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Abstract

Accurately predicting human scanpaths during
reading is vital for diverse fields and down-
stream tasks, from educational technologies to
automatic question answering. To date, how-
ever, progress in this direction remains lim-
ited by scarce gaze data. We overcome the
issue with ScanEZ, a self-supervised frame-
work grounded in cognitive models of reading.
ScanEZ jointly models the spatial and tempo-
ral dimensions of scanpaths by leveraging syn-
thetic data and a 3-D gaze objective inspired by
masked language modeling. With this frame-
work, we provide evidence that two key factors
in scanpath prediction during reading are: the
use of masked modeling of both spatial and
temporal patterns of eye movements, and cog-
nitive model simulations as an inductive bias
to kick-start training. Our approach achieves
state-of-the-art results on established datasets
(e.g., up to 31.4% negative log-likelihood im-
provement on CELER L1), and proves portable
across different experimental conditions.

1 Introduction

Research at the intersection of cognitive science,
computer vision (CV), and natural language pro-
cessing (NLP) shows the potential for modeling hu-
man reading comprehension through eye-tracking
data. Many downstream tasks, like entity recogni-
tion (Hollenstein and Zhang, 2019), summarization
(Stiennon et al., 2020; Wu et al., 2021), and ques-
tion answering (Sood et al., 2023), have particularly
benefited from the use of scanpaths (i.e., records
of eye movements on text), which provide sig-
nal about the readers’ cognitive processes (Rayner,
1998) as well as the features of the text being read
(Scozzaro et al., 2024; Wiechmann et al., 2022).

Scanpath datasets, however, are hard to obtain,
and their scarcity represents a bottleneck for train-
ing gaze-aware architectures (Kümmerer et al.,
2016). To solve this problem, past research has
taken either of two directions: exploring self-

supervised learning (SSL) techniques to predict
eye gaze using limited labeled samples (Islam et al.,
2021, i.a.), or augmenting existing samples with
synthetic ones (Khurana et al., 2023). Works based
on these approaches circumvented data shortages,
but analyzed scanpath patterns to a limited extent:
they modeled spatial dynamics (i.e., the order of
words being fixated) that implicitly contain the
chronology of fixations; yet, they overlooked fix-
ation duration (i.e., how long the eyes dwell on a
word). Duration is a key temporal aspect of read-
ing because it links to word processing difficulty
(Rayner, 1998; Clifton Jr et al., 2007; Vasishth
et al., 2012). Nevertheless, related NLP research
hardly incorporates this and other core linguistic
and physiological factors that are well captured
by cognitive models of reading behavior (Reichle
et al., 2003; Engbert et al., 2005; Salvucci, 2001) –
e.g., the effects of syntax complexity on word fixa-
tion (Cook and Wei, 2019), and the limits of visual
range on eye movement (McDonald and Shillcock,
2003; McNamara and Magliano, 2009).

In this paper, we fill these gaps by combining
data augmentation and SSL techniques: we pro-
pose ScanEZ, a SSL framework that uses synthetic
data (grounded in cognitive models of reading) to
predict gaze trajectories in terms of both spatial
and temporal aspects, including fixation duration.
With respect to data augmentation, ScanEZ uses
the E-Z Reader cognitive model (Reichle et al.,
2003) to derive synthetic gaze samples from exist-
ing corpora. On the modeling side, the framework
jointly learns the spatial (x, y) and temporal (t)
coordinates of gaze by employing a masked gaze
modeling objective. Masked language modeling,
a well-established approach in NLP and CV (De-
vlin et al., 2019; Zhang et al., 2022; Kwon et al.,
2022), is effective for capturing rich sequence de-
pendencies. We demonstrate its utility to predict
full 3-D spatiotemporal trajectories of scanpaths,
which inherently rely on textual dependencies. Ex-
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perimental results demonstrate strong performance
across datasets, including CELER L1 (Berzak et al.,
2022), where ScanEZ surpasses the state of the
art (Deng et al., 2023) by up to 31.4% (negative
log-likelihood), and ZuCo 1.0 (Hollenstein, 2018),
with a 58.6% improvement. We also evaluate our
approach with fixation duration and fixation loca-
tion accuracy, two eye-movement metrics which
assess the model’s ability to capture how long the
eyes dwell on a word, reflecting temporal attention
in reading, and where the eyes fixate, reflecting
spatial attention.

In sum, this work advances scanpath prediction
with the following contributions: (1) a novel frame-
work to model spatial and temporal dimensions
simultaneously, integrating cognitive data with scal-
able NLP techniques (notably, masked language
modeling); (2) state-of-the-art scanpath prediction
results, complemented by analyses to assess cross-
domain generalization performance, and the role
of synthetic data pre-training and human-data fine-
tuning; (3) additional model evaluation based on
eye-tracking metrics that capture the interaction
between text and readers.

2 Related Work

Reading comprehension involves multiple cogni-
tive processes (Kintsch, 1998), from word and
sentence processing to integrating the text with
a reader’s prior knowledge (Kintsch, 1994; McNa-
mara and Magliano, 2009). These processes unfold
chronologically, but they extend beyond simple left-
to-right reading, as eye movements have non-linear
patterns of word fixation and skipping (Engbert
et al., 2004). Accurately modeling both spatial and
temporal aspects of eye movements is thus essential
to understand reading behavior.

Empirical evidence is plentiful for the link be-
tween specific eye movement features (fixation du-
ration, location, etc.) and key linguistic and cogni-
tive phenomena, for which specific measures have
been proposed (Cook and Wei, 2019; McDonald
and Shillcock, 2003; Shain, 2024; Just and Carpen-
ter, 1976; Rayner et al., 1998). These features are
also captured by computational cognitive models
which render explicit the relationship between cog-
nitive processes, like word recognition, and physi-
cal actions, such as word fixations. Among these,
E-Z Reader (Reichle et al., 2003) simulates the con-
trol of eye movements on a given text. E-Z Reader
has been shown to approximate human gaze be-

havior across a range of datasets and experimental
conditions (Mancheva et al., 2015; Reichle and
Drieghe, 2013; Reichle and Sheridan, 2015, i.a.,).
Its predictive validity has been further supported
by evaluations against human eye-tracking data, in-
cluding comparisons on the CELER dataset (Deng
et al., 2023). Moreover, E-Z Reader-based simula-
tions over the CNN and DM corpora have demon-
strated utility in downstream tasks, achieving top
performance in text saliency prediction when mod-
eled during pre-training (Sood et al., 2020).

While replicating core reading patterns, E-Z
Reader relies on handcrafted features that limit its
scalability for AI applications. Deep learning offers
alternatives which can closely approximate human
reading patterns. For instance, SCANDL uses a
sequence-to-sequence diffusion model to capture
gaze-text interactions (Bolliger et al., 2023), SP-
EyeGAN simulates raw eye-tracking data with gen-
erative adversarial networks (Prasse et al., 2023),
and Eyettention (Deng et al., 2023) introduces a
dual-sequence encoder-decoder architecture with
cross-attention mechanisms to align linguistic and
temporal sequences to predict the next fixation lo-
cation. SCANDL and SP-EyeGAN further address
the paucity of eye-tracking resources with their
ability to generate synthetic data. In part, the lack
of data is also mitigated by SSL (Ericsson et al.,
2022) approaches, which derive gaze features from
unlabeled samples. Contrastive and predictive ob-
jectives, for instance, have been used to capture
statistical regularities in fixation patterns to support
downstream tasks (Prasse et al., 2024). However,
SSL still requires large-scale data.

In this paper, we adopt SSL like SCANDL
and SP-EyeGAN, while pre-training on fixations
generated with the E-Z Reader cognitive model.
This way, we push masked language modeling for
reading gaze representation to be data-rich and
cognitively-driven (Sood et al., 2020). Notably,
we extend the approach of Deng et al. (2023), who
model spatial scanpath coordinates for scanpath
prediction, by simultaneously incorporating tem-
poral coordinates (fixation durations). We directly
compare our results to theirs, as Eyettention repre-
sents the current state of the art. To enrich model
evaluation, we further employ experimental eye-
movement metrics. As part of this framework, we
use synthetic corpora introduced in prior work, re-
lying on the established validity of the E-Z Reader
model as a synthetic data generator.
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3 ScanEZ

We propose a framework that adapts a BERT-
style transformer for trajectory modeling, using
a masked sequence prediction objective and syn-
thetic data pre-training to enable representation
learning without large labeled datasets.
Input Representation and Masking. Inputs to
the model are gaze data parsed into sequences of
fixations, each represented by three features de-
scribing the trajectory of gaze over text: the x-
and y-coordinates (space) and fixation duration t
(time). For preprocessing, each input sequence
X ∈ RT×F , where T denotes the number of time
steps and F = 3 the number of features, is normal-
ized to zero mean and unit variance. Normalization
ensures numerical stability during training and har-
monizes the distributions of real and synthetic data.

During pre-training, a subset of input features
is masked: a fixed proportion of the sequence is
obscured, generating Xmasked, where partial infor-
mation is visible to the model. In the prediction
task, the model predicts the masked values (x, y, t)
based on surrounding context, learning dependen-
cies across the spatial and temporal dimensions.
Model Architecture. The network consists of an
embedding layer which projects the input features
(x, y, t) into a latent space of dimension d, creat-
ing dense embeddings that preserve spatiotemporal
relationships. Sinusoidal positional encodings are
added to the embeddings, ensuring that the model
distinguishes between otherwise position-invariant
elements in the sequence. The model also com-
prises L transformer layers with a multi-head self-
attention mechanism (h attention heads attend to
relationships across time steps and between spa-
tial and temporal features), and a fully connected
feedforward network with two linear layers and
ReLU activations (which capture interactions be-
tween features).
Training Objective. The pre-training task is to
reconstruct masked portions of the input sequence.
Given a masked input Xmasked, the model predicts
the values of the masked features (x, y, t):

L =
1

|M|
∑

i∈M
(Xi − X̂i)

2 (1)

where M denotes the set of masked indices, Xi

the ground truth, and X̂i the predicted values. This
loss encourages the model to learn embeddings
that capture both local and global spatiotemporal
dependencies in sequential gaze data.

We pre-train the model on synthetic 3-D trajecto-
ries, and fine-tune its weights on real eye-tracking
datasets – both sources of data are discussed next.

4 Experimental Setup

We now describe the datasets and evaluation proto-
cols used for scanpath prediction. To better reflect
real-world reading scenarios, we selected diverse
benchmark datasets and adopted multiple evalua-
tion settings, including three distinct data-splitting
approaches. Further details on the data and evalua-
tion metrics are in appendix A.1.

Data. As illustrated in Figure 1, we pre-train
ScanEZ on E-Z Reader simulations, which were
generated by Sood et al. (2020) from the CNN and
Daily Mail corpus (Hermann et al., 2015). For
fine-tuning, we use two human sentence-reading
datasets with the same train/validation splits for the
scanpath prediction task as in Deng et al. (2023).
These datasets vary in complexity, domain, and
participant diversity, enabling in-domain and cross-
domain robustness tests: CELER L1 (Berzak et al.,
2022), with native (L1) English speakers read-
ing single-line sentences from Wall Street Journal
(Marcus et al., 1993): and ZuCo 1.0 (Hollenstein
et al., 2018), with L1 English speakers reading
sentences from the Stanford Sentiment Treebank
(Socher et al., 2013) and Wikipedia relation extrac-
tion corpus (Culotta et al., 2006), with sentences
displayed as multiple (maximum 7) lines. In addi-
tion, we use EML (Caruso et al., 2022), a dataset of
fluent English speakers reading 5 complex educa-
tional texts, each of ≈1000 words, displayed as 50
full pages with ≈100 words on each, from which
we extract 239 sentences.

Evaluation. We analyze performance in the four
cross-validation task settings reported in Figure 1.
Participant split (Part): Train/validate on distinct
sets of participants. Text split (Text): Train/validate
on distinct texts (i.e. sentences or pages)1. Par-
ticipant + Text split (P.T.): No overlap in par-
ticipants nor texts between training and valida-
tion. This is the most challenging condition for
the within dataset evaluation settings (Deng et al.,
2023). Cross-dataset: Train on a dataset and test
on another, to assess cross-domain generalization.
We keep the same 5-fold evaluation protocol across
settings for robust performance estimates.

1We use text for any stimulus shown to participants. Sen-
tence count per stimulus varies by dataset: Celer ≈ 1; ZuCo
≈ 2–3; EML ≈ 5.
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Figure 1: Overview of the workflow combining synthetic and human eye-tracking data for scan-path prediction.
Synthetic scanpaths generated with the E-Z Reader model from CNN + DM texts are used in the pre-training phase
of SCANEZ. The model is then fine-tuned on real human data (CELER, ZuCo 1.0, EML). We evaluate ScanEZ’s
performance in four cross-validation settings – Part( ), Text( ), P.T.( ), and Cross-dataset( ) – described
Section 4.

For spatial predictions, we report Negative Log-
Likelihood (NLL), to measure how well the model
fits observed scan paths, and Normalized Leven-
shtein Distance (NLD), quantifying alignment qual-
ity between predicted and actual sequences. For
temporal predictions, we use NLLt, as NLD con-
siders the distance between spatial sequences (e.g.,
strings), which does not apply to the temporal di-
mension. To better observe eye movement charac-
teristics, we also include fixation location accuracy
(FLA) and fixation duration accuracy (FDA), which
range from 0 (worst possible accuracy) to 1 (best).

5 Does ScanEZ Capture Where Readers
Fixate, and When They Do So?

We answer this question by replicating the experi-
ments of Deng et al. (2023) and observing ScanEZ
performance on naturalistic (EML) data.2

Comparison with Eyettention. ScanEZ achieves
better (i.e., lower) NLL and NLD under all exper-
imental settings. For instance, on the Text split
of CELER L1, it has a NLL of 1.603 compared
to the 2.277 of Eyettention, and a NLD of 0.43,
which is 0.142 points more than Eyettention; on
the Part split, it brings an improvement of 0.712
points in NLL (NLL = 1.555, against Eyettention’s
2.267) and of 0.149 points in NLD (NLD = 0.424
for ScanEZ, 0.573 for Eyettention). Even on P.T.,
which is our most challenging condition, ScanEZ
surpasses Eyettention on CELER L1. Table 1 fo-
cuses on this setting, and shows that ScanEZ per-
forms better by 0.77 and 0.147 points, with a NLL
score of 1.524 and a NLD score of 4.421.

2We report direct comparisons only with Deng et al. (2023),
as their work includes extensive evaluations against a broad
range of models. This allows to interpret our findings in the
light of those prior comparisons.

This improvement remains valid in the cross-
dataset setup: on the P.T. split, our framework
achieves NLL = 0.548 when trained on CELER L1
and tested on ZuCo 1.0, whereas Eyettention has a
score of 2.613. On average, the P.T. NLL is reduced
by 58.6% compared to the baseline when testing on
ZuCo 1.0 across train-testing combinations.3 These
scores corroborate the value of masked-language
modeling in scanpath prediction, promoting out-of-
domain generalization.

Table 1 also provides evidence for the benefit
of pre-training and fine-tuning ScanEZ: removing
human-based fine-tuning brings NLL up to 3.035,
which underperforms both ScanEZ and Eyettention,
and models without pre-training are better than Eye-
ttention (potentially thanks to the fine-tuning step)
but still worse than ScanEZ (1.77 NLL). Similar
results hold for the other metrics as well: ScanEZ
outperforms its ablation alternatives with respect
to FDA and FLA; moreover, it sets benchmark per-
formance for the temporal prediction in terms of
NLLt.4 Overall, fine-tuning enables the model to
efficiently capture eye movement patterns in real
eye-tracking data, and kick-starting training with
E-Z Reader simulations supports robust initial rep-
resentations. Put together, these components allow
ScanEZ to deliver superior performance in spatial
scanpath prediction, and efficiency in the modeling
of its temporal dimension.

Evaluations on EML We analyze the performance
of ScanEZ and its ablated variants on the EML
dataset (Caruso et al., 2022). Once more, pre-
training yields pronounced improvements across
metrics (Table 1, bottom). An exception is FLA,

3A full by-setting breakdown of all results discussed in this
section is in appendix A.2 (Table 3), including performance
on train-test set combinations (Table 4), and ablation analyses
to isolate the role of pre-training and fine-tuning (Table 5).

4These three metrics are unavailable for Eyettention.
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Data Model NLL↓ NLD↓ NLLt↓ FDA↑ FLA↑

CLR
Eyettention 2.297 ± 0.011 0.568 ± 0.004 — — —
w/o Fine-tuning 3.035 ± 0.204 0.950 ± 0.009 1.403 ± 0.012 0.603 ± 0.004 0.284 ± 0.018
w/o Pre-training 1.772 ± 0.304 0.547 ± 0.085 1.431 ± 0.150 0.611 ± 0.054 0.381 ± 0.054
ScanEZ 1.524 ± 0.042 0.421 ± 0.022 1.244 ± 0.027 0.646 ± 0.004 0.413 ± 0.009

EML
w/o Fine-tuning 1.837± 0.025 0.761± 0.005 1.181± 0.011 0.797± 0.003 0.589± 0.006
w/o Pre-training 1.217± 0.212 0.777± 0.004 1.177± 0.066 0.785± 0.012 0.491± 0.023
ScanEZ 0.996± 0.020 0.616± 0.013 1.083± 0.033 0.804± 0.005 0.534± 0.012

Table 1: Top: comparison between our framework and Eyettention on the CELER L1 dataset (CLR) to our model
trained on: only EZ-Reader data (w/o Fine-tuning), only human data (w/o Pre-training), and with both pre-training
on EZ-Reader and then fune-tuning on human data (ScanEZ). Bottom: evaluation using the EML dataset. ↓: the
lower the score, the better. ↑: vice versa. All results refer to the P.T. setting.

significantly higher for the w/o Fine-tuning set-
ting than for ScanEZ (p-value = 0.001, with an
ANOVA test). This result is inconsistent with that
on CELER L1: we attribute it to EML’s more
challenging data, which comprises multi-sentences
texts rather than single sentence texts, making the
task more complex.5 While future work could in-
vestigate this insight, the results presented here
maintain that ScanEZ effectively generalizes to var-
ious reading conditions.

6 Conclusion

We introduced ScanEZ, a self-supervised frame-
work that addresses the challenge of scan path pre-
diction under data scarcity conditions. Aimed at
an explicit spatiotemporal modeling of eye move-
ments, ScanEZ demonstrated robust performance
and generalization abilities across datasets, exper-
imental settings, and metrics, surpassing the state
of the art on spatial predictions and benchmarking
the prediction of fixation duration. Importantly, our
results point to the benefits of the masked-language
modeling approach we implemented, which opens
up new research directions on eye-tracking data. As
a matter of fact, since masked language modeling
has not been as widely adopted for scanpath pre-
diction as they have in NLP tasks, our finding that
a BERT-based model yields superior performance
constitutes a core contribution of this work. Our
ablation analyses further showed the importance of
real-data fine-tuning for a model pre-trained on syn-
thetic gaze trajectories. Both components, which
underpin the value of bridging cognitive model sim-
ulations with data-driven methodologies for gaze
representation, allowed ScanEZ to effectively cap-
ture spatiotemporal dependencies.

5These FLA differences are analyzed in appendix A.2.

7 Limitations

We evaluated ScanEZ on two established open-
source datasets (CELER L1 and Zuco 1.0). This
experimental decision ensured comparability with
previous work, specifically with Eyettention. How-
ever, to fully understand the generalizability of the
model we proposed, we would need to conduct
additional evaluations, in particular on datasets
representing real-world reading scenarios – unlike
CELER L1 and ZuCo 1.0, which were built in a
lab environment. We took a step in this direction
by reporting results on the EML data (drawn from
a naturalistic e-learning setting). Yet, EML is not
open source, which might complicate the reproduc-
tion of our results for other researchers.

Focusing on such results, we reported ScanEZ’s
success in modeling both spatial and temporal as-
pects of gaze. The comparison with past work,
however, was only partial, as NLLt, fixation dura-
tion accuracy (FDA), and fixation location accuracy
(FLA) are not reported for Eyettention.

Lastly, by addressing scanpath prediction, our
work contributes to an established line of research
that studies eye movements (e.g., Boccignone et al.,
2019; de Belen et al., 2022; Mishra et al., 2018). As
such, it represents a step towards evaluating gaze-
informed models in applications related to reading
behavior. To date, however, we still need to test
ScanEZ on downstream tasks, to better understand
the breadth of its potential.

8 Ethical Considerations

This work did not go through an ethical committee;
still, we ensured compliance with ethical principles
in data usage and methodology. On the one hand,
we used artificial gaze trajectories – no real indi-
viduals can be reconstructed from it. On the other,
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we relied on publicly available datasets and EML
(all already peer-reviewed) where individuals are
thoroughly anonymized.
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A Appendix

A.1 Details on Experimental Setup

Data. Table 2 reports statistics on the data used
to pre-train and fine-tune ScanEZ.

Pre-training Sentences Simulations

E-Z Reader: CNN 3.1M 10
E-Z Reader: Daily Mail 7.6M 10

Fine-tuning Sentences Participants

CELER L1 5457 69
ZuCo 1.0 700 12
EML 239 147

Table 2: Descriptive statistics of the used datasets. Top:
synthetic datasets used for pre-training; bottom: human
datasets used in our experiments.

Metrics. The two metrics FDA (Fixation Dura-
tion Accuracy) and FLA (Fixation Location Accu-
racy) are computed as follows:

FDA = 1− |Tpred − Tground|
max(|Tpred − Tground|)

where Tpred is the predicted fixation duration, and
Tground denotes the ground-truth fixation duration;

FLA = 1−

√
(Xpred −Xground)

2

+ (Ypred − Yground)
2

max

(√
(Xpred −Xground)

2

+ (Ypred − Yground)
2

)

where Xpred and Ypred respectively indicate the pre-
dicted fixation of x and the predicted fixation of y,
and Xground and Yground indicate the ground-truth
fixation of x and the ground-truth fixation of y.
Whenever the model perfectly predicts a scanpath,
both FDA and FLA are set to 1, hence avoiding
dividing by zero.

A.2 Results
We report the full results obtained by replicating
Deng et al.’s experiments with both their Eyetten-
tion and our ScanEZ; in addition, we detail our abla-
tion analyses, as well as our experiments on EML,
a dataset that is not used in Deng et al. (2023):
scanpath prediction performance on CELER L1
is in Table 3, broken down by the three settings
of Text, Part and P.T.; Table 4 shows the cross-
dataset results, providing evidence for ScanEZ’s
superior generalization abilities compared to Eyet-
tention; Table 5 focuses on the contribution of the
pre-training and fine-tuning steps of ScanEZ, each
removed in the Doc, Part and P.T. settings; Table 6
does the same but on EML.

In Section 5, we noted that the advantage of fine-
tuning ScanEZ on CELER L1 reflects in all metrics.
On EML, however, FLA increases without fine-
tuning. We thus conducted a small-scale analysis
to study this difference between datasets, hypoth-
esizing that scanpath length (i.e., the number of
fixations) has an effect on FLA, as a space-related
metrics. With a regression study, we found that
this is indeed the case. Taking scanpath length as
the independent variable and FLA as the dependent
variable, we observed a significant effect across all
datasets, including ZuCo 1.0: the positive t-scores
in Table 7 denote that that longer scanpaths result
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in higher FLA values. Notably, the t-score is higher
on CELER L1 (92.36) than on EML (73.03), which
indicates that longer scanpath sequences were eas-
ier to predict on the former dataset. This insight
confirms that the more challenging data of EML
make FLA improvements harder. Interestingly, the
same conclusion can be drawn for FDA, although
the increase of this metric in the “w/o Fine-tuning”
setup was stable across datasets (cf. Table 1). Fur-
ther analyses are therefore needed to better com-
pare the two metrics, particularly regarding their
relationship to scanpath features other than length.
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Task Model NLL↓ NLD↓ NLLt↓

Te
xt Eyettention 2.277 ± 0.005 0.572 ± 0.002 —

ScanEZ 1.603 ± 0.017 0.430 ± 0.047 1.269 ± 0.068

Pa
rt Eyettention 2.267 ± 0.005 0.573 ± 0.002 —

ScanEZ 1.555 ± 0.013 0.424 ± 0.025 1.235 ± 0.072
P.

T. Eyettention 2.297 ± 0.011 0.568 ± 0.004 —
ScanEZ 1.524 ± 0.042 0.421 ± 0.022 1.244 ± 0.027

Table 3: Performance on CELER L1 across the three split settings. Our model, ScanEZ, improves NLL and NLD
and it benchmarks temporal predictions (see NLLt scores, unavailable for Eyettention).

Training Data Fine-tune Testing Data Model NLL↓ NLD↓ NLLt↓
ZuCo 1.0 —

ZuCo 1.0

E
ye

tte
nt

io
n 2.653± 0.020 — —

CELER L1 — 3.060± 0.026 — —

CELER L1 ZuCo 1.0 2.613± 0.019 — —

ZuCo 1.0 —
ZuCo 1.0

Sc
an

E
Z 1.098± 0.072 0.608± 0.013 1.461± 0.035

CELER L1 — 0.829± 0.057 0.718± 0.008 1.214± 0.018

CELER L1 ZuCo 1.0 0.548± 0.069 0.690± 0.018 1.156± 0.030

Table 4: Cross-dataset results following the training-testing set combinations of (Deng et al., 2023). Our model
demonstrates better transfer performance than Eyettention based on NLL. We further include NLD and NLLt scores,
which are not reported in Eyettention.

Task Model NLL↓ NLD↓ NLLt↓ FDA↑ FLA↑

Text
w/o Fine-tuning 3.021 ±0.044 0.952 ±0.004 1.406 ±0.027 0.604 ± 0.006 0.285 ± 0.016
w/o Pre-training 1.715 ±0.254 0.537±0.065 1.419 ±0.259 0.634 ±0.021 0.376 ±0.050

ScanEZ 1.603 ±0.017 0.430 ±0.047 1.269 ±0.068 0.653 ±0.011 0.408 ±0.008

Part
w/o Fine-tuning 3.032 ±0.223 0.951 ±0.015 1.409 ±0.073 0.604 ±0.011 0.286 ±0.024
w/o Pre-training 1.791 ±0.204 0.517 ±0.104 1.536 ±0.292 0.623 ±0.021 0.378 ±0.045

ScanEZ 1.555 ±0.013 0.424 ±0.025 1.235 ±0.072 0.651 ±0.012 0.412 ±0.007

P.T.
w/o Fine-tuning 3.035 ±0.204 0.950 ±0.009 1.403 ±0.012 0.603 ±0.004 0.284 ±0.018
w/o Pre-training 1.772 ±0.304 0.547 ±0.085 1.431 ±0.150 0.611±0.054 0.381 ±0.054

ScanEZ 1.524 ±0.042 0.421 ±0.022 1.244 ±0.027 0.646 ±0.004 0.413 ±0.009

Table 5: Ablation results on CELER L1. Removing pre-training or fine-tuning from ScanEZ degrades performance
across all metrics. “w/o Pre-training” uses only human data; “w/o Fine-tuning” uses only E-Z Reader synthetic data.
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Task Model NLL↓ NLD↓ NLLt↓ FDA↑ FLA↑

Te
xt

w/o Pre-train 1.331± 0.185 0.780± 0.003 1.164± 0.015 0.793± 0.008 0.502± 0.006
w/o Fine-tune 1.760± 0.072 0.759± 0.004 1.191± 0.014 0.801± 0.005 0.588± 0.004

ScanEZ 1.000± 0.012 0.589± 0.012 1.106± 0.022 0.803± 0.004 0.553± 0.020

Pa
rt

w/o Pre-training 1.154± 0.176 0.751± 0.062 1.151± 0.029 0.795± 0.007 0.520± 0.041
w/o Fine-tuning 1.760± 0.070 0.759± 0.004 1.191± 0.018 0.801± 0.007 0.588± 0.008

ScanEZ 0.928± 0.037 0.585± 0.014 1.098± 0.026 0.803± 0.006 0.556± 0.013

P.
T.

w/o Pre-training 1.217± 0.212 0.777± 0.004 1.177± 0.066 0.785± 0.012 0.491± 0.023
w/o Fine-tuning 1.837± 0.025 0.761± 0.005 1.181± 0.011 0.797± 0.003 0.589± 0.006

ScanEZ 0.996± 0.020 0.616± 0.013 1.083± 0.033 0.804± 0.005 0.534± 0.012

Table 6: Evaluation on EML. “w/o Pre-training” uses only human data, “w/o Fine-tuning” uses only E-Z Reader
synthetic data. ScanEZ is pre-trained on synthetic data and fine-tuned on human data.

Metric CELER L1 ZuCo 1.0 EML

FDA 92.36 64.46 73.07
FLA 102.0 38.79 53.25

Table 7: The t-scores of the regressions performed for each dataset. All the scores are significant at p-value < 0.001.
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