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Abstract

Answering questions over multi-page, multi-
modal documents, including text and figures,
is a critical challenge for applications that re-
quire answers to integrate information across
multiple modalities and contextual dependen-
cies. Existing methods, such as single-turn
retrieval-augmented generation (RAG), strug-
gle to retrieve fine-grained and contextually
relevant information from large, heterogeneous
documents, leading to suboptimal performance.
Inspired by iterative frameworks like ReAct,
which refine retrieval through feedback, we
propose Doc-React, an adaptive iterative frame-
work that balances information gain and un-
certainty reduction at each step. Doc-React
leverages InfoNCE-guided retrieval to approx-
imate mutual information, enabling dynamic
sub-query generation and refinement. A large
language model (LLM) serves as both a judge
and generator, providing structured feedback
to iteratively improve retrieval. By combining
mutual information optimization with entropy-
aware selection, Doc-React systematically cap-
tures relevant multimodal content, achieving
strong performance on complex QA tasks.

1 Introduction

Answering queries over multi-page, multimodal
documents with textual and visual information is a
critical challenge (Ma et al., 2024a; Tanaka et al.,
2023). These documents, which are typically long,
often have diverse layouts and interleaved con-
tent (Nguyen et al., 2024), requiring reasoning
across modalities. Specifically, as illustrated by
the use case in Figure 1, the input is a user query
and multi-page documents, either provided by the
user or from a database. The goal is to produce an
accurate and concise text answer by analyzing the
relevant content across pages.

Existing methods (Yu et al., 2024; Yang et al.,
2023; Faysse et al., 2024; Yao et al., 2022; Wu
et al., 2024d) retrieve multimodal content and feed

it into single-turn RAG models. While effective
in simpler scenarios, these methods fall short in
multi-page settings, missing fine-grained, contextu-
ally relevant information. As illustrated in Figure 1,
when applying (Yu et al., 2024; Faysse et al., 2024),
the query Q does not explicitly mention the region
with “252M mobile broadband subscriptions.” Sim-
ply retrieving figures semantically similar to Q fails
to identify that the region refers to North Amer-
ica and further locate the figure containing North
America’s “active social network users” (described
in S2). This highlights the need for an iterative
approach to dynamically refine queries, discover
relevant figures, and gather necessary information.
Inspired by iterative methods (Yao et al., 2022),
we adopt a dynamic approach to refine queries it-
eratively, addressing the challenges of multi-page
document QA.

We propose Doc-React, an adaptive iterative
framework for multi-page document retrieval and
acting. Doc-React refines retrieval and query for-
mulation in distinct steps to maximize normal-
ized information gain, balancing information gain
and uncertainty reduction with InfoNCE-guided
retrieval. It addresses residual gaps through sub-
queries refined by an LLM, which provides feed-
back as both judge and generator. By maximizing
step-wise information gain, Doc-React iteratively
captures fine-grained, contextually relevant infor-
mation, adapting queries and improving retrieval
efficiency. In summary, our contributions are:

• We propose Doc-React, an adaptive iterative
framework that dynamically refines multi-
modal retrieval and QA performance through
LLM-guided feedback.

• We introduce a method to balance information
gain and uncertainty reduction, dynamically
adapting sub-queries and retrieval prompts.

• We conduct extensive experiments showing
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Multi-page Document

Query 𝑄𝑄
What portion of the total 
population in the region with 
252M mobile broadband 
subscriptions actively uses 
social networks?

Sub-query 𝐴𝐴1′

[Search] A figure or chart 
that shows mobile 
broadband subscriptions 
and active social network 
users by region.

Retrieval 𝑆𝑆1

Information Differentiation for 
Query Formulation (Section 4.2)

Sub-query 𝐴𝐴2′
[Response] North America 
has 252M mobile 
broadband subscriptions. 
[Search] A figure shows 
total population in North 
America.

𝐴𝐴 ∖ ⋃𝑆𝑆𝑘𝑘∈𝜋𝜋𝑡𝑡 𝜇𝜇 𝑆𝑆𝑘𝑘  ,𝑄𝑄  in Eq. (3) 

Retrieval 𝑆𝑆2

…… 

…… 

Step 1 Step 2

Progressive Framework (Section 4.1)

Answer
The 
percentage 
of active 
social 
network 
users in 
North 
America is 
56%.

provides 
the input 
query 𝑄𝑄

outputs

InfoNCE-guided Information 
Retrieval (Section 4.3)

GPT-4o GPT-4o GPT-4o

GPT-4oMultimodal RAG
Multimodal RAG

max
𝑆𝑆′

Δ(𝑆𝑆′)  in Eq. (7) 

Figure 1: Doc-React applied to the multi-page document QA task. The framework processes a user query as input
and operates on multi-page documents. It iteratively refines information retrieval and query formulation to maximize
information gain and reduce uncertainty, ultimately generating an accurate and contextually relevant answer.

significant improvements over baselines for
complex multi-page QA tasks.

2 Related Work

2.1 Iterative and Adaptive Retrieval
Iterative approaches, such as ReAct (Yao et al.,
2022), Chain-of-thought (Wei et al., 2022; Wu
et al., 2024c,a) and MM-React (Yang et al., 2023),
leverage dynamic feedback mechanisms to refine
queries and align context (Shinn et al., 2024; Huang
et al., 2023; Zhang et al., 2024), effectively address-
ing challenges in noisy or incomplete retrieval sce-
narios (Zhou et al., 2024). These methods demon-
strate the importance of iterative frameworks (Hu
et al., 2024b; Yang et al., 2024) in achieving more
accurate and context-aware retrieval. Similarly, mu-
tual information optimization techniques, inspired
by InfoNCE (Oord et al., 2018), rely on iterative
strategies to balance information gain and uncer-
tainty reduction, further highlighting the relevance
of iterative methods for handling complex retrieval
tasks. In our framework, InfoNCE-guided mutual
information optimization is not only theoretically
motivated but also serves as a practical mechanism
for adaptive multi-step retrieval (detailed in Sec-
tion 4).

2.2 Multimodal Document Retrieval
Advancements in multimodal learning enable sys-
tems to jointly process text and visual informa-
tion (Yan et al., 2024; Wu et al., 2025, 2024b; Yao
et al., 2024; Liu et al., 2024a). Models like Lay-
outLM (Xu et al., 2020b,a) leverage spatial embed-
dings for document layout understanding, excelling

at tasks like form and invoice parsing. These mod-
els are limited to single-page documents (Liu et al.,
2024b) and cannot handle reasoning over multi-
page (Ma et al., 2024a), and heterogeneous layouts
(Tanaka et al., 2023).

2.3 Retrieval-Augmented Generation (RAG)
RAG (Lewis et al., 2020) and FiD (Izacard and
Grave, 2020) combine retrieval and generation for
open-domain QA. While effective, their reliance
on static pipelines limits adaptability to complex
document layouts. Retrieval methods like BM25
(Robertson and Walker, 1994) and dense models
such as ColBERT (Khattab and Zaharia, 2020) effi-
ciently match content but fail to capture the cross-
modal dependencies for multimodal documents.
MuRAR (Zhu et al., 2024) generates multimodal
responses to convey rich cross-modal information.

3 Formulation: Multi-page Doc-QA

We introduce a novel formulation for the multi-
page document question-answering (Doc-QA) task,
where the input consists of heterogeneous docu-
ments that interleave images and texts in unstruc-
tured, free-form layouts. This practical task in-
volves disentangling multimodal information em-
bedded within the images of document pages to
accurately answer a given query. The objective of
a multi-page Doc-QA is to extract sufficient mul-
timodal information from the relevant pages of a
document and use it to generate a correct answer.
Our novel formulation is different from the for-
mulation of existing works (Mathew et al., 2021;
Chang et al., 2022; Masry et al., 2022; Liu et al.,
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2024b) that we consider question-answering with a
long sequence of document page images due to het-
erogeneous layouts of various types of documents.
Different from tool-chain based agentic framework
(Yang et al., 2023; Ma et al., 2024b; Kumar et al.,
2024), our formulation focuses on balancing be-
tween information gain and generation uncertainty
when multiple images are in the prompts.

Given a N -page document D =
{p1, p2, . . . , pN} and a query Q, an underly-
ing policy is required to identify multiple groups
of document pages π = {Si|Si ⊆ D}, where each
group of document pages Si provides relevant
information to a specific aspect of the query
Q. The multimodal information necessary to
derive the answer A must then be extracted
from each subset Si, conditioned on the query
Q, using a multimodal large language model
(MLLM) denoted as µ(Si, Q). The final output
is a text-only response, generated based on the
extracted multimodal content. To quantify the
informativeness of this process, we measure the
mutual information I(µ(Si, Q);A) as the amount
of information required to determine the answer A.

We further formalize this task as an informa-
tion optimization problem, which seeks a balance
between reducing uncertainty and ensuring infor-
mation completeness (Alemi et al., 2016):

min
I

∑

Si∈π
H(µ(Si, Q)), Si ⊆ D, ∀Si ∈ π,

s.t. I(
⋃

Si∈π
µ(Si, Q);A) ≥ I(µ(D,Q);A),

(1)
where H(·) denotes the entropy, capturing un-

certainty in the extracted information. A key
practical challenge is the increasing estimation er-
ror as the number of input images grows. Em-
pirically, we can observe that there exist sub-
sets S1, S2 ⊆ D such that H(µ(S1, S2, Q)) >
H(µ(S1, Q)) + H(µ(S2, Q)). This implies that
increasing the size of the input set does not always
improve answer accuracy, while the increased input
size also retrains the usage of MLLMs, due to their
limited perception of multimodal context.

4 Method: Doc-React

The formulation’s major challenge is incrementally
identifying and aggregating multimodal informa-
tion from a multi-page document corpus (Hu et al.,
2024a; Cho et al., 2024). Inspired by information-
entropy optimization (Alemi et al., 2016; Still,

Algorithm 1 Doc-React: Adaptive Retrieval with
Normalized MI Gain Maximization
Require: Document D = {p1, p2, . . . , pN},

Query Q, MLLM µ, Retrieval model f(·, ·),
Differentiation prompt Pdiff, Maximum itera-
tion T , Candidate pool Ω.

1: Initialize π0 ← ∅.
2: for t = 0 to T − 1 do
3: Sub-query Formulation with Residual

Information Approximation:
4: Formulate sub-queries according to Eq.(5);
5: Candidate Evaluation:
6: for each S′ ∈ Ω do
7: Estimate the lower bound of the mutual

information gain according to Eq.(6);
8: Compute entropy H(µ(S′, Q)) from

MLLM’s generation distributions;
9: Compute normalized gain ∆(S′) ac-

cording to Eq.(4);
10: end for
11: Select Best Subset:
12: S∗

t+1 ← argmaxS′∈Ω′ ∆(S′)
13: Update:
14: πt+1 ← πt ∪ {S∗

t+1}
15: if stopping criteria met then
16: break
17: end if
18: end for
19: return Final selected subsets πT , and final re-

trieval results µ({Sk}k∈πT
, Q).

2009), we propose Doc-React, which greedily max-
imizes the entropy-normalized information gain for
each round of retrieval and action.

4.1 Progressive Framework Refining
Retrieval and Query Formulation

At time step t, we maintain a selection of docu-
ment page subsets πt, where each subset’s Sk ∈ πt
multimodal information is extracted by the MLLM
µ(Sk, Q). To solve the information optimization
problem in Eq.(1), we propose to maximize the
normalized information gain for the next step t+1:

∆(St+1) =
I
(
µ(St+1, Q);A | ⋃Sk∈πt

µ(Sk, Q)
)

H(µ(St+1, Q))
,

(2)
where A represents the ground-truth answer to the
query. However, different from conventional goal-
oriented optimization tasks (Sutton, 2018; Levine
et al., 2016), which assume a good representation
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of the goal, our task poses a challenge of lacking
such oracle information.

4.2 Information Differentiation
For query formulation, we propose an information

differentiation process to approximate each step’s
maximum information gain,

A′
t = A \

⋃

Sk∈πt

µ(Sk, Q), (3)

where A′
t denotes the information residual at time

step t. Takes Eq.(3) into Eq.(2), we can derive the
approximation of the original information gain,

∆(St+1) =
I(µ(St+1, Q);A′

t)

H(µ(St+1, Q))
, (4)

where the residual information is practically ap-
proximated by the MLLM

Ã′
t = µ({Sk}k∈πt , Q, Pdiff), (5)

which aggregates retrieved information {Sk}k∈πt

and the query Q, quantifying the information gap.

Theorem 1 (Information Gain Derivation via In-
formation Differentiation). With the information
differentiation enabled as A′

t (in Eq.(3)), the infor-
mation gain ∆(St+1) in Eq.(2) can be derived via
the information differentiation in Eq.(4).

We prove the equivalency between Eq.(2) and
Eq.(4) in Appendix D. Then, this gap is addressed
by leveraging the LLM-as-a-judge (Zheng et al.,
2023; Rosset et al., 2024; Gu et al., 2024) to eval-
uate and decompose complex queries (Xia et al.,
2024). Specifically, the gap is formulated into sub-
queries by following the in-context examples (in
Appendix E).

4.3 InfoNCE-guided Information Retrieval
To further track the information gain

I(µ(St+1, Q);A′
t), we introduce existing

multimodal retrieval models (Faysse et al., 2024;
Yu et al., 2024) as prior, which can efficiently
provide such information quantification through a
retrieval process. Given the multimodal retrieval
model f(·, ·) which measures the distance between
multimodal inputs, we can derive the variational
lower bound for the mutual information estimation
following InfoNCE (Oord et al., 2018),

I(µ(St+1, Q);A′
t) ≥ −LInfoNCE(St+1)

= E

[
log

exp(f(St+1, [Q,A′
t]))

1
|Ω|

∑
S′∈Ω exp(f(S′, [Q,A′

t]))

]
,

(6)

Dataset MMLongBench SlideVQA

Method Model F1 Acc F1 Acc

VisRAG
GPT-4o 29.02 27.78 48.37 46.93

InternVL 11.43 11.03 18.13 17.28
MiniCPM 8.28 8.17 12.62 11.83

ColPali
GPT-4o 32.17 30.76 53.42 52.33

InternVL 8.86 8.57 16.34 15.23
MiniCPM 7.84 7.74 13.34 12.48

DocReact GPT-4o 38.07 38.29 54.87 55.04

Table 1: Comparison with multimodal retrieval-
augmented generation baselines.

Dataset MMLongBench SlideVQA

Method Model F1 Acc F1 Acc

Standard
(i.e., w/o CoT)

GPT-4o 42.00 41.71 53.58 53.41
InternVL 4.38 4.31 19.00 18.20
MiniCPM 5.59 5.55 13.85 13.03

CoT
GPT-4o 41.17 40.77 52.12 51.71

InternVL 10.79 10.47 17.45 16.74
MiniCPM 6.37 6.13 12.45 11.73

DocReact GPT-4o 38.07 38.29 54.87 55.04

Table 2: Comparisons with multi-image multimodal
LLM baselines.

where Ω = {S′ | ∀S′ ⊆ D}, while in practice
we select from a random subset Ω′ to reduce the
computation complexity. In addition, the estima-
tion uncertainty H(µ(St+1, Q)) can be calculated
based on the MLLM’s generation probabilities.

Therefore, using Eq.(6) in Eq.(2), we optimize
step-wise normalized information gain ∆(St+1),
by maximizing its lower-bound estimation,

S∗
t+1 = argmax

S′∈Ω
∆(S′),

πt+1 ← πt ∪ {S∗
t+1},

(7)

for which, we can achieve the near-optimal solution
to the original problem in Eq.(1). We illustrate our
method in Algorithm 1.

5 Experiments

For our comparison experiments, we use two lines
of baselines, including Multi-image MLLMs:
GPT4-o, InternVL (Chen et al., 2024), and
MiniCPM (Yao et al., 2024), suitable for multi-
page inputs; and Multimodal RAG: ColPali
(Faysse et al., 2024) and VisRAG-Ret (Yu et al.,
2024). To evaluate baselines and DocReact on
multi-page document question-answering, we ap-
ply our method on two datasets, SlideVQA (Tanaka
et al., 2023) and VisualWebBench (Liu et al.,
2024b). For details, please refer to Appendix C.
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Method MMLongBench SlideVQA

F1 Acc F1 Acc

ColPali 32.17 30.76 53.42 52.33
DocReact (w/o ColPali) 37.22 37.37 54.12 54.29
DocReact (w/ ColPali) 38.07 38.29 54.87 55.04

Table 3: Ablation study comparing Doc-React with and without ColPali retrieval. Results are reported on the
MMLongBench and SlideVQA benchmarks.

Comparison with Multimodal RAG We evalu-
ate DocReact’s effectiveness against multimodal
RAG methods in Table 1. While multimodal RAG
methods mitigate input information overload, they
struggle with complex queries requiring progres-
sive multi-image reasoning and retrieval. In con-
trast, DocReact addresses these challenges through
step-wise information differentiation and retrieval,
achieving strong performance on both datasets.
Comparison with Multi-image MLLMs We eval-
uate DocReact’s efficiency in processing multi-
page document inputs compared to multi-image
MLLMs. As shown in Table 2, GPT-4o performs
well on MMLongBench, where the limited num-
ber of candidate images allows it to process the
full context effectively. However, simply relying
on GPT-4o (i.e., the baseline Standard) is not scal-
able for real-world scenarios with a larger number
of candidate images, where DocReact’s iterative
approach becomes essential for efficiently retriev-
ing fine-grained, contextually relevant information.
While CoT reasoning offers limited improvement
on GPT-4o due to inefficiencies in handling multi-
modal inputs, DocReact achieves competitive per-
formance on MMLongBench and surpasses GPT-
4o on the SlideVQA dataset, showing its scalability
and effectiveness in handling multi-page QA tasks.
Case Study We validate DocReact’s advantage by
a case study (Appendix A). In this example, the
query Q does not explicitly mention the region with
“252M mobile broadband subscriptions.” Advanced
retrieval methods such as ColPali (Faysse et al.,
2024) fail to infer that the region refers to North
America and subsequently miss the figure contain-
ing relevant information on active social network
users. In contrast, DocReact dynamically refines
its search process. Through intermediate reasoning
steps (Thought 2 and Thought 3), it identifies the
missing region, retrieves the relevant figure, and
gets the information (Observation 3), ultimately
yielding the accurate result of 56% (Action 4).
Ablation Study on the Effect of Retriever Instead
of relying solely on the strong retrieval approach

ColPali (Faysse et al., 2024; Yao et al., 2024; Chen
et al., 2024), we conducted additional experiments
to compare DocReact (w/ ColPali) and DocReact
(w/o ColPali). In the latter setting, we replaced
ColPali with a weaker retrieval method as indicated
in Table 3. This comparison allows us to better
understand whether the observed improvements
are attributable to our framework itself, rather than
being solely due to the strong retrieval backbone.
Our experiments demonstrate that even without
leveraging the strong ColPali method, our approach
still outperforms directly using ColPali.

6 Conclusion

We address the challenge of answering questions
over multi-page, multimodal documents by intro-
ducing Doc-React, an adaptive iterative framework
for retrieval and acting. By balancing informa-
tion gain and uncertainty reduction at each step,
the framework leverages InfoNCE-guided retrieval
and a large language model (LLM) for dynamic
query refinement. Through systematic optimiza-
tion and feedback, Doc-React effectively captures
fine-grained and contextually relevant information,
and achieves strong performance.

7 Limitations

Our approach maximizes the normalized mutual
information gain, which is achieved through an
iterative framework that approximates this objec-
tive (as discussed in the theoretical analysis in Ap-
pendix D). While the framework effectively refines
retrieval and query formulation, the approximation
process may lead to slight inefficiencies in spe-
cific cases. Future work could focus on refining
the optimization process to further streamline the
approximation.
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A Case Study

In this section, we illustrate a case study about the comparison between DocReact and CoT baseline.
The desired answer, according to the ground truth, is 56%. We show in the use case that DocReact can
successfully enable information verbal differentiation by identifying the missing information in the current
observation (highlighted in green font). In addition, DocReact can further formulate sub-queries based on
the information differentiation results, which can be used to retrieve more document image potentially
containing such information (highlighted in orange font).
Question: What percentage of the TOTAL POPULATION in the region where there are 252M mobile
broadband subscriptions are ACTIVE SOCIAL NETWORK USERS?
(i) The result by our DocReact
Thought 1: I need to find the region where there are 252M mobile broadband subscriptions and then
determine the percentage of the total population in that region who are active social network users.
Action 1: Search[A figure or chart that shows mobile broadband subscriptions and active social network
users by region.]
Observation 1: 6,572,950,124 mobile subscriptions
Thought 2: The observation does not provide the necessary information about the region with 252M
mobile broadband subscriptions. I need to search again for a figure or chart that shows mobile broadband
subscriptions and active social network users by region.
Action 2: Search[A figure or chart that shows mobile broadband subscriptions and active social network
users by region, specifically looking for 252M mobile broadband subscriptions.]
Observation 2: North America has 252M mobile broadband subscriptions
Thought 3: I need to search for a figure or chart that shows active social network users in North America.
Action 3: Search[A figure or chart that shows active social network users in North America.]
Observation 3: 56% North America’s share of active social network
Action 4: Finish[56%]
(ii) The result by the baseline Standard
The image does not provide a direct percentage of active social network users in the region with 252M
mobile broadband subscriptions. However, it does show that there are 173,871,400 active social network
users in the region with 252M mobile broadband subscriptions. To calculate the percentage, we would
need the total population of that region, which is not provided in the image.
(iii) The result by the baseline CoT
The image shows a bar graph with different regions and their respective mobile broadband subscriptions
and active social network users. To find the percentage of active social network users, we need to look at
the bar corresponding to the region with 252M mobile broadband subscriptions. The bar indicates that the
percentage of active social network users in that region is 17%. Therefore, the answer is 17%.

B Implementation Discussions

While our approach may involve more API calls
than baseline methods due to its iterative nature, it
is important to note that iterative frameworks are
both necessary and common for addressing com-
plex retrieval tasks. Prior works, such as ReAct
(Yao et al., 2022), have demonstrated the effective-
ness of dynamic feedback mechanisms for refining
queries in noisy or incomplete scenarios. Similarly,
mutual information optimization methods inspired
by InfoNCE (Oord et al., 2018) rely on iterative
strategies to balance information gain and uncer-
tainty reduction effectively.

Doc-React builds on these principles by leverag-

ing an iterative query refinement framework to pro-
gressively retrieve the most relevant information.
This approach significantly reduces the number
of input tokens processed per API call by avoid-
ing redundant or irrelevant content. Consequently,
while iterative, Doc-React achieves a lower overall
computational cost in terms of processed tokens
compared to baseline methods, which often rely on
processing larger, less refined multimodal contexts
in a single pass. The iterative design is not only
practical but also essential for tackling the complex-
ity of multi-page, multimodal document QA tasks.
Given the markedly inferior performance of open-
sourced MLLMs (e.g., MiniCPM and InternVL) on
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such challenging tasks, we opt to build DocReact
on the stronger baseline GPT-4o to enable a more
rigorous comparison. In practice, we limit the pro-
cess to a maximum of 4 iterations of retrieval and
action steps. The MLLM has the flexibility to ter-
minate early by directly outputting the final answer.
However, if the MLLM does not voluntarily end
the interaction, the system enforces termination af-
ter the final iteration. At this point, the answer is
generated using aggregated information from all
previous rounds.

C Experiment Details

C.1 Dataset Details
We evaluate our method on the following datasets:

• SlideVQA (Tanaka et al., 2023): Designed for
structured documents like presentation slides,
focusing on reasoning with visual elements
such as diagrams and charts.

• MMLongBench-Doc (Ma et al., 2024a):
Evaluates tasks requiring long-context reason-
ing over multimodal documents.

C.2 Baseline Details
We include the following baselines in our compar-
isons:

• Multi-image MLLMs: GPT4-o, InternVL
(Chen et al., 2024), and MiniCPM (Yao et al.,
2024).

• Multimodal RAG: ColPali (Faysse et al.,
2024) and VisRAG-Ret (Yu et al., 2024).

C.3 Implementation Details
• Framework: Implemented using the Hug-

ging Face Transformers library for integration
with retrieval and generative models.

• Query Refinement: Iterative query re-
finement is driven by LLM feedback and
InfoNCE-based optimization.

• Hyperparameters: We set generation tem-
perature as 0 for deterministic decoding. We
set the token limit of 100 for generation and
the maximum number of images input as 50
for multi-image MLLM baselines.

• Evaluation Metrics: We follow the evalua-
tion metrics introduced by MMLongBench-
Doc (Ma et al., 2024a) where Acc and F1 are
used to meature QA performance.

• Hardware: Experiments are conducted on 4
NVIDIA A6000 GPUs with multi-GPU sup-
port.

D Theoretical Analysis

This section provides more details and the proof of
Theorem 1.

Proof. Denote the accumulated information as

Zt =
⋃

Sk∈πt

µ(Sk, Q).

We can assume the information differentiation by

A = g(Z) +A′
t, (8)

where g(Z) is the part of A explained by Z. By
definition of conditional mutual information, the
information gain term in Eq.(2) can be derived

I(µ(St+1, Q);A | Z) = H(A | Z)

−H(A | µ(St+1, Q), Z).

Using the decomposition assumption (in Eq.(8)) of
information differentiation, we show that

H(A | Z) = H(A′
t | Z),

H(A | µ(St+1, Z) = H(A′
t | µ(St+1, Z).

In addition, since the differentiated information A′
t

is assumed to be independent from the currently
collected information Zt, we can further reduce the
results as

H(A′
t | Z) = H(A′

t),

H(A′
t | µ(St+1, Z) = H(A′

t | µ(St+1).

Therefore, we could conclude with the equivalency

I(µ(St+1;A | Z) = H(A′
t)−H(A′

t | µ(St+1))

= I(µ(St+1);A
′
t).

76



E In-context Examples

We illustrate the three in-context learning examples we used to align MLLMs’ behaviors in generating
thoughts of information differentiation (Thought t), actions of multimodal search sub-queries (Action t),
and MLLM received feedback back through MLLM information retrieval (Observation t).
Example 1:
Question: What is the elevation range for the area that the eastern sector of the Colorado orogeny extends
into?
Thought 1: I need to search Colorado orogeny, find the area that the eastern sector of the Colorado
orogeny extends into, then find the elevation range of the area.
Action 1: Search[A figure of the regional map of Colorado orogeny, where eastern sector is displayed.]
Observation 1: Based on the give images, we can observe as follows. The Colorado orogeny was an
episode of mountain building (an orogeny) in Colorado and surrounding areas. This took place from 1780
to 1650 million years ago (Mya), during the Paleoproterozoic (Statherian Period). It is recorded in the
Colorado orogen, a >500-km-wide belt of oceanic arc rock that extends southward into New Mexico. The
Colorado orogeny was likely part of the larger Yavapai progeny.
Thought 2: It does not mention the eastern sector of the Colorado orogeny. I need to look up eastern
sector.
Action 2: Lookup[Extract the eastern sector information from the given figure.]
Observation 2: Based on the give images, we can observe as follows. The Colorado orogen, formerly
called the Colorado province, is a >500-km-wide belt of oceanic arc rock (1.78–1.65 Ga) that extends
southward into New Mexico and composes a major part of the Proterozoic provinces of southwestern
United States. This transcontinental collisional event occurred during the Paleoproterozoic (Statherian
Period). The Wyoming sector of the Colorado orogeny was formerly called the Medicine Bow orogeny.
The eastern sector extends into the High Plains and is called the Central Plains orogeny. The boundary
between the Colorado orogeny and the Wyoming craton is the Cheyenne belt, a 5-km-wide mylonitic
shear zone that verges northward. The Cheyenne belt transects and cuts off the south edge of the older
Trans-Hudson progeny.
Thought 3: The eastern sector of Colorado orogeny extends into the High Plains, so High Plains is the
area. I need to search High Plains and find its elevation range.
Action 3: Search[A figure of High Plains, where its elevation range is annotated.]
Observation 3: Based on the give images, we can observe as follows. The High Plains are a subregion of
the Great Plains, mainly in the Western United States, but also partly in the Midwest states of Nebraska,
Kansas, and South Dakota, generally encompassing the western part of the Great Plains before the region
reaches the Rocky Mountains. The High Plains are located in eastern Montana, southeastern Wyoming,
southwestern South Dakota, western Nebraska, eastern Colorado, western Kansas, eastern New Mexico,
western Oklahoma, and to just south of the Texas Panhandle. The southern region of the Western High
Plains ecology region contains the geological formation known as Llano Estacado which can be seen from
a short distance or on satellite maps. From east to west, the High Plains rise in elevation from around
1,800 to 7,000 ft (550 to 2,130 m).
Thought 4: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer is 1,800 to 7,000 ft.
Action 4: Finish[1,800 to 7,000 ft]

77



Example 2:
Question: Which magazine was started first Arthur’s Magazine or First for Women?
Thought 1: I need to search Arthur’s Magazine and First for Women, and find which was started first.
Action 1: Search[A wiki document page about Arthur’s Magazine.]
Observation 1: Based on the give images, we can observe as follows. Arthur’s Magazine (1844–1846)
was an American literary periodical published in Philadelphia in the 19th century. Edited by Timothy
Shay Arthur, it featured work by Edgar A. Poe, J.H. Ingraham, Sarah Josepha Hale, Thomas G. Spear,
and others. In May 1846 it was merged into Godey’s Lady’s Book.
Thought 2: Arthur’s Magazine was started in 1844. I need to search First for Women next.
Action 2: Search[A webpage introduction about First for Women.]
Observation 2: Based on the give images, we can observe as follows. First for Women is a woman’s
magazine published by Bauer Media Group in the USA. The magazine was started in 1989. It is based in
Englewood Cliffs, New Jersey. In 2011 the circulation of the magazine was 1,310,696 copies.
Thought 3: First for Women was started in 1989. 1844 (Arthur’s Magazine) < 1989 (First for Women),
so Arthur’s Magazine was started first.
Action 3: Finish[Arthur’s Magazine]

Example 3:

Question: Guitars for Wounded Warriors is an album that was recorded in the village in which New York
county?
Thought 1: I need to search Guitars for Wounded Warriors, then find in which New York county it was
recorded.
Action 1: Search[A document page about Guitars for Wounded Warriors.]
Observation 1: Based on the give images, we can observe as follows. Guitars for Wounded Warriors is
the sixth solo studio album by guitarist Brian Tarquin, released in August 2014 by Cleopatra Records. In
2016, it received a Best Compilation Album nomination by the Independent Music Awards. All tracks
were recorded at Tarquin’s Jungle Room Studios in New Paltz (village), New York. Being moved by the
lack of support for returning veterans through his life Tarquin decided to compose a heavy instrumental
rock album as a way to show his appreciation to all veterans. So once again he enlisted top notch players
to guest with him on the album, Billy Sheehan on Black Hawk, Ron "Bumblefoot" Thal and Reb Beach
on Taliban Terror, Steve Morse on Freedom, Chris Poland on Charlie Surfs and Hunting, Chuck Loeb
on Escape Kabul, Hal Lindes on Sand & Blood, Gary Hoey on 5 Klicks To Hell and Baghdad, Alex De
Rosso Dokken on Broken Arrow, and The Flyin’ Ryan Brothers on Surgical Strike. The entire album was
engineered, produced and composed by Tarquin especially for each one of the guest guitarists. Partial
proceeds are donated to the Fisher House Foundation from sales.
Thought 2: Guitars for Wounded Warriors was recorded in New Paltz (village), New York. I need to
search New Paltz (village), New York and find which county it is in.
Action 2: Search[A figure of map that indicates the location of New Paltz (village), New York.]
Observation 2: Based on the give images, we can observe as follows. New Paltz is a village in Ulster
County located in the U.S. state of New York. It is approximately 80 miles (130 km) north of New York
City and 70 miles (110 km) south of Albany. The population was 7,324 at the 2020 census.
Thought 3: New Paltz (village), New York is in Ulster County, so the answer is Ulster County.
Action 3: Finish[Ulster County]
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