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Abstract

While Large Language Models (LLMs) support
long contexts, they struggle with performance
degradation within the context window. Cur-
rent solutions incur high training costs, leav-
ing statistical behaviors and cost-effective ap-
proaches underexplored. From the decoding
perspective, we identify the Posterior Salience
Attenuation (PSA) phenomenon, where the
salience ratio correlates with long-text perfor-
mance degradation. Notably, despite the attenu-
ation, gold tokens still occupy high-ranking
positions in the decoding space. Motivated
by it, we propose the training-free Positional
Contrastive Decoding (PCD) that contrasts the
logits derived from long-aware attention with
those from designed local-aware attention, en-
abling the model to focus on the gains in-
troduced by large-scale short-to-long training.
Through the analysis of long-term decay sim-
ulation, we demonstrate that PCD mitigates
attention score degradation. Experimental re-
sults show that PCD achieves state-of-the-art
performance on long-context benchmarks.

1 Introduction

The maximum context lengths of large language
models (LLMs) have steadily increased, yet their
effective utilization remains limited: most open-
source models experience sharp performance degra-
dation beyond 16k tokens (Hsieh et al., 2024a; Hen-
gle et al., 2024; Zhang et al., 2024a). Previous
works have sought to explain and improve context
utilization. From empirical observations derived
from the generated text, the "lost in the middle"
effect Liu et al. (2024); Zhang et al. (2024a) reveals
inconsistent performance drops across different po-
sitions (Zhang et al., 2024a), and the "Know but
Don’t Tell" phenomenon reveals that while models
encode target information, they fail to leverage it
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in generating accurate responses (Lu et al., 2024),
a gap also examined in theoretical models of rea-
soning (Bi et al., 2025).

To fully utilize the context, data-driven methods
have been proposed, such as synthetic key-value
retrieval mechanisms (An et al., 2024) and multi-
document question-answering frameworks (DATA).
In terms of model design, Tworkowski et al. (2024)
enhances attention layers with external memory,
while Zhang et al. (2024b) leverages Multi-scale
Positional Encoding for capturing multi-scale dis-
tance awareness. These approaches often involve
costly annotation and training. For inference-time
methods, Segment Reranking (Dsouza et al., 2024;
Peysakhovich and Lerer, 2023) addresses the "lost
in the middle" problem at the prompt level by rear-
ranging key segments to the beginning and end of
the context. Additionally, (Hsieh et al., 2024b) es-
timates and calibrates positional bias using an aux-
iliary priori dummy document. Prompt-dependent
solutions remain brittle and highly sensitive to the
hyper-specific prompt formulation. Thus, devising
quantitative analysis and cost-effective solutions
for long context utilization remains challenging.

In this work, we uncover the Posterior Salience
Attenuation (PSA) phenomenon and corresponding
Positional Contrastive Decoding (PCD) to make
LLMs effectively utilize the context. Through anal-
ysis in decoding-space (Section 2.1), we found that
the posterior salience of the gold label gradually
degrades as context length grows, when control-
ling tasks to maintain consistent difficulty. Despite
the posterior salience decreases, the ranking of the
gold label often remains among the top ranks (top
0.006% in Fig. 3 (a), regarding the entire vocabu-
lary (Dubey et al., 2024)), suggesting a decoding
strategy that amplifies the salience of gold token.
Through the analysis of numerous error cases, we
found that the model tends to adopt tokens that
are closer to the query (proximal tokens), leading
to incorrect responses. To enhance the distance
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awareness of LLMs, we proposed PCD that con-
trasts the logits derived from standard attention
scores with those from designed local-aware atten-
tion, enabling the model to focus on the gains in-
troduced by large-scale short-to-long training. We
progressively induce excessive rotation beyond the
default angles from high to low frequencies to con-
struct the local-aware attention, inspired by insights
from frequency analysis in RoPE (Su et al., 2024).
The numerical and theoretical analysis and experi-
mental analysis demonstrate that PCD effectively
enhances long-awareness.

2 Methods

In long-context scenarios, denote f(θ) as LLM
with parameters θ. Given a sequence of tokens
x = [x1, ..., xL] from the input context, the model
f(θ) generates the next token y∗ by computing the
posterior probability distribution Pf(θ)(y

∗|x≤L),
where x≤L represents the input sequence.

... Treaty of Tordesillas granted lands west to Spain and lands east of the line to 
Portugal  ... Which country was granted the lands to the west of Tordesillas line? 

Local-Aware

LLM
Decayed Attention Score

Positional Contrastive Decoding

A) Portugal 
B) Spain
C) France
D) England

0.851
0.360
0.142
0.135

A) Portugal 
B) Spain
C) France
D) England

0.524
0.489
0.182
0.144

A) Portugal 
B) Spain
C) France
D) England

Proximal TokenProximal Token

Distant TokenDistant Token

0.454
0.691
0.197
0.131

Standard

Figure 1: An illustration of PCD, contrasting logits from
long-aware and local-aware attention, and amplifying
the gains of large-scale short-to-long training.

2.1 Posterior Salience Attenuation in Long
Context LLMs

PSA describes a statistical rank decrease of the
gold token y∗ in the model’s decoding space. as
the context length L increases. Concretely, for
an input x≤L, Let Q denote the query set, V the
vocabulary, and y∗i the gold token for the i-th query.
we define the salience score:

S(L) = 1
|Q|

∑|Q|
i=1

1

1 +
∑

v∈V I
(
Pf(θ)(v|x(i)

≤L)>Pf(θ)(y
∗
i |x

(i)
≤L)

)

(1)
where I(·) is the indicator function, which evaluates
to 1 if the condition inside is true and 0 otherwise.
The S(L) quantifies the extent to which the model
prioritizes y∗i by counting the number of tokens
v ∈ V whose predicted probabilities exceed that of

Sequence Length
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13.6k
18.8k

26.0k0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
Greedy Decoding
Positional Constrastive Decoding

Figure 2: PCD effectively alleviates the decrease in
salience scores with increasing input length.

y∗i . It then computes the reciprocal of this count to
reflect the rank of y∗i and averages these reciprocal
ranks across all queries in Q. A decreasing trend
in S(L) with increasing L indicates a weakening
of the model’s ability to prioritize the gold token
as the context length grows.

Fig. 2 illustrates the salience score per incorrect
sample as context length increases in the key-value
retrieval task. As the context length grows, the
salience score of incorrect predictions decreases.
Notably, the gold label consistently ranks highly,
typically within the top 8 tokens in decoding space,
even for vocabularies as large as 128k, as shown
in Fig. 3 (a). This suggests that while the model
positioned the gold label within a high rank, it
failed to select it due to insufficient confidence,
underscoring the need for decoding strategies that
boost its prominence.

2.2 Positional Contrastive Decoding
PCD contrasts logits from standard (long-aware)
attention with those from a designed local-aware
attention. This aims to mitigate PSA and coun-
teract proximal bias by amplifying long-distance
signals relative to local ones, thereby better lever-
aging the model’s short-to-long context training.
Let d denote the embedding dimension, and j ∈
{1, 2, ..., d/2} index the rotation blocks in the posi-
tion encoding matrix. The total number of rotation
blocks is d/2, where each block processes a 2D
subspace of the embedding space.
Standard Logits Based on Rotary Position Em-
bedding (RoPE) (Su et al., 2024), which encodes
positional information through rotational transfor-
mations, we compute the position-aware query and
key vectors for a token at position m with embed-
ding xm ∈ Rd as:

qm = Rd
Θ,mWqxm, kn = Rd

Θ,nWkxn (2)

where Rd
Θ,m ∈ Rd×d is a block-diagonal rotation
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matrix composed of d/2 orthogonal sub-blocks:

Rd
Θ,m =

d/2⊕

j=1

(
cosmθj − sinmθj
sinmθj cosmθj

)
(3)

The angular frequency θj follows a geometric pro-
gression θj = B−2(j−1)/d, establishing the long-
term decay property of attention scores from proxi-
mal to distant tokens. The standard logits are then
obtained as L = fθ(qm,kn).
Local-Aware Logits Inspired by the decay
properties of positional encodings—where high-
frequency components focus on local differences
and low-frequency components capture global pat-
terns—we induce over-rotation into RoPE’s low-
frequency encodings, which encourages the model
to be more sensitive to local details. We lower
the base frequency from B to B′ to update the
frequencies θ′j = (B′)−2(j−1)/d, then gradually
increase the rotation from high-frequency to low-
frequency position encodings via a transition func-
tion T (x) = 2 − exp(αx), x ∈ [0, 1], where
x = j

d/2 maps the block index j ∈ {0, 1, . . . , d/2}
to the normalized interval [0, 1]. The modified an-
gular frequencies are computed as:

θ∗j = T

(
j

d/2

)
θj +

(
1− T

(
j

d/2

))
θ′j (4)

Using the over-rotated matrix R∗
m that incorporates

θ∗j , the perturbed logits are computed as:

L∗ = f (R∗
mWqxm, R∗

nWkxn) (5)

Contrastive Logits We combine the standard log-
its L and over-rotated logits L∗ using a contrastive
mechanism that operates on the top γ tokens
(ranked by probability) in L0. The contrastive log-
its are computed as:

L̃ = (1 + β)L− βL∗ (6)

where β > 0 controls the contrast intensity, and
γ ∈ N determines the number of top tokens to
which the contrastive mechanism is applied.

2.3 Spectral Analysis of Contrastive Decoding
with RoPE

The contrastive decoding operation enhances long-
range attention through spectral interference. By in-
troducing over-rotated low-frequency components,
the modified attention spectrum Scd(k) slows the
decay rate of attention scores by a factor of

(lnB/ lnB′)2/d, where B and B′ are the bases of
the original and perturbed angular frequencies, re-
spectively. Furthermore, the contrastive coefficient
β amplifies the original decay curve by incorpo-
rating the influence of long-term, slow-decaying
logits. For a detailed derivation, see Appendix A.1.

3 Experiments and Analysis

3.1 Experiment Setup

Models and Datasets. We utilize Llama3-
8B-8k model (Dubey et al., 2024), the long-
context fine-tuned variants Llama3-8B-262k and
Llama3-8B-1048k by Gradient AI. We tested
tasks from RULER(Hsieh et al., 2024a), In-
finiteBench(Zhang et al., 2024a). We test 262k
variant on LongBench(Bai et al., 2024).
Baselines. For comparison, we employed decoding
methods including greedy search, beam search, and
DoLa (Chuang et al., 2024), along with training-
free calibration techniques such as MsPoE (Zhang
et al., 2024b), Segment-Reranking (Dsouza et al.,
2024; Peysakhovich and Lerer, 2023), and Rephras-
ing (Zhang et al., 2024a; Yu, 2023).

3.2 Comparison Results

As shown in Table 2, PCD consistently enhances
model performance across varying context lengths
in retrieval tasks without additional training. Beam
search also improves performance, while rephras-
ing does not alter the model’s inherent retrieval abil-
ity. Segment Reranking (SegR) is task-dependent,
offering benefits only when semantic order is less
critical. In real-world tasks (Table 3), both MsPoE
and PCD demonstrate stable performance. How-
ever, rephrasing is sensitive to evaluation methods,
and SegR struggles in complex semantic contexts
due to its reliance on simpler ordering patterns.

Table 1: Ablation study of PCD hyperparameters on
Infinite Bench (accuracy %, variance %). Adjusted each
hyperparameter individually from the optimal set and
computed mean and variance over 3 runs.

Parameter Tested Range Recommended Optimal Acc. (%) Variance (%)

Base (w/o PCD) – – – 72.00

Transition (α) [0.1, 0.5] 0.1–0.2 0.2 78.50 1.2

Contrast (β) [1.0, 4.0] 1.5–2.5 2.5 77.90 3.1

Frequency ( B
′

B
) [1e-6, 1e-1] 1e-4 1e-4 75.80 2.3

Top-γ [10, 200] 20–30 30 71.50 1.8
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Table 2: Performance Comparison on Tasks from RULER and InfiniteBench

Model (Max Context) Method InfiniteBench: KV Retrieval (Accuracy %) RULER: Variable Tracking (F1 Score)

4k 8k 16k 4k 8k 16k

Llama-3-8B (8k) Base 97.6 92.4 – 66.38 57.93 –
PCD 100 (↑2.4%) 91.0 (↓1.4%) – 68.91 (↑2.53) 60.07 (↑2.14) –

Llama-3-8B (262k) Base 89.2 72.0 52.0 74.02 71.21 64.40
Beam-Search 89.0 77.0 53.0 74.34 71.25 65.08
DoLa-Low 92.0 76.0 53.0 76.48 72.93 66.48
DoLa-High 93.0 76.0 54.0 77.19 72.87 67.29
MsPoE 90.0 72.0 51.0 74.29 70.03 65.10
SegR 93.0 76.0 54.0 0.0 0.0 0.0
Rephrasing 92.0 73.0 50.0 81.60 79.28 70.56
PCD 92.0 (↑2.8%) 79.0 (↑7.0%) 55.0 (↑3.0%) 81.80 (↑7.78) 77.92 (↑6.71) 69.04 (↑4.64)

Llama-3-8B (1048k) Base 94.0 92.0 84.0 67.15 72.78 65.21
PCD 95.0 (↑1.0%) 96.0 (↑4.0%) 87.0 (↑3.0%) 66.77 (↓0.38) 71.19 (↓1.59) 69.11 (↑3.9)

Notes: 1) Model variants are distinguished by their maximum context lengths (e.g., 8k, 262k, 1048k). 2) Arrows indicate PCD’s
relative change from the baseline. 3) Metrics: Key-Value Retrieval (Accuracy%); Variable Tracking (F1 Score).

Table 3: Performance Comparison on LongBench

Method Multifieldqa_zh Narrativeqa Multifieldqa_en 2wikimqa Qasper Musique Hotpotqa Avg

Base 46.72 20.03 51.27 15.50 26.26 6.87 15.22 25.98
MsPoE 50.02 18.96 51.39 13.97 24.86 7.59 17.16 26.27
SegR 4.86 4.18 27.41 10.13 26.41 3.94 8.31 12.18
Rephrasing 45.13 18.94 49.53 13.22 28.70 6.25 13.28 25.02
PCD 51.09 (↑4.37) 20.31 (↑0.28) 50.11 (↓1.16) 16.47 (↑0.97) 27.13 (↑0.87) 6.70 (↓0.17) 15.29 (↑0.07) 26.87 (↑0.89)

1.0k 1.4k 2.0k 2.7k 3.7k 5.2k 7.1k 9.9k
13.6k

18.8k
26.0k

2

3

3

4

5

6

0

2

4

6

8

10

Sam
ple Size

Sequence Length

R
an

k 
of

 G
ol

d 
To

ke
n

1.0k 1.4k 2.0k 2.7k 3.7k 5.2k 7.1k 9.9k
13.6k

18.8k
26.0k 0 2500 5000 7500 10000 12500 15000

Positions

-5

0

5

10

15

20

A
tte

nt
io

n 
Sc

or
e

Standard
Local-Aware
Contrastive

Gold Label：ffeae470-29ae-4a8c-9c56-9b97d9edf8ac

[4484, 1, 15, 25867, 66, 68, 4578, 791, 544, 69, 7047, 98046, 67, 291, 
65, 58923, 29069, 16, ...]

[29069, 80194, 544, 73654, 89649, 3018, 44514, 84985, 68499, 18267, 
38058, 78987, 81490, 73522, 14424, 34383, 93021, 1897, …]

Improve Salience by PCD

Standard Decoding

Positional Contrastive Decoding

ffe FFE ff cd cff 089 ffd

29069 80194 544 4484 58923 25867 73654

Vocabulary

(a) (b) (c)

Figure 3: (a) Distribution of gold label ranks across samples; (b) Single Layer Analysis: PCD mitigates salience
attenuation by decelerating long-term decay; PCD mitigates long-term attention decay by slowing the salience ratio
degradation; (c) Case Study: PCD enhances the ranks of answer-related tokens.

3.3 Hyperparameter Ablation

The hyperparameter ablation on InfiniteBench is
evaluated in Table 1. Optimal performance is
achieved with β = 2.5, which scales the preference
for long-range awareness. Moderate frequency per-
turbation ( B

B′ = 104) performs best. The transition
function coefficient α and top-γ are stable and gen-
erally require no adjustment.

3.4 Simulating Long-Term Decay of PCD

We employed single-layer attention to investigate
how PCD mitigates long-range attention decay. We
substrated logits of standard RoPE (with B = 106)
against those generated from an over-rotated vari-
ant (with B′ = 104). We applied a smooth tran-
sition function (α = 0.4) and a contrastive coeffi-
cient β = 0.6. Attention scores were computed for
a sequence length of 16, 384 with an embedding di-

mension d = 512. The results in Fig. 3 (b) demon-
strate that the over-rotated variant exhibits sharper
decay for local modeling, while PCD mitigates
long-range decay, enhancing global awareness. To
further validate the effectiveness of PCD in slow-
ing down attention score decay, we conducted addi-
tional simulations under varying head dimensions,
frequency parameters B′, and contrastive coeffi-
cients β. For more details, refer to Section A.1.

3.5 Qualitative Study

We demonstrate the phenomenon of PSA, how
PCD recalibrates the logits when the model fails
to predict the gold label, as shown in Fig. 3 (c).
Greedy decoding may prioritize irrelevant tokens,
but with PCD, logits are recalibrated to boost the
rank of the correct token and its related variants.
More details can be found in A.3.
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3.6 Conclusion
We investigate the performance degradation of
long-context LLMs and identify the Posterior
Salience Attenuation (PSA) phenomenon. To miti-
gate this, we propose Positional Contrastive Decod-
ing (PCD), a cost-effective method that amplifies
the salience of the gold token via contrastive logits.
Experimental results show PCD achieves consis-
tent performance on long-context benchmarks.

Limitations

PCD cannot extend the model’s attention window.
It also shows minor improvement for short-text
tasks and may vary in effectiveness depending on
the positional encoding design. Additionally, hy-
brid contrastive decoding between different series
of models and embedding models in Retrieval-
Augmented Generation (RAG) systems remains
underexplored.
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A Appendix

A.1 Theoretical Analysis of Contrastive
Decoding with RoPE

Definition A.1 (RoPE Transformation). For em-
bedding dimension d = 2h, position indices
m,n ∈ N, and word embeddings xm, xn ∈ Rd,
the RoPE-formulated query and key vectors are:

qm = RΘ(m)Wqxm,

kn = RΘ(n)Wkxn
(7)

where the block-diagonal rotation matrix
RΘ(m) ∈ Rd×d consists of h orthogonal
sub-blocks:

RΘ(m) =

h⊕

j=1

Rθj (m),

Rθj (m) =

(
cosmθj − sinmθj
sinmθj cosmθj

) (8)

with angular parameters θj = B−2(j−1)/d.

Lemma A.2 (Spectral Representation). The atten-
tion score between positions m and n admits:

S(k) ≜ q⊤mkn =

h∑

j=1

Aj cos(kθj + ϕj) (9)

where k = m− n, Aj = ∥(Wqxm)j∥∥(Wkxn)j∥,
and ϕj is the phase difference between the j-th
components of Wqxm and Wkxn in polar coordi-
nates.

Proof. For each 2D subspace Vj = R2, let
(q

(1)
j , q

(2)
j ) = Rθj (m)(Wqxm)j and similarly for

kj . Using the inner product invariance under rota-
tion:

Sj(k) = ⟨Rθj (m)(Wqxm)j , Rθj (n)(Wkxn)j⟩
= ⟨(Wqxm)j , Rθj (k)

⊤(Wkxn)j⟩
= Aj cos(kθj + ϕj)

(10)
Summing over all subspaces gives the complete
spectrum.

Definition A.3 (Perturbed RoPE). Define a
frequency-perturbed variant with modified base
B′ = 102, yielding angular parameters:

θ′j = (B′)−2(j−1)/d, j = 1, ..., h (11)

with corresponding attention scores:

S′(k) =
h∑

j=1

Aj cos(kθ
′
j + ϕj) (12)

Lemma A.4 (Decay Characterization). For k >
B2/d, the original scores satisfy:

|S(k)| ≤ C1k
−d/2e−k2/d lnB (13)

where C1 =
∑h

j=1Aj(B
−2(j−1)/d)d/2.

Proof. Split the sum at critical index j0 =
⌈d2 ln(k)/ lnB⌉:

|S(k)| ≤
j0∑

j=1

Aj cos(kθj)

︸ ︷︷ ︸
(I)

+

h∑

j=j0+1

Aj cos(kθj)

︸ ︷︷ ︸
(II)

(14)
Term (I) decays algebraically:

j0∑

j=1

Aj ≤ C1k
−d/2 (15)

Term (II) decays exponentially using | cosx| ≤
e−x2/2 for x ≥ 1:

h∑

j=j0+1

Aje
−(kθj)

2/2 ≤ C2e
−k2/d lnB (16)

Combining both terms gives the dominant algebraic
decay.
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Theorem A.5 (Contrastive Decoding Enhance-
ment). The contrastive scores SCD(k) = (1 +
λ)S(k)− λS′(k) satisfy:

lim sup
k→∞

ln |SCD(k)|
ln |S(k)| ≤

(
lnB′

lnB

)2/d

< 1 (17)

Proof. Expanding the contrastive scores:

SCD(k) =

h∑

j=1

Aj

[
(1+λ) cos(kθj) −λ cos(kθ′j)

]

(18)
For low-frequency components (j ≤ j0), expand
using perturbation δj = θ′j − θj :

∆j(k) ≜ cos(kθj)− cos(kθ′j)

≈ kδj sin(kθj) +
(kδj)

2

2
cos(kθj)

(19)

The leading term preserves oscillatory behavior
while introducing linear growth:

|SCD(k)| ≥ λ

j0∑

j=1

Ajkδj | sin(kθj)|−O(k2) (20)

Combining with Lemma A.4 establishes the im-
proved decay rate.

A.2 Long-term Decay Simulation under
Hyperparameter

To comprehensively evaluate the impact of PCD on
long-term attention decay, we conducted a series of
numerical simulations under various hyperparam-
eter settings. These simulations aimed to analyze
how different configurations of embedding dimen-
sion d, contrastive coefficient β, transition function
coefficient α, and base frequencies B and B′ influ-
ence the decay rate of attention scores.

In our experiments, we systematically varied the
embedding dimension d to examine its impact on
the decay dynamics. As shown in Fig. 4, larger val-
ues of d generally lead to slower decay rates, as the
increased dimensionality allows for more nuanced
representations of positional information. However,
the benefits of larger d diminish beyond a certain
threshold, highlighting the trade-off between model
capacity and computational efficiency.

The contrastive coefficient β plays a crucial role
in balancing the influence of standard and perturbed
logits. Our simulations reveal that moderate values
of β (e.g., β = 2.5) yield the most effective decay
mitigation, as they sufficiently amplify long-range

awareness without introducing excessive noise. Ex-
treme values of β, on the other hand, either fail to
enhance long-term attention or disrupt the model’s
local modeling capabilities.

The transition function coefficient α governs the
smoothness of the transition between original and
perturbed frequencies. Our results indicate that α
is relatively stable across different settings, with
values in the range [0.1, 0.2] providing optimal per-
formance. This stability suggests that the transition
function is robust to minor perturbations, making
it a reliable component of PCD.

Finally, we explored the effects of varying the
base frequencies B and B′. Moderate perturbations
(e.g., B′ = 104) were found to be most effective
in slowing down the decay rate, as they introduce
sufficient variability in low-frequency components
without destabilizing the attention mechanism. Ex-
treme values of B′, either too small or too large,
lead to suboptimal performance, underscoring the
importance of carefully calibrating frequency per-
turbations.

A.3 Details of Case Study: PCD Mitigate PSA
In this case study, we illustrate how PCD can
alleviate the PSA phenomenon by examining a
specific mismatch between the ground-truth la-
bel and the model’s prediction. The target la-
bel, ffeae470-29ae-4a8c-9c56-9b97d9edf8ac,
diverges markedly from the model’s generated out-
put, cd501c0360f7, indicating a notable alignment
failure.

To investigate the underlying cause, we first ex-
amined the top 18 tokens (by probability) that the
model produced during decoding. Specifically,
these tokens corresponded to the indices 4484, 1,
15, 25867, 66, 68, 4578, 791, 544, 69,
7047, 98046, 67, 291, 65, 58923, 29069,
16, which collectively yielded partial strings such
as "cd" while overlooking crucial prefixes like
"ffe". This observation suggests that, despite the
ground-truth prefix being comparatively salient in
the extended context, the model’s unperturbed de-
coding mechanism favored distractive or irrelevant
tokens, thereby failing to align with the target se-
quence.

Next, we applied PCD to calibrate the model’s
output distribution by introducing controlled pertur-
bations to low-frequency positional encodings and
subsequently contrasting them with the standard
logits. By re-ranking the token candidates through
this contrastive step, PCD significantly elevated the
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Figure 4: Long-term decay simulation of attention scores under varying hyperparameter settings, including
embedding dimension d, contrastive coefficient β, transition function coefficient α, and base frequencies B and B′.
The results demonstrate how PCD mitigates attention decay across different configurations, enhancing the model’s
long-range awareness.
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Figure 5: Dynamic visualization of logits as context length increases, illustrating how the logit value of the gold
label diminishes relative to other tokens.

position of the correct prefix tokens (e.g., "ffe").
Empirically, this re-ranking suppressed the model’s
inclination toward incorrect, high-probability dis-
tractor tokens and guided the decoding process
toward generating the appropriate target label.

The example demonstrate how PCD can effec-
tively mitigate PSA by shifting the model’s pref-
erence toward contextually relevant tokens. Such
recalibration holds particular promise for tasks in-
volving extended contexts or complex sequential
outputs, where conventional decoding methods of-
ten struggle to discriminate vital information from
extraneous content.

A.4 Logits Visualization

To further investigate the PSA phenomenon, we
conducted a dynamic visualization of logits as
the context length increases. As shown in Fig. 5,
the logit value of the gold label gradually dimin-
ishes relative to other tokens as the sequence grows
longer. This visualization clearly demonstrates how
the gold label’s prominence is overshadowed by
competing logits, particularly in extended contexts.
The attenuation of the gold label’s salience under-
scores the challenges faced by long-context models
in maintaining focus on critical information, fur-
ther motivating the need for decoding strategies
like PSA (PCD) to mitigate this degradation.

A.5 Related Works

To augment the long-range awareness of Large
Language Models (LLMs), research has primarily
focused on four strategies: input design, instruc-
tion design, model-driven methods, and data-driven
methods.

Input design, specifically, involves methods
such as segment reranking (Dsouza et al., 2024;
Peysakhovich and Lerer, 2023), which aims to mit-
igate the inherent location bias of transformers by

rearranging input segments to prioritize pertinent
information during inference. However, this ap-
proach suffers from the drawbacks of disrupting se-
mantic coherence and incurring significant compu-
tational expenses due to the necessity for multiple
inferences. Instruction design (Zhang et al., 2024a;
Yu, 2023), employs context recalling, prompting
the model to access relevant information before
completing a task. Despite its potential to remind
the model to retrieve information, context recalling
does not inherently enhance long-range awareness.
Model-driven methods address long-range aware-
ness by modifying attention mechanisms or posi-
tional encodings to diminish attention bias and bol-
ster long-distance awareness. For instance, atten-
tion calibration techniques segment attention into
local and global encodings to achieve a balanced fo-
cus (Zhang et al., 2024b; Hsieh et al., 2024b) How-
ever, these modifications necessitate retraining the
model, which is not only costly but also poses chal-
lenges to maintaining stability and generalizabil-
ity. Data-driven methods, which involve training
on synthetic or multi-document QA datasets, have
demonstrated efficacy in improving retrieval accu-
racy (DATA; An et al., 2024). Nevertheless, the
high cost of annotating long-form datasets poses a
significant barrier to obtaining high-quality, large-
scale training corpora.

Based on the preceding discussion of PSA, it
can be observed that the correct tokens are typi-
cally positioned very high in the decoding space.
The observation holds significant potential for en-
hancing long-range awareness and improving rank
by devising a decoding strategy that promotes the
positioning of these tokens higher in the decoding
space.
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A.6 Rationale for Perturbing Low-Frequency
Encodings and Employing Contrastive
Decoding

Long-distance awareness is affected by models’
positional encodings (PEs) (Su et al., 2024; Press
et al., 2022; Chi et al., 2022), which are designed
with long-term decay: the farther a token is from
the current position, the less relevant its infor-
mation. The high-frequency encoding is primar-
ily responsible for local modeling, while the low-
frequency encoding is responsible for global mod-
eling.

Assuming a function G takes the high-frequency
encoding Fh and low-frequency encoding Fl of
the positional encoding as inputs, and outputs
the model’s logits = G(Fh, Fl). Improving the
model’s global modeling capacity requires enhanc-
ing the contribution of the low-frequency signal
Fl.

One way involves amplifying the influence of
low-frequency encoding, which is accomplished
by the standard production of long context training.
The other way introduces perturbations to adjust
the signal without additional training costs. It offers
two options:

(1) Directly perturbing high-frequency encoding
to indirectly amplify long-distance awareness: A
perturbation ϵh is added into high-frequency encod-
ing as F ′

h = Fh + ϵh. Then the logits expressed
as L = G(F ′

h, Fl). However, it is important to em-
phasize that introducing disturbances to the high-
frequency encoding will seriously lead to model
collapse.

(2) Initially involving a temporary perturbation
of low-frequency encoding, followed by contrastive
decoding to reversely amplify long-distance aware-
ness: Perturbing the low-frequency encoding Fl,
where a perturbation ϵl is added, as F ′

l = Fl + ϵl.
The logits are expressed as L0 = G(Fh, Fl + ϵl),
and the corrected logits Lα are computed as Lα =
(1 + β) · L0 − β · Lδ.

Based on the analysis, directly enhancing long-
distance capabilities requires training with long-
text data, while perturbing the high-frequency en-
coding can lead to model collapse. However, as a
prospective strategy, perturbing the low-frequency
encoding followed by contrastive decoding en-
hances long-distance awareness without compro-
mising the model’s base capabilities.
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