')."
)
follow_up_queries: List[SearchQuery] = Field(

description ="List of follow -up search queries to gather missing quantitative data.",
)
</format >

A.2.6 Executive Summary Generation Instructions

Listing 6: Executive Summary Generation Instructions. This agent generates the overall executive summary of the
report, synthesizing information from all completed sections.
You are a Chief Security Officer providing the EXECUTIVE SUMMARY for an open source risk assessment report.

<Library input >
{topic}
</Library input >

<Context >
{context}
</Context >

<Task >
Create a comprehensive EXECUTIVE SUMMARY as the FIRST SECTION of the report that consolidates findings from all risk domains

↪→ and includes integrated risk mitigation recommendations. The executive summary must give decision makers a complete
↪→ picture of the risk profile while being concise and actionable.

</Task >

<Executive Summary Format >
Executive Summary

Risk Score Dashboard
Risk Domain	Rating	Key Finding	Reason for Rating	Key Control
License	⋆⋆⋆⋆⋆	[Specific metric with citation link](url)	[Why this is low risk]	[Solution]
Security	⋆⋆⋆	[Specific metric with citation link](url)	[Why this is medium risk]	[Solution]
Maintenance	⋆⋆⋆⋆	[Specific metric with citation link](url)	[Why this is low risk]	[Solution]
Dependencies	⋆	[Specific metric with citation link](url)	[Why this is high risk]	[Solution]
Regulatory	⋆⋆⋆	[Specific metric with citation link](url)	[Why this is medium risk]	[Solution]
** OVERALL **	⋆⋆⋆	[Overall assessment with citation link](url)	[Why this overall rating]	[Priority action]

[ALERT] EMERGENCY ISSUES

[Critical Issue]: [Most serious HIGH risk finding with citation link](url)
* ** Immediate Action **: [Specific , implementable solution]

Top Controls by Priority
1. ** Immediate (0-7 days)**: [Action for HIGH risk items with citation link](url)
2. **Short -term (30 days)**: [Important technical control with citation link](url)
3. **Medium -term (90 days)**: [Important policy/legal control with citation link](url)

Comprehensive Risk Mitigation Strategy
Based on all section findings , provide a concise but comprehensive summary of risk mitigation actions needed across all

↪→ domains:

1. ** Technical Controls **:
- [Specific technical implementation or control with citation link](url)
- [Specific technical implementation or control with citation link](url)

2. ** Policy & Governance Controls **:
- [Specific policy or governance control with citation link](url)
- [Specific policy or governance control with citation link](url)

3. **Legal & Compliance Controls **:
- [Specific legal or compliance control with citation link](url)
- [Specific legal or compliance control with citation link](url)

</Executive Summary Format >

<Guidelines >
- PLACEMENT: The Executive Summary MUST be the FIRST section of the report
- SCOPE: This summary must cover ALL risk domains assessed in the detailed sections

- CITATION FORMAT AND FREQUENCY:
- ONLY use inline markdown hyperlinks for direct URLs: `[fact](source -url)`
- IMPORTANT: EVERY row in the Risk Score Dashboard table MUST have at least one citation link
- EVERY recommended control in all sections MUST include a citation link to source guidance or documentation
- Link to specific pages and resources , not just general websites
- Include links to:

* ALL significant vulnerabilities and findings
* ALL tools or frameworks mentioned
* ALL reference documentation for recommended controls
* ALL key metrics underpinning risk assessments

- Example: Instead of just "[TensorFlow security page](https ://www.tensorflow.org/security)", use "[12 critical CVEs
↪→ reported in TensorFlow since 2022](https ://www.tensorflow.org/security)"

- Focus on links to primary sources (official documentation , repository data , security databases)
- ALWAYS verify URLs exist before including them

626

- NEVER hallucinate or fabricate links
- If uncertain about a URL\'s existence , present the fact without a link
- Do NOT use numbered citations or separate reference lists

- RISK RATINGS: Use star ratings only:
- ⋆⋆⋆⋆⋆ for Low risk
- ⋆⋆⋆ for Medium risk
- ⋆ for High risk

- HIGH RISK: MUST identify at least one HIGH risk area (⋆)
- JUSTIFICATION: For EACH risk rating , provide a clear 1-sentence reason explaining why it received that rating
- EMERGENCY ISSUES: This section should ONLY appear if truly critical issues exist
- LENGTH: Limit to 600 words maximum for readability
- FOCUS: Present only the highest priority findings from each domain
- ACTIONABILITY: Ensure every finding has a corresponding control/solution
- ORDER: Risk domains should be ordered from highest to lowest risk
- MITIGATION SECTION: Include a dedicated risk mitigation strategy section that consolidates recommendations from all sections
- CONSISTENCY CHECK: Ensure all facts and assessments are consistent across the entire executive summary
</Guidelines >

A.2.7 Repository Identification Instructions for Benchmarking

Listing 7: Repository Identification Instructions for Benchmarking. This agent identifies the GitHub repository
URL for a given library name or URL.
You are a GitHub repository identifier.

<Library input >
{topic}
</Library input >

<Full Report >
{full_report}
</Full Report >

<Task >
Extract the GitHub repository owner and name from the input. The input may be:
1. A direct GitHub URL (e.g., https :// github.com/owner/repo)
2. A library name that can be mapped to a GitHub repository (e.g., "TensorFlow", "React")
3. Any other open source project reference

For library names or general references , determine the most official or popular GitHub repository.

Return the repository in the format "owner/repo".
</Task >

<Format >
Call the GitHubRepo tool
</Format}

A.2.8 Scorecard Analysis and Report Comparison Instructions

Listing 8: Scorecard Analysis and Report Comparison Instructions. This agent compares the generated report
against OpenSSF Scorecard results to identify overlaps and novel findings.
You are an open source security analyst specializing in the OpenSSF Scorecard.

<Scorecard Results >
{scorecard_results}
</Scorecard Results >

<Full Report >
{full_report}
</Full Report >

<Task >
Analyze the OpenSSF Scorecard results alongside the full risk assessment report to determine:

1. Model Coverage: Which OpenSSF Scorecard metrics were already covered in the full report
2. Model Seeking: Which issues were discovered by the model but not identified by Scorecard

IMPORTANT:
- EXCLUDE all scorecard checks with "?" scores from your analysis
- The denominator for coverage should be the total number of applicable checks (excluding "?" scores)
- Count each row in the scorecard results table as one check

IMPORTANT METRICS TO TRACK:
1. MODEL_COVERAGE: Number of OpenSSF Scorecard checks that were adequately addressed in the report
2. MODEL_SEEKING: Number of issues the model found that weren 't explicitly mentioned in Scorecard

FORMAT IN MARKDOWN:
Instead of using dictionaries for lacks and extras , include this information as bullet points in your coverage_summary using

↪→ markdown format:

** Coverage Summary :**
- Model Coverage: [Actual covered checks]/[Total applicable checks] scorecard checks addressed in report.
- Model Seeking: [Number] issues found by model but not in Scorecard.

** Checks Missing from Report :**
- **[Name of Check]**: [Explanation of what was missed]

** Issues Found Only by Model :**
- **[Name of Issue]**: [Explanation of what model found]

627

You MUST use the actual numeric values from your analysis for the coverage metrics. For example , if you found that 14 out of
↪→ 18 checks were covered , write "Model Coverage: 14/18".

You MUST replace bracketed placeholders like '[Actual covered checks]' with the real data from your analysis.
</Task >

<Format >
Call the ScorecardAnalysis tool
</Format}

A.3 Detailed Assessment Example: JAX Library Report
To illustrate the detailed report format generated by our system, this subsection presents the complete,
multi-page risk assessment report produced by LIBVULNWATCH for the JAX library. This report exem-
plifies the structure, depth of analysis, and range of risk factors (covering License, Security, Maintenance,
Dependencies, and Regulatory domains) assessed for each library. Such detailed reports aim to provide
actionable insights for stakeholders. This serves as an exemplar; upon acceptance, all generated reports
for the evaluated libraries will be made publicly available via our Hugging Face Space.

628

Open Source Risk
Assessment: JAX

Open Source Risk Assessment: JAX

Executive Summary

Risk Score Dashboard

🚨 EMERGENCY ISSUES

Top Controls by Priority

Comprehensive Risk Mitigation Strategy

License Analysis

Executive Overview

Key Facts & Observations

Summary

Security Assessment

Executive Overview

Key Facts & Observations

Summary

Maintenance Indicators

Executive Overview

¶

629

Key Facts & Observations

Dependency Management

Executive Overview

Key Facts & Observations

Regulatory Considerations

Executive Overview

Key Facts & Observations

630

Executive Summary

Risk Score Dashboard

¶

¶

631

Risk

Domain
Rating

Key

Finding

Reason

for Rating

Key

Control

Dependen

cies

⭐ Complete

lack of

public

dependen

cy

managem

ent data

including

no SBOM,

vulnerabili

ty

scanning,

or

automated

update

tooling

increases

critical

supply

chain risk

(Endor

Labs 2024

report)

Absence

of

transparen

cy and

controls

on

dependen

cies

creates a

critical

unmanage

d attack

surface

Implement

automated

SBOM

generation

,

vulnerabili

ty

scanning,

and

dependen

cy update

tooling

(GitHub

Dependen

cy Graph)

Regulatory ⭐ No JAX-

specific

complianc

e

document

ation or

features

for GDPR,

HIPAA, AI

governanc

e, or

explainabil

Lack of

regulatory

adherence

and audit

capabilitie

s poses

high risk

for

enterprise

and

regulated

use

Conduct

third-party

complianc

e audits

and

integrate

external

explainabil

ity and

privacy

tools

632

Risk

Domain
Rating

Key

Finding

Reason

for Rating

Key

Control

ity

(awesome

-machine-

learning-

interpreta

bility)

(SHAP,

LIME)

Security ⭐⭐⭐ No

reported

CVEs in

last 24

months

but

absence

of formal

security

disclosure

policy,

patch

timelines,

and

document

ed

security

testing

elevates

risk (JAX

GitHub)

Limited

security

process

transparen

cy and

unsigned

artifacts

increase

vulnerabili

ty and

supply

chain risks

Publish

security

disclosure

policy,

formalize

patch

SLAs,

integrate

CI/CD

security

testing,

and sign

release

artifacts

(PyPI JAX)

Maintenan

ce

⭐⭐⭐⭐ Frequent

monthly

releases

and large

contributo

r base

indicate

strong

Active

developm

ent

supports

sustainabil

ity;

however,

missing

Define and

publish

issue

response

SLOs and

optimize

issue

triage

633

Risk

Domain
Rating

Key

Finding

Reason

for Rating

Key

Control

maintenan

ce but

lack of

published

issue

resolution

times

poses

moderate

risk (JAX

releases)

response

SLAs limit

issue

managem

ent

visibility

(JAX

Issues)

License ⭐⭐⭐⭐

⭐

Core JAX

under

Apache

2.0

permits

broad

commerci

al use;

however,

associated

JAX

mouse

models

impose

restrictive

Leap

License

constraint

s

unsuitable

for

commerci

al

redistributi

on (JAX

Core

software

licensing

minimizes

legal

constraint

s but

mouse

model

licenses

carry high

legal risk

Restrict

use of

mouse

models to

research

or conduct

detailed

legal

review

before

commerci

al use

634

Risk

Domain
Rating

Key

Finding

Reason

for Rating

Key

Control

LICENSE,

JAX Leap

License)

| OVERALL | ⭐⭐⭐ | JAX offers low legal risk for core use but faces high

dependency and regulatory risks with moderate security and maintenance

gaps (JAX GitHub) | Critical supply chain and compliance weaknesses

elevate overall risk despite strong licensing and maintenance foundations |

Prioritize remediation of dependency management and regulatory

compliance; strengthen security and maintenance policies |

🚨 EMERGENCY ISSUES

[Critical Issue]: JAX has no publicly available Software Bill of Materials

(SBOM), dependency vulnerability scanning, or update automation leading

to unmanaged critical supply chain exposure (Endor Labs 2024 report)

Immediate Action*: Implement automated SBOM generation, institute

regular vulnerability scanning and remediation workflows, and adopt

dependency update automation tools (GitHub Dependency Graph)

Top Controls by Priority

1. Immediate (0-7 days): Deploy automated SBOM and vulnerability scanning

processes to establish dependency visibility and supply chain security

(Endor Labs 2024 report)

2. Short-term (30 days): Publish formal security disclosure policy, patch

management timelines, and integrate security testing into CI/CD pipelines

(JAX GitHub Security Practices)

¶

¶

635

3. Medium-term (90 days): Conduct thorough third-party regulatory

compliance audits for GDPR, HIPAA, and AI governance; implement

external explainability and privacy tools (awesome-machine-learning-

interpretability, SHAP)

Comprehensive Risk Mitigation Strategy

Based on all section findings, JAX must adopt a multifaceted approach to

address its primary risks:

1. Technical Controls:

2. Establish automated SBOM generation and maintain an up-to-date

dependency inventory with vulnerability scanning integrated into build

workflows (GitHub Dependency Graph)

3. Implement cryptographically signed release artifacts and integrate

automated security testing (static/dynamic code analysis) in CI/CD

pipelines to improve artifact integrity and detect vulnerabilities early

(PyPI JAX)

4. Policy & Governance Controls:

5. Publicly document and enforce a coordinated security disclosure and

patch response policy with measurable SLAs to improve incident

management (JAX GitHub Issues)

6. Define and communicate issue response and resolution SLAs to

enhance maintenance transparency and user confidence (JAX Issues)

7. Legal & Compliance Controls:

8. Perform comprehensive legal review regarding restrictive JAX mouse

model licenses to ensure no unauthorized commercial use (JAX Leap

License)

¶

636

9. Engage external regulatory compliance audits addressing GDPR, HIPAA,

explainability, and AI governance requirements; supplement with

integration of industry-standard explainability (e.g. SHAP, LIME) and

privacy-preserving tools (awesome-machine-learning-interpretability)

This structured mitigation will enable JAX to substantially reduce its critical

supply chain and regulatory risks while enhancing overall security posture

and operational transparency.

637

License Analysis

Executive Overview

JAX core is licensed under Apache License 2.0, a permissive and

business-friendly license with explicit patent grants and clear attribution

rules; however, JAX-associated mouse models under the Leap License

impose restrictive research-only use, indemnities, and sublicensing

constraints, presenting a high legal risk for commercial redistribution.

Key Facts & Observations

¶

¶

¶

638

Risk

Factor

Observed

Data

Rating

(⭐)

Reason

for Rating

Key

Control

License

Type

Apache

License

2.0 for

JAX core

software

(JAX

LICENSE,

Apache

2.0)

⭐⭐⭐⭐

⭐

Permissive

, OSI-

approved,

widely

compatibl

e license

minimizing

legal

constraint

s.

Comply

with

Apache

2.0 license

obligations

Commerci

al Use &

Distributio

n

Allows

commerci

al use,

modificati

on,

redistributi

on royalty-

free under

Apache

2.0 terms

(JAX

LICENSE)

⭐⭐⭐⭐

⭐

Explicitly

permits

unrestricte

d

commerci

al use and

distributio

n without

fees.

Maintain

license

and

attribution

complianc

e

Patent

Grant

Provisions

Apache

2.0

provides

irrevocabl

e, royalty-

free

patent

license

covering

contributo

rsʼ patents

⭐⭐⭐⭐

⭐

Strong

patent

grant

reduces

litigation

risk for

users.

Monitor

for any

external

patent

claims

639

Risk

Factor

Observed

Data

Rating

(⭐)

Reason

for Rating

Key

Control

(Apache

2.0)

Attribution

Requireme

nts

Requires

retention

of

copyright,

license

notices,

and

NOTICE

file as per

Apache

2.0

(Apache

2.0)

⭐⭐⭐⭐

⭐

Clear

standard

attribution

requireme

nts avoid

ambiguity

in

complianc

e.

Retain all

copyright

and

NOTICE

files

during

reuse

640

Risk

Factor

Observed

Data

Rating

(⭐)

Reason

for Rating

Key

Control

JAX

Mouse

Model

Licensing

JAX Leap

License

includes

restrictive

research-

only use,

indemnific

ation

mandates,

non-

transferabi

lity, and

multiple IP

riders

including

CRISPR/C

as9

license

(JAX Leap

License)

⭐ Restrictive

licensing

terms limit

commerci

al use and

resale;

indemnity

and

sublicensi

ng clauses

add

significant

legal and

operationa

l risk.

Conduct

detailed

legal

review

before

commerci

al use or

redistributi

on

Summary

JAX coreʼs Apache 2.0 license ensures low legal risk for commercial and

open source use due to its permissive and explicit patent terms.

Conversely, JAX-associated mouse models distributed under the Leap

License program feature multiple layered, restrictive licenses and

indemnities posing high legal risk for commercial redistribution,

necessitating explicit license compliance, risk assessment, and legal

counsel before use beyond research.

¶

641

Security Assessment

Executive Overview

JAX has no reported CVEs in the last 24 months, indicating minimal direct

vulnerability exposure; however, it suffers from high risk due to no publicly

documented security disclosure policy, unclear patch response times, and

missing explicit CI/CD security testing evidence.

Key Facts & Observations

¶

¶

¶

642

Risk

Factor

Observed

Data

Rating

(⭐)

Reason

for Rating

Key

Control

CVE

History

No CVEs

explicitly

reported

against

JAX in

public

CVE

databases

over past

24 months

(JAX

GitHub,

CVE

MITRE)

⭐⭐⭐⭐

⭐

Zero

known

vulnerabili

ties

reported

in last 2

years

provides

strong

direct

security

assurance

.

Regular

vulnerabili

ty

scanning

and

monitoring

Security

Disclosure

Policy

No public

security

disclosure

or

coordinate

d

vulnerabili

ty

response

policy

published

or linked

in official

repo (JAX

GitHub)

⭐ Absence

of a formal

disclosure

policy

delays

vulnerabili

ty

identificati

on and

remediatio

n

coordinati

on, posing

high risk.

Establish

and

publicly

announce

a security

disclosure

policy

Patch

Response

Time

No

document

ed data on

time to

patch or

⭐ Unknown

patch

speed

impedes

risk

Define

patch

managem

ent SLAs

and

643

Risk

Factor

Observed

Data

Rating

(⭐)

Reason

for Rating

Key

Control

security

incident

response

time in

repo or

issue

discussion

s (JAX

GitHub

Issues)

mitigation

during

vulnerabili

ties,

creating

uncertaint

y and

elevated

risk

exposure.

disclose

response

times

Security

Testing

Evidence

No explicit

mention of

security-

focused

testing,

static/dyn

amic

analysis,

or CI/CD

pipeline

test

coverage

for

security in

build

systems

(JAX

GitHub

Actions)

⭐ Lack of

document

ed

security

testing

means

potential

vulnerabili

ties may

go

undetecte

d

increasing

risk of

exploitatio

n.

Integrate

and

document

automated

security

testing in

CI/CD

pipelines

Signed

Releases

& Binaries

Releases

delivered

as source

code,

without

public

⭐⭐⭐ Missing

signed

binaries

moderatel

y

increases

Provide

cryptogra

phically

signed

release

artifacts

644

Risk

Factor

Observed

Data

Rating

(⭐)

Reason

for Rating

Key

Control

cryptogra

phic

signing or

verificatio

n of

artifacts

(PyPI JAX)

supply

chain risk

from

tampered

or

compromi

sed

releases.

and

detailed

release

notes

Summary

JAX maintains a clean CVE record but presents high security risk due to

lack of publicly documented security incident handling policies, undefined

patch response processes, and unclear security testing practices.

Additionally, unsigned release artifacts expose users to supply chain

threats. To reduce risk, JAX should establish and publish comprehensive

security policies, enforce security testing in development, and adopt

artifact signing practices.

¶

645

Maintenance Indicators

Executive Overview

JAX demonstrates strong maintenance health with frequent releases and a

sizeable contributor base; however, the lack of published issue resolution

times constitutes a high maintenance risk.

Key Facts & Observations

¶

¶

¶

646

Risk

Factor

Observed

Data

Rating

(⭐)

Reason

for Rating

Key

Control

Latest

release

date

Last

release:

June 12,

2024 JAX

releases

⭐⭐⭐⭐

⭐

Recent

release

under one

month old

indicates

active

maintenan

ce

Continuou

s release

monitoring

Release

frequency

Approxima

tely 12

releases in

past 12

months

JAX

releases

⭐⭐⭐⭐

⭐

Monthly

release

cadence

supports

timely

feature

additions

and bug

fixes

Automated

CI/CD with

scheduled

releases

Active

contributo

r count

260

contributo

rs in past

year

including

Google

employees

and

communit

y JAX

contributo

rs

⭐⭐⭐⭐

⭐

Large and

diverse

contributo

r pool

supports

sustainabl

e

developm

ent

Encouragi

ng

external

contributio

ns

Issue

resolution

metrics

No

document

ed

average

⭐ Absence

of

published

issue

Define and

publish

service-

level

647

Risk

Factor

Observed

Data

Rating

(⭐)

Reason

for Rating

Key

Control

issue

resolution

time;

some

issues

remain

open over

30 days

JAX

issues

resolution

SLOs and

visible

prolonged

issue

closures

pose high

risk

objectives

for issue

response

Packaging

workflow

Automated

packaging

and

publishing

on PyPI

with

detailed

release

notes per

version

JAX PyPI

page

⭐⭐⭐⭐

⭐

Well-

document

ed

automated

publishing

assures

release

integrity

Maintain

CI/CD

pipelines

648

Dependency Management

Executive Overview

JAX's dependency management lacks any explicit public disclosure

regarding SBOM availability, direct and transitive dependency counts, or

vulnerability management, presenting a highly elevated risk profile due to

unmonitored supply chain exposure.

Key Facts & Observations

¶

¶

¶

649

Risk

Factor

Observed

Data

Rating

(⭐)

Reason

for Rating

Key

Control

SBOM

Availability

No public

data or

document

ation

about

SBOM

generation

or

publicatio

n for JAX

⭐ Complete

absence

of SBOM

impedes

transparen

cy and

security

auditing of

dependen

cies

Implement

and

document

automated

SBOM

generation

and

distributio

n

Direct

Dependen

cy Count

No explicit

informatio

n on JAX's

number of

direct

dependen

cies

available

⭐ Unknown

dependen

cy scope

disables

targeted

risk

evaluation

Conduct

full

dependen

cy audit

and

publish list

Transitive

Dependen

cy

Managem

ent

No

evidence

of visibility

or controls

over

transitive

dependen

cies in

JAX

ecosystem

⭐ Lack of

transitive

dependen

cy

managem

ent

increases

hidden

vulnerabili

ty risks

Utilize

dependen

cy graph

tools that

track and

label

transitive

dependen

cies with

remediatio

n

guidance

650

Risk

Factor

Observed

Data

Rating

(⭐)

Reason

for Rating

Key

Control

Vulnerable

Dependen

cies

No

publicly

available

vulnerabili

ty scans

or

remediatio

n

disclosure

s for JAX

dependen

cies

⭐ Unknown

vulnerabili

ty status

of

dependen

cies poses

critical

threat to

supply

chain

security

Regularly

scan

dependen

cies for

vulnerabili

ties and

document

fixes

Dependen

cy Update

Tools/Poli

cies

No

informatio

n on use

of

automated

dependen

cy update

tools or

policies

(e.g.,

Dependab

ot,

Renovate)

⭐ Absence

of update

automatio

n risks

outdated,

vulnerable

dependen

cies

persisting

undetecte

d

Adopt

automated

dependen

cy update

tools and

define

update

policies

The complete lack of publicly available dependency management data for

JAX — including SBOM availability, dependency counts, visibility into

transitive dependencies, vulnerability scanning, and automated update

tooling — justifies a HIGH risk rating across all categories. Immediate

remediation must prioritize establishing comprehensive SBOM practices,

rigorous dependency audits, vulnerability scanning, and automated update

mechanisms to mitigate supply chain security weaknesses. Without these

651

controls, JAXʼs dependency ecosystem remains a critical unmanaged risk

vector.

GitHubʼs 2025 update on distinguishing direct vs. transitive dependencies

outlines industry best practices that JAX currently does not publicly

demonstrate

Endor Labs 2024 report stresses that 95% of vulnerabilities reside in

transitive dependencies, underscoring the critical need for transitive

dependency management

Absence of SBOM and automated updates severely undermines supply

chain security posture as per the 2024 Endor Labs Dependency

Management Report

652

Regulatory Considerations

Executive Overview

JAX presents a high regulatory risk due to the total absence of JAX-

specific documentation or features addressing compliance frameworks,

data privacy, AI explainability, and governance requirements crucial for

enterprise and safety-critical systems.

Key Facts & Observations

¶

¶

¶

653

Risk

Factor

Observed

Data

Rating

(⭐)

Reason

for Rating

Key

Control

Complianc

e

Framewor

ks

No explicit

GDPR,

HIPAA, or

other

regulatory

complianc

e

document

ation or

statement

s found for

JAX in

official or

curated

repositorie

s

(awesome

-machine-

learning-

interpreta

bility)

⭐ Lack of

any

complianc

e

document

ation or

claims

leads to

high risk

of

nonconfor

mance

with

essential

legal

framework

s

Conduct

third-party

regulatory

audits;

integrate

complianc

e tooling

Explainabil

ity

Features

No built-in

explainabil

ity or

interpreta

bility tools

specific to

JAX cited

in primary

sources or

curated

ML

interpreta

bility lists

(awesome

⭐ Absence

of

explainabil

ity

features

poses

high risk

for

regulated

AI

applicatio

ns

requiring

transparen

Use

external

explainabil

ity

framework

s e.g.,

SHAP,

LIME

654

Risk

Factor

Observed

Data

Rating

(⭐)

Reason

for Rating

Key

Control

-machine-

learning-

interpreta

bility)

cy and

auditability

Data

Privacy

Provisions

No stated

data

privacy or

privacy-

preserving

mechanis

ms for

JAX found

in official

document

ation or

communit

y

resources

(awesome

-machine-

learning-

interpreta

bility)

⭐ Missing

data

privacy

capabilitie

s increase

risk of

violating

data

protection

laws e.g.,

GDPR,

CCPA

Implement

external

privacy

engineerin

g,

differential

privacy

tools

Audit

Document

ation

No

evidence

of audit

trails,

usage

logs, or AI

governanc

e

document

ation

specificall

y

⭐ Absence

of audit

and

governanc

e

document

ation

creates

high

complianc

e risk and

hinders

Establish

comprehe

nsive

logging

and

governanc

e

processes

around

JAX

655

A.4 Example Baseline Evaluation: JAX Library Report
Following the full JAX library assessment report presented in Appendix A.3, this subsection provides
the corresponding automated baseline evaluation. This evaluation compares LIBVULNWATCH’s findings
for JAX against the OpenSSF Scorecard, detailing the alignment between the two and highlighting novel
risks or deeper contextual insights uniquely identified by our agentic system. This comparative analysis
is crucial for understanding the added value and specific strengths of our approach when applied to a
specific library assessment.

Listing 9: JAX Library Assessment Evaluation (comparison with OpenSSF Scorecard).
** Coverage Summary :**
- Model Coverage: 11/18 scorecard checks addressed in report.
- Model Seeking: 12 issues found by model but not in Scorecard.

** Checks Missing from Report :**
- **Code -Review **: The Scorecard identified low code review approvals (3/10) , but the report did not explicitly discuss code

↪→ review quality or approval ratios.
- **Dangerous -Workflow **: Scorecard verified the absence of dangerous workflows but the full report did not address this

↪→ workflow security aspect.
- **Dependency -Update -Tool **: Scorecard found update tools (Dependabot) used , but the full report highlighted a critical lack

↪→ in dependency management and did not discuss presence of update tooling.
- ** Fuzzing **: Scorecard noted no fuzzing; the report lacked any mention of fuzz or dynamic testing efforts.
- ** Maintainance indicators on issue resolution **: While Scorecard gave a perfect score on Maintained , the report notes

↪→ absence of issue resolution SLAs and some open issues , indicating a maintenance concern not captured in scorecard
↪→ summary.

- ** Packaging **: Scorecard could not assess; full report noted good automated packaging but did not discuss packaging workflow
↪→ security.

- **Signed -Releases **: Scorecard could not score; the report discusses unsigned releases raising supply chain risks.

** Issues Found Only by Model :**
- ** Absence of SBOM and Dependency Transparency **: The report highlights complete lack of SBOM , transitive dependency

↪→ management , and vulnerability scanning as critical , absent from Scorecard findings.
- ** Security Process Gaps **: Missing published security disclosure policies , patch SLAs , and CI/CD security integration not

↪→ described by Scorecard.
- ** Regulatory and Compliance Risks **: High regulatory risk with no GDPR , HIPAA , AI governance , or explainability support

↪→ fully discussed only by model.
- **Legal Licensing Limitations for Mouse Models **: The restrictive and risky JAX Leap License for mouse models posing

↪→ commercial legal risks not detected by Scorecard.
- ** Dependency Vulnerability and Update Weaknesses **: While Scorecard found some update tooling , the model reveals severe

↪→ vulnerability management gaps.
- **Token Permissions Excessive **: Scorecard flags token permission issues; the report does not discuss token permission risks

↪→ .
- ** Vulnerabilities Present **: Scorecard reports 18 existing vulnerabilities; the full report sees no recent CVEs and thus

↪→ conflicts on direct vulnerability findings.

The model identified more nuanced regulatory , legal , and dependency supply chain details that the Scorecard metrics alone did
↪→ not reveal , while Scorecard provided some workflow and token permissions insights not covered by the model.

656

