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Abstract

Modern NLP workflows (e.g., RAG systems)
require different models for generation and em-
bedding tasks, where bidirectional pre-trained
encoders and decoder-only Large Language
Models (LLMs) dominate respective tasks.
Structural differences between models result
in extra development costs and limit knowl-
edge sharing between tasks. In this work, we
present UniMAE, a novel unsupervised training
method that transforms a Decoder-Only LLM
into a Uni-Directional Masked Auto-Encoder.
UniMAE compresses high-quality semantic in-
formation into the [EOS] embedding while pre-
serving the generation capabilities of LLMs.
Comprehensive evaluations across 56 MTEB
datasets demonstrate that UniMAE can achieve
state-of-the-art results under unsupervised set-
tings with merely 100 training steps, establish-
ing the first effective approach to unifying gen-
eration and representation learning in decoder-
only architectures.

1 Introduction

Pre-trained language models have been widely ap-
plied in various scenarios (Devlin, 2018; Ouyang
et al., 2022; Brown et al., 2020; Wu et al., 2025; ?).
However, the workflows of real-world applications
like RAG (Fan et al., 2024) or retrieval systems
(Zhu et al., 2023) often involve collaboration be-
tween generation tasks and embedding tasks. For
example, RAG requires retrieval followed by gen-
eration (Asai et al., 2023), while retrieval systems
often need to rewrite queries before performing the
search (Ma et al., 2023; Liu and Mozafari, 2024).
For embedding tasks, encoder models with
bidirectional attention mechanisms have been the
mainstream choice (Devlin, 2018; Liu, 2019).
More recently, decoder-only large language models
(LLMSs) with unidirectional attention have demon-
strated the ability to compress knowledge from tril-
lions of tokens during pre-training (Radford, 2018;
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Figure 1: Overview of UniMAE training. The left part
shows the Masked Auto-Regressive process, while the
right part shows the reconstruction process using a tiny
decoder with [EOS] embeddings to recover the input.

Ouyang et al., 2022; Guo et al., 2025), thus have
been widely utilized in various generative tasks.
This structural separation leads to extra training
and deployment costs and impedes knowledge shar-
ing between tasks (Asai et al., 2023). In the long
run, enabling large language models (LLMs) to
perform both generation and embedding tasks si-
multaneously holds significant promise.

In this paper, we introduce UniMAE, an unsu-
pervised method that compresses the semantic con-
tent of input text into the [EOS] (end-of-sequence)
embedding of the last transformer layer, while pre-
serving the capabilities of original LLMs (Figure
1). We scale our method across models with 1B,
3B, and 8B parameters and conduct evaluations
on 56 datasets of the Massive Text Embeddings
Benchmark (MTEB) (Muennighoff et al., 2022).
UniMAE achieves state-of-the-art performance on
MTEB under an unsupervised setting within only
100 training steps. Evaluations on language mod-
eling tasks demonstrate that UniMAE not only en-
hances representation capabilities but also main-
tains the generation abilities of LLMs. Domain
post-training experiments indicate that UniMAE
can simultaneously improve the generation and em-
bedding performance in a single training process.
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To our knowledge, UniMAE is the first effective
approach to unifying generation and representation
learning in decoder-only architectures.

2 Method

2.1 Motivation

Unlike pre-trained encoder models that utilize spe-
cial tokens like [CLS] for sentence embeddings,
LLMs primarily focus on predicting the next token
during pre-training and lack a dedicated position
for sentence representation. As a result, neither
averaging the token embeddings nor directly using
the [EOS] embedding can effectively represent the
entire sentence. (Springer et al., 2024; Jiang et al.,
2023; BehnamGhader et al., 2024).

To bridge this gap, recent studies have focused
on enhancing the representational capabilities of
large models. Many directly use the model as an
encoder, employing average embeddings or token-
level embeddings for supervised contrastive fine-
tuning (Lee et al., 2024; Li et al., 2024). Springer
et al. (2024) and BehnamGhader et al. (2024) argue
that unidirectional attention prevents each token
from incorporating information from subsequent to-
kens, thereby limiting the model’s contextual under-
standing. Springer et al. (2024) addresses this limi-
tation by repeating the sentence twice. Meanwhile,
BehnamGhader et al. (2024) applies a Bidirectional
Attention Mechanism and adapts the MLLM task to
LLM, then finally uses average pooling to get sen-
tence embeddings.

However, these methods still fail to address the
lack of a unified pooling mechanism in LLMs.
Moreover, they simply repurpose LLMs as en-
coders during fine-tuning, thereby overlooking the
potential loss of their generative capabilities.

2.2 Overall framework

Similar to Visual-MAE (He et al., 2022), UniMAE
employs the [EOS] embedding as the latent rep-
resentation of the corrupted input and initializes
a small decoder to reconstruct the original input
based on this representation. Unlike other ap-
proaches, our method maintains a unidirectional at-
tention mechanism characteristic of large language
models (LLMs). We illustrate the entire training
process in Figure 1.

The overall objective consists of two compo-
nents: 1. Masked Auto-Regressive (MAR) and 2.
Masked Re-Construct (MRC). The complete train-
ing process involves jointly optimizing two sets of

parameters: the LLM parameters @y, and small
decoder parameters ® ;.

2.3 Masked Auto-Regressive (MAR)

The sole distinction between the classic Auto-
Regressive (Radford, 2018; Radford et al., 2019;
Brown et al., 2020) and MAR is that the input is
corrupted with random masks of ratio p,,q,. For
a sentence X, it is corrupted by replacing some
tokens with mask tokens, resulting in the masked
sentence X. The MAR loss can be expressed as:

Lyar =Y CE(x; | Fict; Pum), (1)
t

where z; € X is the i-th token or the original text,
Z; € X is the i-th token of the corrupted text. Oy,
denotes the parameters of the original LLM.

2.4 Masked Re-Construct (MRC)

We believe that the representation at [EOS] posi-
tion has the potential to encapsulate the semantic
meaning of the entire input. Since only the last
token can attend to all the input tokens under the
unidirectional attention mechanism. So the latent
representation Ay is:

@w%¢m(x) 2)

The Masked Re-Construct (MRC) process utilizes
a newly initialized small decoder, which employs
the [EOS] embedding combined with partial input
information to reconstruct the original sentence.
The input of the tiny decoder can be formulated as:

Hl — [hfeos +p03--- aheos +pN]a

(3)
H2 — [heos’ecﬁl +p15 -Gy JFPN]’

where p; is the trainable positional embedding, e;
is the input token embedding. The only differ-
ence between MRC and traditional cross-attention
is that we applied a mask to the attention matrix,
forcing the model to rely more on the h.,s for sen-
tence recovery. We set a mask ratio p,,,. and let
Bi; ~ Bernoulli(py,.) € {0,1}. Then the compu-
tation process of attention can be expressed with
the following formula:

Q=HW? K=HWEV=HWY

0, lfl#j/\BZ]:]_
M;; = )
/ {—oo, else 4)
TK
Azsoftmax<Q +M>V.
Vd
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Attn Categories — Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg
: # of datasets — 15 4 3 12 10 1 56
LLaMA3.2-1B
Uni. MEAN 15.13 42.96 34.30 53.50 56.20 56.27 28.06 39.32
Uni. ECHO 24.57 48.27 36.68 67.65 65.60 71.86 29.79 48.28
Bi. MNTP 18.53 43.54 34.20 56.30 60.24 61.15 27.21 42.12
Uni. UniMAE 34.48 50.51 38.42 75.91 68.88 73.14 29.93 52.81
Bi. MNTP + SimCSE 30.59 49.67 37.48 74.41 65.70 72.85 30.71 50.73
Uni. UniMAE + SimCSE 31.54 54.23 43.22 78.04 69.26 76.95 30.14 54.11
LLaMA3.2-3B
Uni. MEAN 14.61 43.22 34.73 55.50 55.55 56.00 22.13 39.09
Uni. ECHO 25.44 48.64 36.86 70.68 67.96 71.95 2431 49.16
Bi. MNTP 17.75 44.69 36.06 57.47 59.79 61.87 23.06 42.38
Uni. UniMAE 34.25 51.79 38.95 78.31 70.14 73.06 29.25 53.30
Bi. MNTP + SimCSE 34.35 50.91 39.83 76.21 66.00 73.77 30.64 52.61
Uni. UniMAE + SimCSE 36.09 55.41 43.77 80.90 71.60 76.53 30.33 56.11
LLaMA3.1-8B
Uni. MEAN 14.26 46.89 37.84 70.12 66.73 62.32 24.98 42.95
Uni. ECHO 25.53 49.75 37.77 70.11 67.03 71.83 27.32 49.24
Bi. MNTP 22.83 48.46 40.96 64.26 60.11 64.50 27.40 45.95
Uni. UniMAE 35.37 52.74 41.25 78.23 68.49 73.45 30.40 53.87
Bi. MNTP + SimCSE 39.75 53.59 42.70 78.71 67.38 76.84 31.77 55.81
Uni. UniMAE + SimCSE 38.51 56.91 46.06 80.15 68.77 76.21 29.80 56.60

Table 1: Results on 56 MTEB datasets with best results highlighted in bold, and the second-best results underlined.

The MRC object can be formalized as:

Lure =Y CE(x, | A, Hy, Ha, ®uec). (5
t

The joint optimization of MAR and MRC is ex-
pressed as follows:

LunivaAE = oLarar + LyMRe, (6)

where « is the weight to control the MAR objective.

3 Experiment

3.1 Settings

For embedding tasks, we conduct evaluations on
the Massive Text Embedding Benchmark (MTEB)
(Muennighoff et al., 2022), a collection of 7 di-
verse embedding task categories covering a total
of 56 datasets. All evaluations are done using the
official MTEB code repository. For preliminary
experiments and ablations, we use MTEB-15 a sub-
set including 15 representative tasks. Details are
attached in Appendix A.

For baselines, we compare our method with av-
erage pooling, Echo (Springer et al., 2024), which
repeats the sentence twice and averages the token
embedding of the second sentence, and LLM2Vec
(BehnamGhader et al., 2024), which sequentially
employs MNTP and SimCSE (Gao et al., 2021b)
to train the model. To make a comparison with

LLM2Vec with SimCSE training, we also provide
UniMAE with further SimCSE training. We pro-
vide training details in Appendix C.

3.2 Embedding Performance

Table 1 shows that, after UniMAE + SimCSE train-
ing, we observe a considerable improvement in
performance for all three models compared with di-
rect mean pooling, which is 28% for the 1B model,
43% for the 3B model and 32% for the 8B model.
Using only UniMAE can significantly surpass all
single unsupervised learning methods, UniMAE
even outperforms MNTP + SimCSE training on 1B
and 3B models. Overall, the UniMAE framework
achieves the state-of-the-art results across models
of all scales. Scores for each dataset are shown in
Appendix G.

3.3 Will UniMAE hurt LLMs?

We selected 10 commonly used datasets for evalu-
ating generative language models, including ARC
(Clark et al., 2018), HellaSwag (Zellers et al., 2019)
and MMLU (Hendrycks et al., 2021). Details can
be found in Appendix E. As shown in Figure 3b,
after UniMAE training, the generative capabilities
of the model are nearly equivalent to those of the
original foundation models. We also tested the
baseline method, MNTP training, which modifies
causal attention to bidirectional attention. We ob-
serve that the structural modification significantly
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reduces the model’s performance on language mod-
eling tasks. The same situation occurs in super-
vised / unsupervised contrastive learning applied
to the representations after average pooling.

3.4 UniMAE optimizes Vector Space

We apply t-SNE transformations to the top 6
classes’ sentence embeddings from BiorxivClus-
teringS2S dataset, using PCA initialization, 2000
iterations, and early exaggeration of 20.

Figure 2 shows the distribution of the UniMAE
and baseline embeddings. UniMAE improves spa-
tial distribution by bringing samples closer within
each group using [EOS] token embeddings. This
improved distribution highlights the effectiveness
of our approach in boosting LLM performance as
an encoder.

Base-Model-EOS UniMAE-Pretrained-EOS

»

(a) Base Model (b) UniMAE

Figure 2: t-SNE visualization of sentence embeddings
from top 6 classes on BiorxivClusteringS2S testset.

3.5 Is MAR necessary?

We designed MAR to prevent the model from learn-
ing the shortcut of simply memorizing all the input
tokens during training. Therefore, we introduce
noise to the input, allowing the model to extract
semantic representations even from incomplete in-
puts, rather than simply memorizing them. To
prove that MAR is superior to AR, we trained dif-
ferent models using input masking ranging from
0% to 80% and performed inference on MTEB-
15. As shown in Figure 3a, for models of different
sizes, the optimal mask ratio falls between 40%
and 60%. For convenience, we set this ratio to 50%
for all models. In the detailed results, we observe
that input masking significantly improved perfor-
mance on tasks related to semantic similarity, such
as Clustering and STS, while the enhancement for
retrieval tasks was relatively minor.

3.6 Domain Post-Training Result

We believe that UniMAE can not only enhance the
representation ability of LLMs but also serve as
a novel pre-training and post-training method to

Results on MTEB-15 LM-Performance

- Base

ki

LLaMA-8B LLaMA-3B LLaMA-1B

Score

—— LLaMA-8B
LLaMA-3B
—— LLaMA-1B

0.0 0.2 0.4 0.6 0.8
LLM Mask Ratio

(a) Mask Ratio Search (b) LM Evaluation

Figure 3: (a) Results under different MAR mask ratio on
MTEB-15. (b) Performance on language model tasks.

Categories — LM. Retr. Class.
# of sub-tasks — 3 7 7

Qwen2-0.5B 71.12 3691 81.43
Qwen2-0.5B + AR 73.16 35.89  83.98
Qwen2-0.5B + UniMAE  74.55 50.84 95.38

Table 2: Model performance after domain post-training

simultaneously improve both generative and repre-
sentational capabilities. We conduct E-Commerce
domain post-training for 100B tokens, we describe
more details in the Appendix F. The evaluation con-
tains three types of tasks: domain language model-
ing, retrieval, and classification. Language model
tasks (LM.) are primarily QA, retrieval (Retr.), and
classification (Class.) tasks that are similar to those
in MTEB. Table 2 demonstrates that UniMAE train-
ing slightly outperforms Auto-Regressive in gen-
eration tasks, and significantly outperforms Auto-
Regressive in embedding tasks.

4 Conclusion

We introduce UniMAE, a method capable of train-
ing models for both generation and embedding
tasks. We evaluate UniMAE on diverse datasets, in-
cluding open-source and domain-specific corpora,
across both types of tasks. UniMAE achieves state-
of-the-art performance on the MTEB benchmark
without compromising the language modeling ca-
pabilities of LLMs. As a domain post-training
approach, UniMAE enhances both the representa-
tional and generative capacities of models simul-
taneously. In future work, we plan to apply Uni-
MAE for large-scale pre-training from scratch and
instruction alignment, aiming to develop a new gen-
eration of LL.Ms that excel in both generation and
embedding tasks.
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5 Limitations

There is an inherent limitation: we initialized a
small decoder from scratch to reconstruct the origi-
nal input. However, during the inference process,
we directly discarded this small decoder and in-
stead utilized the results generated by the LLM for
both generation and representation tasks. This ap-
proach leads to a certain degree of parameter waste.
If this method is scaled up for large-scale zero pre-
training, such waste would be suboptimal. In the
future, we will explore new structural designs to
address this issue.
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A Massive Text Embeddings Benchmark
(MTEB)

The original MTEB benchmark (Muennighoff
et al., 2022) consists of 56 datasets of various em-
bedding tasks. Some tasks like classification and
clustering require additional use of small cluster-
ing models or classification heads after extracting
embeddings. For a fair comparison, we use the offi-
cial MTEB code repository ! to test all the models,
simply overriding the encode function to extract
representations for the given text. Since the models
under evaluation have different architectures and
pooling methods, they may have different optimal
instructions for their respective tasks. For fair com-
parisons, we do not use any instruction and only
extract embeddings from the test texts.

MTEB consists of diverse small and large em-
bedding tasks. Some datasets like MSMARCO
(Nguyen et al., 2016) and DBPedia (Hasibi et al.,
2017) have even more than 5,000,000 samples.
Considering the test speed, for preliminary experi-
ments and ablation studies, we select 15 representa-
tive tasks as a subset in Table 3, which aligns with
LLM2VEC (BehnamGhader et al., 2024). For each

"https://github.com/embeddings-benchmark/mteb
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task category, we selected the same proportion of
datasets to ensure that the results in MTEB-15 are
not biased towards MTEB-56.

Category Dataset
SciFact
Retrieval (3) ArguAna
NFCorpus
. StackOverflowDupQuestions
Reranking (2) SciDocsRR
BiorxivClusteringS2S
Clustering (3) MedrxivClusteringS2S

TwentyNewsgroupsClustering

Pair Classification (1)  SprintDuplicateQuestions

Banking77Classification

Classification (3) EmotionClassification
MassivelntentClassification
STS17

STS (3) SICK-R
STSBenchmark

Overall 15 datasets

Table 3: Datasets of MTEB-15

B Usage Instructions

In the entire framework, there are two important
hyper-parameters: the mask ratio p,,., of MAR,
and the weight o of MAR. Based on our experi-
ence, a higher p,,q, often provides greater benefits
for tasks such as STS and clustering, which are
sensitive to vector space comparisons, while the
improvement for retrieval tasks is relatively smaller.
For the weight alpha, it depends on your expecta-
tions for the LLM base. If you aim for the LLM
itself to learn from the data (wiki-text), you can
set a relatively high o. However, if your goal is to
enhance the representation capability while main-
taining the original abilities of the LLM, a value of
0.1 would be sufficient.

Regarding the number of training steps, we only
trained for 100 steps on general open-source data.
This is mainly because LLMs have typically en-
countered this open-source data during their pre-
training. Numerous studies have shown that per-
forming autoregressive training on repetitive data
can easily lead to model collapse. Therefore, if
there is data that can enhance the LLM itself, it can
be trained extensively, and full-parameter training
can be employed. For instance, we conducted full-
parameter training on domain-specific data with
100 billion tokens, which continuously improved
the model’s overall capabilities. However, if train-
ing on data does not benefit LLMs or even hurt

LLMs, we recommend using LoRA to converge
new parameters instead.

C Unsupervised Training Settings

C.1 Baselines

For Echo (Springer et al., 2024), we simply re-
peat the input text and take the average output
embedding of the second sentence as the global
embedding. For MNTP and MNTP + SimCSE
(BehnamGhader et al., 2024), we train the LLaMA-
3.2-1B and LLaMA-3.2-3B using the official code
with the setting mentioned for Sheared-LLaMA-
1.3B, as they do not release models based on these
two foundation models. For LLaMA-3.1-8B, we
directly use the released lora weights 2.

C.2 Our method

We keep the same training settings across all the
models. For UniMAE training, we train all the
models using Peft 3 package with LORA (Hu et al.,
2021) adapter to train the models, with o, =
32,7 = 16,Ilr = le — 4. We only add trainable
lora weight to the attention block and mlp block.
We train the model on randomly selected wiki-text
data # for 100 steps with a global batch size of 32
samples. The max length of each sample is 512.
The learning rate is 1e — 4 and we use a constant
learning rate scheduler. The MAE weight « is set
to 0.1 and MRC weight S is set to 1. MAR mask
ratio pmqr- 1S set to 0.5, and MRC mask ratio py,;c
is set to 0.5.

For SimCSE training, we train all the models
using Peft package with LORA (Hu et al., 2021)
adapter to train the models, with a« = 32,r =
16,1r = le — 4. We only add trainable lora weight
to the attention block and mlp block. We train
the model on randomly selected wiki-data for 100
steps with a global batch size of 64 samples. The
max length of each sample is 512. The learning
rate is 1e — 4 and we use a constant learning rate
scheduler.

D Combine UniMAE with Supervised
Contrastive Learning

Experiments in table 1 have shown that UniMAE
significantly improves the embedding performance

Zhttps://huggingface.co/McGill-NLP/LLM2 Vec-Meta-
Llama-3-8B-Instruct-mntp

3https://github.com/huggingface/peft

“https://huggingface.co/datasets/wikimedia/wikipedia
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Categories — Retr. Rerank. Clust. PairClass. Class. STS Avg

# of datasets — 3 2 3 1 3 3 15
LLaMA3.2-1B

Base Model 51.17 66.08  37.23 9376 69.70 81.85 63.05

UniMAE + SimCSE ~ 53.95 67.17 3845 94.57 7041 84.00 64.62
LLaMA3.2-3B

Base Model 50.77 66.18  40.69 88.89  67.53 79.81 6251

UniMAE + SimCSE ~ 56.24 69.32 4023 9425 70.28 83.50 65.58
LLaMA3.1-8B

Base Model 53.07 67.19  40.21 95.04 6942 8244 64.32

UniMAE + SimCSE ~ 57.93 70.67  42.65 96.13 70.77 84.51 67.00

Table 4: Results on MTEB-15 after supervised contrastive learning.

of LLMs. Many studies have proven that fine-
tining supervised contrastive learning data can fur-
ther improve the performance of LLMs on embed-
ding tasks. To see whether our method can fur-
ther improve the performance under supervised
settings, we collect open-sourced supervised con-
trastive learning data to train the base model and
model trained using UniMAE + SimCSE. We fol-
low the setting of BGE-ICL (Li et al., 2024), which
also does not modify the model architecture, using
[EOS] embedding as the sentence embedding for
contrastive learning. We use the official training
code of BGE-ICL . Data can be found here 6. For
base models and models trained using UniMAE +
SimCSE, we both use the [EOS] embedding of the
last transformer layer as the sentence embedding to
conduct supervised contrastive learning. We train
each model for 4000 steps with a global batch size
of 64 samples. The max length of each text is set
to 512. We use the Peft package with LORA (Hu
et al., 2021) adapter to train the models. The learn-
ing rate is le — 4 and we use a constant learning
rate scheduler.

The result can be found in table 4. It demon-
strates that our approach not only directly enhances
the base model’s capabilities but also shows im-
proved performance after additional contrastive
learning compared to the original base model.

E Language Model Evaluation

We use the Im-evaluation-harness package (Gao
et al., 2021a) to evaluate the LLMs on 10 down-
stream tasks: ARC-E (Clark et al., 2018), LAM-
BADA (Paperno et al., 2016), LogiQA (Liu et al.,
2020), PIQA (Bisk et al., 2020), SciQ (Welbl et al.,
2017), and WinoGrande (Sakaguchi et al., 2021),

Shttps://github.com/FlagOpen/FlagEmbedding
Shttps://huggingface.co/datasets/cfli/bge-full-data

HellaSwag (Zellers et al., 2019), ARC-C (Clark
et al., 2018)), Natural Questions (Kwiatkowski
et al., 2019), MMLU (Hendrycks et al., 2021). We
keep a zero-shot setting for each task.

F E-commerce Domain Post-training

In the E-commerce domain, the pre-training dataset
consists of approximately 100 billion tokens (Due
to the principle of anonymity, we cannot disclose
the specific platform). To maintain a certain level
of general capability for the LLM, we incorporated
a substantial amount of open-source data, with
domain-specific data accounting for 25% of the
total. This domain-specific data mainly includes
ASR and OCR from product live streams and short
videos, user comments, and textual information
about the products themselves. We set py,qr = 0,
Pmre = 0.5, @ = 1, where MAR has already de-
graded into AR. This is because: 1. we need to
enhance the model’s overall domain knowledge.
2. The downstream representation tasks only in-
volve retrieval and classification, while MAR offers
greater improvements for STS and clustering tasks.

The testing scenarios primarily focus on gover-
nance within the E-commerce Platform, with the
ultimate goal of determining whether a given sam-
ple violates the platform’s regulatory guidelines.
The tasks can be categorized into three main types.
The language model task primarily involves gen-
erative QA, where for each sample, the model is
directly asked whether it violates a specific set of
regulations. The retrieval task focuses on identify-
ing samples that share the same type of violation
as a given problematic sample. The classification
task involves using a large language model (LLM)
to offline extract text representations of a sample,
which serve as input for a classification head to
categorize the sample’s violations.
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G Full Result

Table 5 and table 6 shows the detailed scores of
models trained with UniMAE and UniMAE + Sim-
CSE on all of the 56 MTEB datasets.
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Task | LLaMA3.2-1B  LLaMA3.2-3B  LLaMA3.1-8B

AmazonCounterfactualClassification. 76.58 80.66 75.01
AmazonPolarityClassification. 78.49 74.89 76.79
AmazonReviewsClassification. 40.26 39.98 40.34
ArguAna. 48.28 50.38 53.87
ArxivClusteringP2P. 45.54 46.99 47.45
ArxivClusteringS2S. 34.58 36.62 38.63
AskUbuntuDupQuestions. 55.73 57.02 55.00
BIOSSES. 79.97 84.28 85.12
Banking77Classification. 74.76 79.21 76.55
BiorxivClusteringP2P. 36.41 35.89 35.86
BiorxivClusteringS2S. 26.53 26.61 29.71
CQADupstackTexRetrieval. 18.02 18.95 17.59
ClimateFEVER. 21.99 19.03 22.36
DBPedia. 26.13 22.56 23.78
EmotionClassification. 44.82 48.18 42.86
FEVER. 40.32 35.14 37.44
FiQA2018. 24.50 26.62 25.70
HotpotQA. 43.58 49.07 50.59
ImdbClassification. 70.94 74.79 74.78
MSMARCO. 21.33 20.29 19.64
MTOPDomainClassification. 92.25 93.61 93.58
MTOPIntentClassification. 73.41 74.20 71.03
MassivelntentClassification. 70.48 70.32 68.05
MassiveScenarioClassification. 74.79 75.03 74.79
MedrxivClusteringP2P. 29.50 26.77 29.28
MedrxivClusteringS2S. 22.85 23.61 25.98
MindSmallReranking. 29.92 29.14 3291
NFCorpus. 26.40 28.92 28.06
NQ. 3342 32.80 33.70
QuoraRetrieval. 80.71 81.28 82.67
RedditClustering. 43.36 43.28 48.13
RedditClusteringP2P. 58.50 59.13 60.81
SCIDOCS. 12.70 12.43 13.51
SICK-R. 71.41 67.37 68.52
STS12. 59.38 60.37 58.89
STS13. 75.44 75.00 73.64
STS14. 68.58 69.69 70.45
STS15. 78.73 79.10 78.93
STS16. 76.94 78.43 75.52
STS17. 83.87 80.87 83.13
STS22. 63.52 63.75 64.68
STSBenchmark. 73.52 71.77 75.59
SciDocsRR. 72.72 74.21 78.48
SciFact. 63.71 65.22 66.17
SprintDuplicateQuestions. 81.65 90.50 87.58
StackExchangeClustering. 57.92 63.54 63.80
StackExchangeClusteringP2P. 32.58 33.96 33.36
StackOverflowDupQuestions. 43.68 45.80 44.58
SummEval. 29.93 29.25 30.40
TRECCOVID. 44.99 40.94 44.71
Touche2020. 11.16 10.19 10.74
ToxicConversationsClassification. 69.44 72.38 69.21
TweetSentimentExtractionClassification. 60.38 58.43 58.90
TwentyNewsgroupsClustering. 34.79 32.05 40.71
TwitterSemEval2015. 61.70 60.61 62.45
TwittertURLCorpus. 84.37 83.82 84.65
AVG \ 52.81 53.30 53.87

Table 5: Unsupervised results of UniMAE transformed models on MTEB.
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Task ‘LLaMA3.2—lB LLaMA3.2-3B LLaMA3.1-8B

AmazonCounterfactualClassification 72.39 78.01 67.97
AmazonPolarityClassification 76.94 79.38 77.04
AmazonReviewsClassification 37.80 40.27 40.27
ArguAna 41.26 49.76 52.12
ArxivClusteringP2P 47.43 48.03 49.04
ArxivClusteringS2S 39.29 40.66 45.22
AskUbuntuDupQuestions 57.32 59.21 59.41
BIOSSES 83.21 85.32 87.23
Banking77Classification 78.85 81.68 79.57
BiorxivClusteringP2P 37.60 3543 36.64
BiorxivClusteringS2S 33.39 33.62 34.74
CQADupstackTexRetrieval 16.13 21.40 19.48
ClimateFEVER 15.81 19.54 22.67
DBPedia 24.52 24.85 29.53
EmotionClassification 48.30 50.47 45.34
FEVER 24.78 37.28 55.28
FiQA2018 23.43 27.64 28.81
HotpotQA 33.02 46.53 53.72
ImdbClassification 74.79 77.36 76.43
MSMARCO 16.98 19.99 21.56
MTOPDomainClassification 93.54 94.85 93.28
MTOPIntentClassification 70.46 75.96 71.61
MassivelntentClassification 71.56 71.67 70.35
MassiveScenarioClassification 76.89 78.67 77.22
MedrxivClusteringP2P 30.06 29.83 30.58
MedrxivClusteringS2S 29.34 28.56 30.46
MindSmallReranking 32.83 31.90 33.36
NFCorpus 27.36 31.99 27.99
NQ 27.32 30.93 31.83
QuoraRetrieval 85.61 85.71 85.97
RedditClustering 54.29 57.34 57.39
RedditClusteringP2P 57.13 59.43 61.87
SCIDOCS 14.53 15.74 16.89
SICK-R 73.99 70.22 72.73
STS12 65.70 63.51 62.53
STS13 81.08 79.88 79.11
STS14 75.14 74.36 74.75
STS15 83.15 82.50 81.50
STS16 81.18 81.66 80.75
STS17 88.88 86.53 85.55
STS22 55.87 61.67 58.93
STSBenchmark 81.32 79.68 78.99
SciDocsRR 80.06 80.85 84.22
SciFact 61.10 65.41 67.24
SprintDuplicateQuestions 85.35 91.35 88.71
StackExchangeClustering 66.02 68.15 71.84
StackExchangeClusteringP2P 32.44 33.70 33.75
StackOverflowDupQuestions 46.71 49.69 50.67
SummEval 30.14 30.33 29.80
TRECCOVID 51.78 52.27 51.29
Touche2020 9.45 12.26 13.27
ToxicConversationsClassification 69.14 71.11 67.81
TweetSentimentExtractionClassification 60.45 59.74 58.39
TwentyNewsgroupsClustering 48.39 46.73 55.11
TwitterSemEval2015 65.35 65.59 67.52
TwitterURLCorpus 83.42 85.75 84.24
Average \ 54.11 56.11 56.60

Table 6: Unsupervised results of UniMAE+SimCSE transformed models on MTEB.
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