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Abstract

We explore how different types of nominal com-
pound complexity in scientific writing, in par-
ticular different types of compound structure,
affect the reading times of experts and novices.
We consider both in-domain and out-of-domain
reading and use PoTeC (Jakobi et al., 2024), a
corpus containing eye-tracking data of German
native speakers reading passages from scientific
textbooks. Our results suggest that some com-
pound types are associated with longer reading
times and that experts may not only have an
advantage while reading in-domain texts, but
also while reading out-of-domain.

1 Introduction

Complex noun phrases (NPs), in particular nominal
compounds (e.g., protein extraction methods), are
used frequently in scientific writing and constitute
a distinctive feature of the written scientific register
(Biber and Gray, 2011). Nominal compounds allow
for information to be transmitted in a highly com-
pressed way, which increases implicitness (Biber
and Gray, 2010): Logical relations between the
constituents of a compound are implicit (compare
to methods for the extraction of proteins). Select-
ing a relational meaning from a range of possible
meanings is therefore a crucial task in compound
processing (Benjamin and Schmidtke, 2023). Pos-
sible meaning relations (such as the ones expressed
with the prepositions for and of in the example) are
in competition with each other in the compound
version. In fact, compounds with a larger num-
ber of possible relations between constituents have
been shown to pose a greater challenge for process-
ing (ibid.). From a diachronic perspective, nominal
compounds are a typical result of lexicalization
processes in a language’s morphological evolution
(Hilpert, 2019). In the development of scientific
writing, this process is especially productive due to
ongoing terminology formation, which goes hand

in hand with the increasing specialization of sci-
entific disciplines: concepts are introduced to the
community by using syntactically transparent ren-
derings such as prepositional phrases or relative
clauses (e.g. methods that are used for the extrac-
tion of proteins), and once they become established
in the community they are compressed into less
explicit renderings such as nominal compounds
(e.g. protein extraction methods). A compound’s
successful processing can thus be assumed to rely
on sufficient background knowledge to infer im-
plicit relations between the compound’s compo-
nents. However, to our knowledge, there is no
behavioral evidence for this assumption. While it
is difficult to trace the establishment and process-
ing of a compound over time within a scientific
community, in the present study, we want to test
whether background knowledge facilitates the pro-
cessing of compounds differing in their internal
complexity and structure. We model background
knowledge as the reader’s expertise in a scientific
discipline. More specifically, we test whether in-
domain experts and novices process compounds
differently from out-of-domain experts and novices.
Much research on compounds and reading behavior
has focused on English: By using PoTeC (Jakobi
et al., 2024), a unique resource containing reading
data for German native speakers of varying back-
grounds, as our dataset, we also shift the focus
towards a more cross-linguistic perspective.

2 Background

Previous literature indicates that complexity on
various linguistic levels can pose challenges in
sentence processing. Syntactically more complex
structures include longer dependencies between a
syntactic head and its dependent, increasing their
syntactic integration cost (cf. Dependency Local-
ity Theory; Gibson, 1998). Specifically for nouns,
dependency locality has been found to predict read-
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ing times (Demberg and Keller, 2008). Other stud-
ies have considered word frequency and novelty
as complexity features and found a correlation
with increased reading times (e.g. Just and Car-
penter, 1980, for scientific texts). Frequency ef-
fects are also well known for the reading of com-
pounds, with previous studies showing that higher
constituent frequency, among other factors, eases
processing (Baayen et al., 2010; Schmidtke et al.,
2021). Likewise, the use of domain-specific ter-
minology (Škrjanec et al., 2023) has been found
to influence reading time. In fact, having a dis-
tinctive code is beneficial for communication as
transmission of information becomes more error-
free (Harris, 1991).

Individual reader characteristics, such as back-
ground knowledge and experience have also been
observed to influence reading comprehension
(Kendeou and Van Den Broek, 2007). This is
particularly relevant for scientific texts, which are
targeted at an expert audience (Halliday, 1988).
Over time, scientific language has shown to be-
come more informationally dense with a tendency
towards structural compression (Biber and Gray,
2013) and the use of dense phrasal structures (Hal-
liday and Martin, 1993; Mair, 2006; Degaetano-
Ortlieb and Teich, 2019). Mechanisms of special-
ization and conventionalization seem to act as bal-
ancing forces to modulate the transmission of infor-
mation (Degaetano-Ortlieb and Teich, 2019). Spe-
cialization requires new forms of expression, given
the need to express new concepts during periods of
scientific innovation. Conventionalization allows
for the formation of terminology known among
experts, with compounds being the most compact
forms of expression.

While previous studies considering compounds
have often focused on English and mostly consid-
ered the prototypical compound structure noun-
noun (e.g. Baayen et al., 2010; Schmidtke et al.,
2021), our focus is on German and diverse
types of compound structures (e.g., affix-adjective-
noun-noun as in Hyperfeinstrukturenaufspaltungen,
noun-affix-noun, such as Cellulose-Mikrofibrillen),
assuming that different types of complexity impact
their processing.

3 Hypotheses

Our hypotheses regarding the processing of dif-
ferent types of compound complexity are divided
into two factors: length and structure. Regarding

length, we assume that the more constituents a
compound possesses, the more possible relations
need to be inferred, making it harder to process.
Regarding structure, we are interested in whether
the parts-of-speech constituting the compound af-
fect the compound’s processing, i.e. noun-noun
compounds vs. adjective-noun compounds. Noun-
noun compounds might be easier to process due
to their higher frequency. However, the meaning
relation between the constituents of an adjective-
noun compound can usually be described as "[head-
noun] is [modifier-adjective]" (e.g., blackbird).
Noun-noun compounds, on the other hand, possess
more diverse meaning relations, such as "[head-
noun] made from [modifier-noun]" (e.g., olive oil)
or "[head-noun] for [modifier-noun]" (e.g., baby
oil). This could make them harder to process than
adjective-noun compounds.

Our two main hypotheses are as follows: (H1)
Compounds differ in reading times given their inter-
nal structure, and (H2) expert knowledge influences
reading times.

For H1, we will test the following hypotheses:

H1.1 Structurally more complex compounds, i.e.
compounds with more constituents are harder
to process and correlated with higher reading
times.

H1.2 Compounds with non-nominal modifiers are
processed differently than compounds with
nominal modifiers, leading to a difference in
reading times.

We also consider differences in compound pro-
cessing based on reader characteristics (H2): We
expect novices and out-of-domain readers to have
more difficulty with compounds, since background
knowledge plays an important role in inferring im-
plicit relations. Additionally, experts are likely to
outperform novices when reading texts from other
scientific fields, as their general scientific reading
competence provides an extra advantage. Our hy-
potheses regarding reader characteristics are there-
fore as follows:

H2.1 Compared to domain experts, novices and out-
of-domain readers have generally more diffi-
culties in compound processing and therefore
longer reading times.

H2.2 When reading out-of-domain, experts still
have fewer difficulties in compound process-
ing than novices, and therefore shorter reading
times.
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The results can highlight the impact of NP com-
plexity on processing difficulty and its interaction
with readers’ domain expertise. Besides being of
theoretical interest, these findings are relevant for
teaching English for Academic Purposes. Stud-
ies like Priven (2020) suggest that non-native En-
glish speaking students experience difficulties in
understanding complex noun phrases in academic
writing. Gaining a better insight into which struc-
tures are particularly challenging may guide future
teaching. By shedding light on these structures,
the results may additionally have implications for
the improvement and evaluation of automatic text
simplification.

4 Data and Preprocessing

We use PoTeC (Jakobi et al., 2024), a German
naturalistic eye-tracking-while-reading corpus. It
contains the data of 75 German native speakers
who were university students of either biology or
physics. The students were either experts (graduate
students) or novices (undergraduate students) and
read passages from biology and physics textbooks.
The corpus contains various reading time measures
(e.g., first-pass reading time, total fixation time,
number of incoming regressions, number of out-
going regressions) and linguistic annotation (e.g.,
part of speech, frequency, surprisal estimates from
different language models).

The corpus also contains dependency annotation
and constituency annotation based on the Python
library spacy (Honnibal and Montani, 2017). In
order to get a more fine-grained dependency an-
notation based on Universal Dependencies (Nivre
et al., 2017), we parsed and annotated the corpus
files with the help of the Python library stanza (Qi
et al., 2020). Since compounds written as one word
(which is the case for most German compounds)
are not specifically annotated under this scheme
and compounds separated by a hyphen are only
superficially annotated, we then extracted all the
nouns, manually identified the compounds and an-
notated them: For each compound, we identified
its constituents and annotated their part of speech.
In the case of neo-classical compounds, i.e. com-
pounds containing a constituent originating from
Latin or Greek, the part of speech could not be
clearly identified. We used the tag affix here, in
accordance with German dictionary conventions.
The compounds were labeled by one annotator, an-
notations were subsequently validated by another

person. In the case of disagreements, a third person
was consulted. Table 1 shows some examples of
our annotation.

Table 2 shows the total number of observations
and the number of unique compound words per
compound category, for biology and physics re-
spectively. For both domains, most compounds
belonged to the noun-noun category, which is the
prototypical compound in German (see also studies
regarding first language acquisition, e.g., Korecky-
Kröll et al., 2017).

In addition, information about the number of
occurrences was added for each compound, since
many compounds occurred several times in the
stimulus texts: The first occurrence of a specific
compound was labeled as 1, subsequent occur-
rences as 2, 3 and so on. We also included informa-
tion about the first constituent frequency, since con-
stituent frequency effects for compounds are well
known in the literature. The first constituent fre-
quencies were extracted from the dlexDB database
(Kliegl et al., 2025), a reference database for Ger-
man which was also used in the creation of PoTeC.

5 Influence of Constituent Number

For our first analysis, we consider the influence
of constituent number (H1.1). More specifically,
we investigate whether compounds with two con-
stituents are read faster than compounds with three
constituents. We also investigate the influence of
background knowledge (H2.1 and H2.2). For this,
we conducted an analysis on biology texts and an-
other on physics texts to study in-domain vs. out-of-
domain reading behavior. For biology, we analyzed
N = 4984 observations (first-pass reading times
of individual compounds): Of these observations,
4261 were compounds with two constituents, 723
compounds had three constituents. For physics, we
analyzed N = 4681 observations, including 4256
observations with two constituents and 425 obser-
vations with three constituents. We only consid-
ered compounds that were fixated at least once
and which were fixated during first-pass reading.
We also excluded compound words that occurred
in sentence-initial position and for which no first
constituent frequency could be retrieved from the
reference database.

5.1 Regression Model

For each domain, we fit generalized mixed effects
regression models using the glmmTMB package
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Compound English Translation Division Word Class
Hyperfeinstrukturenaufspaltungen hyperfine structure splitting Hyper-fein-

strukturen-
aufspaltungen

affix-adjective-noun-noun

Gelelektrophorese gel electrophoresis Gel-elektro-
phorese

noun-affix-noun

Cellulose-Mikrofibrillen cellulose microfibrils Cellulose-
Mikro-fibrillen

noun-affix-noun

Prionenprotein prion protein Prionen-protein noun-noun

Table 1: Compound annotation with English equivalents, division, and word class structure.

Category Biology Physics
Total Unique Total Unique

adj-n 375 5 525 6
adj-n-n 0 0 150 2
adj-n-n-n 75 1 0 0
aff-adj-n-n 0 0 75 1
aff-aff-n 75 1 75 1
aff-n 450 5 525 5
aff-n-n 75 1 150 2
adv-n 300 2 0 0
n-aff-n 150 2 0 0
n-n 3900 41 3375 36
n-n-n 450 5 75 1
n-n-n-n 225 1 0 0
v-n 0 0 150 2

Table 2: Compound category counts in Biology and
Physics, with total and unique counts.

(Brooks et al., 2017) in the statistical program-
ming language R, version 4.4.2 (R Core Team,
2024). Our dependent variable was first-pass read-
ing time. Since reading times, like other reaction
time data, are not normally distributed (Lo and An-
drews, 2015), we used gamma regression models
with a log-link. Using gamma models for reaction
time data has been suggested in the literature as
a possible alternative to log-transforming the data
before analysis, which is considered to be problem-
atic by some authors (Lo and Andrews, 2015).

Our predictors of interest were the interaction
of compound structure and domain expert status
and the interaction of technicality and domain ex-
pert status. The factor compound structure had the
levels two constituents and three constituents. The
factor technicality had the levels technical and non-
technical. The levels of domain expert status were
novice biologist, expert biologist, novice physicist,
expert physicist. For the biology texts, the biol-
ogists were reading in-domain and the physicists
were reading out-of-domain. For physics texts,
it was vice versa. In this way, we model the

compound structure while taking into account the
reader’s level of expertise and domain familiarity.

We controlled for word length, type frequency
of the whole compound, lemma frequency of the
first constituent, surprisal (i.e., word predictability
in context; Shannon, 1948), word index in the sen-
tence, hyphenation and occurrence number of the
compound word, since many compounds occurred
more than once in the stimulus texts. Our control
variables were theoretically motivated, based on
factors known to influence reading behavior (see
Section 2). We opted not to use step-wise model se-
lection due to concerns about the generalizability of
the resulting model (see, e.g., Smith, 2018). Finally,
we included by-subject and by-lemma random in-
tercepts and a by-lemma random slope for surprisal
to account for subject- and lemma-based variability.
The factors compound structure, domain expert sta-
tus, technicality and hyphenation were treatment-
coded, with two constituent compounds, domain
expert, non-technical term and non-hyphenated
compound as the baseline levels. The frequency-
based variables were log-transformed, while the
variable word length was centered and scaled.

For model diagnostics, we inspected the residu-
als using the R package DHARMa (Hartig, 2024).
The plots did not show any overly problematic
trends. We also tested for collinearity using the
package performance (Lüdecke et al., 2021): Over-
all collinearity was low, with variance inflation
factors below 2.

5.2 Results

The significant results (α = 0.05) for biology are
shown in Table 3. The full model summary is
included in the appendix (note that the model coef-
ficients are on the log-scale).
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Est. SE z p
Intercept 6.06 0.10 58.31 <0.001
word length 0.18 0.03 5.32 <0.001
surprisal 0.02 0.00 4.20 <0.001
word index -0.01 0.00 -3.27 <0.01
novice physicist,
technical term 0.26 0.05 5.06 <0.001
expert physicist,
technical term 0.22 0.04 5.02 <0.001

Table 3: Analysis of constituent number: significant
coefficients for biology.

We observed a significant interaction of techni-
cality and domain expert status for novice physi-
cists (β = 0.26, SE = 0.05, p < 0.001) and expert
physicists (β = 0.22, SE = 0.04, p < 0.001), i.e. out-
of-domain readers when reading technical terms.
Figure 1 shows the predicted reading times for
non-technical vs. technical terms and for the dif-
ferent reader groups: While the reading times for
technical terms are generally higher than for non-
technical terms, and while out-of-domain readers
are generally slower than in-domain readers, out-of-
domain readers are particularly slow when reading
technical terms. This holds for both novice and
expert physicists, with novice physicists showing a
slightly larger increase in reading times.

The effects of our control variables have been at-
tested in previous studies. We observed significant
effects of word length (β = 0.18, SE = 0.03, p <
0.001), surprisal (β = 0.02, SE = 0.00, p < 0.001)
and word index in sentence (β = -0.01, SE = 0.00,
p < 0.01): Longer words and words with higher
surprisal were associated with increased reading
times, while words with a higher index (i.e. a later
position) in the sentence were associated with de-
creased reading times.

The significant effects (α = 0.05) for physics are
shown in Table 4 (see complete model summary in
the appendix).

We found a significant effect of compound struc-
ture when the reader was a novice biologist and
the compound consisted of three constituents (β
= 0.19, SE = 0.08, p < 0.05). The reading times
associated with compounds with three constituents
were generally higher than for those with two con-
stituents. This effect was statistically significant
for novice biologists, who showed longer reading
times compared to expert physicists reading two-
constituent compounds. Model predictions for this
interaction are shown in Figure 2.

In addition, there was a significant interaction of
domain expert status and terminology for novice

Est. SE z p
Intercept 6.06 0.15 41.54 <0.001
word length 0.10 0.04 2.65 0.008
compound
frequency -0.15 0.06 -2.33 0.02
word index 0.00 0.00 2.07 0.04
hyphenation -0.46 0.20 -2.37 0.02
novice biologist,
technical term 0.10 0.05 2.22 0.03
expert biologist,
technical term 0.09 0.04 2.25 0.02
novice biologist,
three constituents 0.19 0.08 2.44 0.01

Table 4: Analysis of constituent number: significant
coefficients for physics.

biologists (β = 0.10, SE = 0.05, p < 0.05) and expert
biologists (β = 0.09, SE = 0.04, p < 0.05): Both
groups show increased reading times for technical
terms, compared to expert physicists reading non-
technical terms. The increase is slightly higher for
the novice biologists.

We also observed an effect of the control vari-
ables word length (β = 0.10, SE = 0.04, p < 0.01),
compound frequency (β = -0.15, SE = 0.06, p <
0.05), word index (β = 0.00, SE = 0.00, p < 0.05)
and hyphenation (β = -0.46, SE = 0.20, p < 0.05).
For word length and word index, the effect was
similar to the one observed for the biology texts.
Additionally, more frequent compounds and com-
pounds containing a hyphen were read faster.

Figure 1: Biology: Predicted reading times for non-
technical vs. technical terms.
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Figure 2: Physics: Predicted reading times for two- vs.
three-constituent compounds

5.3 Discussion

Our results suggest an effect of compound structure
on compound processing (H1.1), at least for the
physics texts: Compounds with three constituents
were generally read slower than compounds with
two constituents, even when controlling for word
length as we did in our model (note that compounds
with three constituents do not necessarily need to
be longer than compounds with two constituents).
This interacted with reader domain knowledge:
Readers reading out-of-domain and possessing lit-
tle expertise in their own field (novice biologists)
showed a significant increase in reading times for
three-constituent compounds. Expert biologists, on
the other hand, seemed to have fewer difficulties,
since they did not diverge that significantly from
in-domain experts. This might again indicate a gen-
eral scientific reading skill providing them with an
advantage.

In addition, we found evidence that technical-
ity may have an effect on reading times and that
this varies by reader expertise: For biology texts,
out-of-domain readers were particularly slow when
reading technical compounds, reflecting process-
ing difficulties due to their lack of familiarity with
the subject matter. The slightly greater increase
in reading times for novice physicists compared
to expert physicists also suggests that experts may
indeed still have an advantage when reading texts
from a different domain. The results for biology,
therefore, support H 2.1 and H 2.2. For physics
texts, the picture was similar: Out-of-domain read-
ers generally showed increased reading times for
technical compounds. The increase was slightly
higher for novice biologists than for expert biolo-
gists, suggesting an expert advantage even when

reading out-of-domain.
Moreover, our analysis showed the expected ef-

fects of some well-known factors influencing com-
pound processing: greater word length and higher
surprisal were associated with increased reading
times. A later position of the compound in the sen-
tence, higher frequency and hyphenation, on the
other hand, were associated with decreased reading
times.

6 Influence of Modifier Type

For our second analysis, we now considered the
influence of modifier type (H1.2). Extracting all
two-constituent compounds, we compared the pro-
totypical noun-noun compounds with those com-
pounds in which the modifier has a different word
class, e.g., verb-noun or adjective-noun. In total,
this led to N = 4261 observations to be analyzed for
biology. 3408 observations were noun-noun com-
pounds, 853 observations were compounds with a
non-nominal modifier. For physics, we analyzed
4256 observations: 3147 noun-noun compounds
and 1109 compounds with a non-nominal modifier.

6.1 Regression Model

We fit generalized linear mixed-effects models in
the same way as in Section 5, with the exception of
the predictor compound type, which now consisted
of the levels noun-noun and other-noun. Again, the
factor compound type was treatment coded, with
noun-noun as the baseline level.

Inspecting the model residuals revealed no
overly problematic trends. The collinearity of our
predictors was moderate to low, with variance in-
flation factors below 3 for the biology model and
below 2 for the physics model.

6.2 Results

The significant effects (α = 0.05) for biology are
displayed in Table 5. The full model summary is
included in the appendix.

We observed an effect of modifier type and
reader background on reading times (β = -0.16,
SE = 0.06, p < 0.05): Out-of-domain readers with
little experience in their own field (novice physi-
cists) diverge significantly from expert biologists.
Interestingly, they have shorter reading times for
compounds with non-nominal modifiers. We will
return to this point in the discussion. Model pre-
dictions for compound type are displayed in Figure
3.
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Est. SE z p
Intercept 6.00 0.11 53.67 <0.001
word length 0.18 0.05 3.92 <0.001
surprisal 0.02 0.01 4.07 <0.001
word index -0.01 0.00 -3.19 0.001
expert status:
expert physicist 0.17 0.07 2.47 0.01
novice physicist,
technical term 0.25 0.05 4.69 <0.001
expert physicist,
technical term 0.22 0.05 4.83 <0.001
novice physicist,
non-nom. mod. -0.16 0.06 -2.56 0.01

Table 5: Analysis of modifier type: significant coeffi-
cients for biology.

Est. SE z p
Intercept 6.11 0.15 38.84 <0.001
word length 0.08 0.04 2.20 0.03
compound
frequency -0.14 0.07 -2.08 0.04
hyphenation -0.63 0.26 -2.40 0.02
novice biologist,
technical term 0.14 0.05 2.87 <0.01
expert biologist,
technical term 0.12 0.04 2.73 <0.01

Table 6: Analysis of modifier type: significant coeffi-
cients for physics.

In addition, we see a significant interaction of
technicality and reader expertise: Similarly to
the results from Section 5, out-of-domain readers,
namely novice (β = 0.25, SE = 0.05, p < 0.001)
and expert physicists (β = 0.22, SE = 0.05, p <
0.0001) are relatively slow when reading technical
compounds. The increase in reading times was
slightly higher for the novice physicists.

We also observed significant effects of the con-
trol variables word length (β = 0.18, SE = 0.05,
p < 0.001), surprisal (β = 0.02, SE = 0.01, p <
0.001), and word index in sentence (β = -0.01, SE =
0.00, p < 0.001): Longer and less predictable words
were associated with increased reading times, while
words occurring later in the sentence were read
faster.

The significant effects (α = 0.05) for physics are
displayed in Table 6. As before, the full model
summary can be found in the appendix.

Similarly to the results in Section 5, out-of-
domain readers, the novice (β = 0.14, SE = 0.05,
p < 0.01) and expert biologists (β = 0.12, SE =
0.04, p < 0.01) diverge significantly from expert
physicists in their reading behavior. Both groups
have increased reading times for technical terms,
with a slightly higher increase for the novices.

The significant effects of our control variables

Figure 3: Biology: Predicted reading times for com-
pounds with a nominal vs. non-nominal modifier.

existed for word length (β = 0.08, SE = 0.04, p <
0.05), compound frequency (β = -0.14, SE = 0.07,
p < 0.05) and hyphenation (β = -0.63, SE = 0.26,
p < 0.05): Reading times were higher for longer
words, while more frequent as well as hyphenated
compounds were associated with decreased reading
times.

6.3 Discussion

Regarding the effect of technicality and reader
background, the results of our second analysis
yielded similar results as the analysis in Section
5: Again, readers with no background in the do-
main at hand were significantly slower for technical
terms. The increase was larger for the novices than
for the experts reading out-of-domain texts. This
comes as no surprise since the data was roughly
the same as in the previous analysis, only the fac-
tor compound type was coded differently. In our
second analysis, we observed an effect of modi-
fier type in the biology domain: Novice physicists
diverged significantly from expert biologists and
had shorter reading times for compounds with non-
nominal modifiers compared to compounds with
nominal modifiers. This supports hypothesis H1.2,
indicating an effect of modifier type for processing.
Interestingly, non-nominal modifiers may be easier
to process: This might reflect the smaller number
of possible semantic relations between head and
modifier for, e.g., adjective-noun compounds com-
pared to noun-noun compounds.

7 Discussion and Conclusion

In our two analyses, we saw some evidence sup-
porting our initial hypotheses: Compound struc-
ture seemed to have an effect on reading time,
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suggesting differences in processing difficulty for
compounds with different numbers of constituents
and for compounds with different types of modi-
fiers. However, this effect varied based on reader
background: Novice biologists showed an increase
of reading times for compounds with more con-
stituents when reading texts from the physics do-
main. Novice physicists showed a decrease of read-
ing times for compounds with non-nominal modi-
fiers when reading texts from the biology domain.
The fact that the effect of compound structure could
only be observed for novice readers reading out-
of-domain texts suggests that the effect might be
relatively small and interacting with reader back-
ground: In our dataset, we could only observe it for
readers with neither domain knowledge nor much
experience in their own field. It also suggests that
experts possess general scientific reading compe-
tence which helps them even when reading out-
of-domain: They performed more similarly to in-
domain readers even when reading texts from a dif-
ferent domain. The effect was only visible in some
text domains: The effect of constituent number was
only visible for the physics texts, while the effect of
modifier type was only visible for the biology texts.
Further studies would need to investigate the rea-
sons for this difference and consider other domains
and readers with other backgrounds. As natural
sciences, biology and physics still have many simi-
larities in their respective domain-specific lexicon.
Effects of compound structure in out-of-domain
readers might be more pronounced for readers with
background in a more distant field (e.g., readers
with a social science background reading physics
or biology texts).

The effect of technicality and reader domain was
relatively robust: Out-of-domain readers always
had significantly longer reading times for techni-
cal terms than in-domain readers. For the out-of-
domain readers, the experts showed a smaller in-
crease in reading times, supporting the hypothesis
of their general scientific reading competence.

These results are not only of theoretical interest,
but have implications for teaching English for Aca-
demic Purposes and for improving and evaluating
automatic text simplification tasks: Which struc-
tures are complex and therefore hard to process?
And for which groups of readers is this the case?
Gaining a better understanding of these aspects is
crucial in these two endeavors.

8 Limitations

Our analysis has one major limitation: The dataset
was unbalanced, since most unique compounds be-
longed to the noun-noun category. The categories
of compounds with three constituents and com-
pounds with non-nominal modifiers contained far
less unique words. Thus, the question remains if
our significant effects can be attributed to idiosyn-
crasies of these individual compounds or if they
can be generalized. Moreover, some categories
were quite diverse internally: Non-nominal mod-
ifiers, for instance, encompassed different word
classes which may not have the same effect on
compound processing. An adjective-noun com-
pound might pose different challenges than a verb-
noun compound. For this reason, the current study
could be replicated with a different dataset: Data
with less imbalance in the compound categories
might provide clearer results regarding the effect
of compound structure and might allow a more
fine-grained analysis. There are also additional
variables to be considered in future research: the
number of possible relations between constituents,
compound transparency or constituent family size.

This would shed more light on the mechanisms
of compound processing, in particular for com-
pounds with more than two constituents and non-
nominal modifiers. It would also enable us to gain
more insights into the effect of reader knowledge
on the processing of complex syntactic structures.
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A Appendix: Regression Model summaries

Est. SE z p
Intercept 6.06 0.10 58.31 <0.001
compound: three constituents 0.10 0.11 0.88 0.39
word length 0.18 0.03 5.32 <0.001
compound frequency -0.09 0.07 -1.23 0.22
surprisal 0.02 0.00 4.20 <0.001
word index -0.01 0.00 -3.27 <0.01
hyphenation 0.02 0.10 -0.17 0.87
occurrence 0.01 0.02 0.29 0.77
first constituent frequency 0.01 0.02 0.49 0.62
expert status: novice biologist -0.04 0.07 -0.53 0.59
expert status: novice physicist 0.10 0.08 1.25 0.21
expert status: expert physicist 0.16 0.07 2.28 0.23
technical term 0.11 0.09 1.66 1.21
novice biologist, technical term 0.09 0.05 1.90 0.06
novice physicist, technical term 0.26 0.05 5.06 <0.001
expert physicist, technical term 0.22 0.04 5.02 <0.001
novice biologist, three constituents 0.02 0.07 0.26 0.79
novice physicist, three constituents 0.04 0.07 0.50 0.62
expert physicist, three constituents -0.02 0.06 -0.28 0.78

Table 7: Analysis of constituent number: model summary for biology. (Note that coefficients are on the log-scale.)
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Est. SE z p
Intercept 6.06 0.15 41.54 <0.001
compound: three constituents 0.19 0.12 1.60 0.10
word length 0.10 0.04 2.65 0.008
compound frequency -0.15 0.06 -2.33 0.02
surprisal 0.01 0.01 1.82 0.07
word index 0.00 0.00 2.07 0.04
hyphenation -0.46 0.20 -2.37 0.02
occurrence -0.01 0.02 -0.41 0.68
first constituent frequency -0.01 0.02 -0.26 0.79
expert status: novice biologist -0.05 0.09 -0.59 0.56
expert status: expert biologist 0.03 0.07 0.41 0.68
expert status: novice physicist 0.01 0.09 0.16 0.88
technical term -0.03 0.09 -0.40 0.69
novice biologist, technical term 0.10 0.05 2.22 0.03
expert biologist, technical term 0.09 0.04 2.25 0.02
novice physicist, technical term 0.08 0.05 1.51 0.13
novice biologist, three constituents 0.19 0.08 2.44 0.01
expert biologist, three constituents 0.05 0.07 0.74 0.46
novice physicist, three constituents 0.14 0.09 1.58 0.11

Table 8: Analysis of constituent number: model summary for physics. (Note that coefficients are on the log-scale.)

Est. SE z p
Intercept 6.00 0.11 53.67 <0.001
compound: non-nominal mod. 0.02 0.11 0.14 0.89
word length 0.18 0.05 3.92 <0.001
compound frequency -0.07 0.09 -0.76 0.45
surprisal 0.02 0.01 4.07 <0.001
word index -0.01 0.00 -3.19 0.001
hyphenation 0.02 0.11 0.21 0.83
occurrence 0.01 0.02 0.38 0.70
first constituent frequency 0.01 0.03 0.41 0.69
expert status: novice biologist -0.03 0.07 -0.36 0.72
expert status: novice physicist 0.13 0.08 1.68 0.09
expert status: expert physicist 0.17 0.07 2.47 0.01
technical term 0.08 0.10 0.77 0.44
novice biologist, technical term 0.08 0.05 1.60 0.11
novice physicist, technical term 0.25 0.05 4.69 <0.001
expert physicist, technical term 0.22 0.05 4.83 <0.001
novice biologist, non-nominal mod. -0.04 0.06 -0.69 0.49
novice physicist, non-nominal mod. -0.16 0.06 -2.56 0.01
expert physicist, non-nominal mod. -0.05 0.05 -0.96 0.33

Table 9: Analysis of modifier type: model summary for biology. (Note that coefficients are on the log-scale.)
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Est. SE z p
Intercept 6.11 0.15 38.84 <0.001
compound: non-nominal mod. -0.08 0.11 -0.78 0.44
word length 0.08 0.04 2.20 0.03
compound frequency -0.14 0.07 -2.08 0.04
surprisal 0.01 0.01 1.60 0.11
word index 0.00 0.00 1.96 0.05
hyphenation -0.63 0.26 -2.40 0.02
occurrence -0.01 0.02 -0.32 0.75
first constituent frequency -0.01 0.03 -0.55 0.58
expert status: novice biologist -0.09 0.09 -1.00 0.32
expert status: expert biologist -0.00 0.08 -0.02 0.99
expert status: novice physicist 0.03 0.10 0.31 0.76
technical term -0.06 0.10 -0.58 0.56
novice biologist, technical term 0.14 0.05 2.87 <0.01
expert biologist, technical term 0.12 0.04 2.73 <0.01
novice physicist, technical term 0.06 0.05 1.11 0.27
novice biologist, non-nominal mod. 0.07 0.06 1.19 0.24
expert biologist, non-nominal mod. 0.07 0.05 1.36 0.17
novice physicist, non-nominal mod. -0.03 0.06 -0.43 0.67

Table 10: Analysis of modifier type: model summary for physics. (Note that coefficients are on the log-scale.)
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