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Abstract

Mitigating entity bias is a critical challenge in
Relation Extraction (RE), where models often
rely excessively on entities, resulting in poor
generalization. This paper presents a novel ap-
proach to address this issue by adapting a Vari-
ational Information Bottleneck (VIB) frame-
work. Our method compresses entity-specific
information while preserving task-relevant fea-
tures. It achieves state-of-the-art performance
on relation extraction datasets across general,
financial, and biomedical domains, in both in-
domain (original test sets) and out-of-domain
(modified test sets with type-constrained en-
tity replacements) settings. Our approach of-
fers a robust, interpretable, and theoretically
grounded methodology.1

1 Introduction

Relation Extraction (RE) aims to identify and clas-
sify semantic relationships between entities in text.
For example, to identify an “investor” relationship
between the entities “Microsoft” and “OpenAI” in

“Microsoft invests $10 billion in ChatGPT maker
OpenAI”. By extracting structured relational in-
formation from unstructured data, RE serves as a
critical enabler for downstream tasks such as knowl-
edge graph construction (Distiawan et al., 2019),
question answering (Li et al., 2019), and retrieval-
augmented generation (Lewis et al., 2020).

While large language models (LLMs), such as
LLaMA (Touvron et al., 2023) and GPT-4 (OpenAI,
2023), have been explored for RE tasks (Wei et al.,
2024; Li et al., 2023a; Zhang et al., 2023b), fine-
tuned pretrained language models (PLMs) achieve
state-of-the-art performance (Gutiérrez et al., 2022;
Li et al., 2023b; Zhang et al., 2023a; Wan et al.,
2023), particularly in specialized domains like
biomedicine (Gutiérrez et al., 2022) and finance (Li
et al., 2023b).

∗Work done during an internship at JPMorgan AIR
1Code available upon request

Figure 1: Microsoft, the subject entity s and OpenAI
the object entity o are both mapped into stochastic en-
codings z(s) and z(o) via VIB. The learned variance of
the distribution control the variability to reduce bias.

Despite their success, PLMs often suffer from en-
tity bias (Zhang et al., 2017a), where models overly
rely on entity-specific information rather than con-
textual or relational cues. To mitigate the bias,
previous work has explored various solutions, in-
cluding entity masking (Zhang et al., 2017a, 2018),
contrastive pre-training (Peng et al., 2020), coun-
terfactual analysis (Wang et al., 2022, 2023b) and
generation (Modarressi et al., 2024).

The current state-of-the-art method is a Struc-
tured Causal Model (SCM) (Wang et al., 2023a)
that reduces entity bias by constructing a convex
hull around an entity’s neighbors and using its cen-
ter to replace the entity embeddings. In contrast
to SCM, we draw parallels with variational infor-
mation bottleneck (VIB) (Alemi et al., 2022) and
propose adapting VIB to map entities to a proba-
bilistic distribution N (µ, σ), where the variance σ2

explicitly quantifies the model’s reliance on entities
versus contextual cues. For example, in Fig. 1, the
entity Microsoft is mapped into a tighter distribu-
tion compared to OpenAI. The larger distribution
for OpenAI indicates that the model knows less
about it. This helps to debias entities by preventing
overconfident assumptions while relying more on
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the context. Thus this approach not only mitigates
entity bias but also enhances interpretability.

Our contributions are as follows:
• We propose a novel method for relation ex-

traction, a principled, interpretable, variational
framework to reduce entity bias in PLMs, specif-
ically RoBERTa-Large (Liu et al., 2019) and
LUKE-Large (Yamada et al., 2020).

• We demonstrate the presence of entity bias in
both financial and biomedicine relation extrac-
tion domains and compare it with the general
domain.

• Our method achieves state-of-the-art perfor-
mance on both general and specialized domains.

• Our approach’s interpretability is shown through
variance analysis, where low variance reflects re-
liance on entity information, while high variance
indicates greater use of context.

2 Background

Several works address entity bias in RE through
diverse techniques. Entity masking (Zhang et al.,
2017a, 2018), forces models to focus more on con-
text by replacing entities with generic tokens (e.g.,
[subj-person]). Entity substitution approaches
have been explored to test robustness against entity-
based knowledge conflicts in question answering
(Longpre et al., 2021) and to mitigate factual bias in
document-level RE (Modarressi et al., 2024). Peng
et al. (2020) propose to mask entity mentions dur-
ing pre-training to encourage models to focus on
context and type information. Wang et al. (2022)
perform counterfactual analysis on a causal graph,
to guide models to focus on context without los-
ing entity information. The current SOTA method
(Wang et al., 2023a) proposes to perturb original
entities with neighboring ones to reduce biasing
information while preserving context.

Several studies have introduced bias mitigation
techniques for black-box large language models
(LLMs) that do not require full access to the un-
derlying models (e.g., GPT-4). For instance, Li
et al. (2024) demonstrated that LLMs often rely
on shortcuts, such as semantic associations or in-
herent entity biases. Wang et al. (2023a) proposed
using an LLM to identify neighboring entities to
debias target entities during inference. Similarly,
Zhou et al. (2023) showed that employing opinion-
based prompts and counterfactual demonstrations
can enhance an LLM’s contextual faithfulness. In
addition, Zhang et al. (2024) introduced a causal

prompting framework leveraging front-door adjust-
ment to mitigate biases, while Wu et al. (2024)
developed a method for debiasing chain-of-thought
reasoning through causal interventions.

Our approach follows the whitebox settings
for PLMs. Different from current SOTA
method (Wang et al., 2023a), we debias entities
through a probabilitic framework, allowing us to
estimate the extent to which we use entity versus
contextual information.

3 Variational Approach

Our goal is to learn a latent representation Z that
preserves the semantic meaning of the input word
embeddings X , while minimizing the influence of
entity information E. The variational approach
(VIB) (Alemi et al., 2022) provides a principled
method to achieve this through the mutual informa-
tion I(X;Z|E), defined as:2

I(X;Z|E) =

∫
dx dz de p(x, z, e) log

p(z|x, e)
p(z|e)

≤
∫

dx dz de p(x, z, e) log
p(z|x, e)
r(z|e)

where r(z|e) is a variational approximation to
p(z|e), inducing an upper bound on I(X;Z|E).
We can now interpret the upper bound as a KL di-
vergence (Kullback and Leibler, 1951), so that the
upper bound of I(X;Z|E) becomes the expected
KL divergence given by:

I(X;Z|E) ≤Ep(x,z,e)[KL(p(z|x, e)||r(z|e))]
=LVIB

This bound forms the basis of the VIB loss LVIB,
where the bottleneck is enforced by minimizing the
KL divergence, restricting p(z|x, e) to stay close to
r(z|e). In practice, p(z|x, e) is modelled as a Gaus-
sian distribution N (µ, σ), where the mean µ and
standard deviation σ are parametrized by single-
layer perceptrons (SLP) while r(z|e) is modelled
as a standard normal distribution N (0, I).

Compressing Entity Representations. Since
the goal is to limit entity-specific information in
Z while preserving the semantic meaning in X ,
VIB is applied selectively to entities using a binary
entity mask M that identifies the position of entity
tokens. To enable efficient and differentiable opti-
mization, we sample z be from N (µ, σ) using the

2In this work, X,Z,E,H are random variables, and
x, z, e, h are instances of these random variables.
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reparameterization trick (Kingma, 2013), that is,
z = µ + ϵ · σ and ϵ ∼ N (0, 1). σ helps control
how much information about the input is retained
in z. Smaller σ values lead to tighter, more de-
terministic representations, while larger σ values
encourage more stochastic exploration, which is es-
sential for mitigating entity bias and learning better
context-based representations.3

To encourage retaining the context of non-entity
tokens and reducing entity-specific details, we se-
lectively blend the original embeddings x with z
using M and a blending factor β. Non-entity to-
kens (M = 0) retain their original embeddings,
while entity tokens (M = 1) are represented as a
weighted combination of x and z.

x′ = x · (1−M) + x ·M · (1− β) + z ·M · β

This formulation ensures the final embeddings x′

reduce entity-specific details while preserving task-
relevant features.

Classification and Training Objective. Given
x′, we apply a pretrained PLM encoder to obtain
contextualized embeddings h = PLM(x′). We
then extract and concatenate the representations of
special tags [hs] and [ho] which mark the subject
and object entities, and feed this joint representa-
tion [hs;ho] to a fully connected layer and softmax
for classification. The total loss combines the cross-
entropy (CE) loss LCE for relation classification
and the VIB loss LVIB.

L = LCE + αLVIB

where α is an adaptive weight, computed as a ra-
tio between the CE and VIB loss. This ensures a
balanced contribution of both loss terms.

4 Experiments

We conduct experiments on three large rela-
tion extraction datasets: TACRED (Zhang et al.,
2017b) (general domain), REFinD (Kaur et al.,
2023) (financial domain) and BioRED (Luo et al.,
2022) (biomedical domain).4 Evaluation fol-
lows previous work (Wang et al., 2023a) using
entity_marker_punctuation (Zhou and Chen,
2022) to mark entities, and Micro-F1 as the metric
on both in-domain (ID) and out-of-domain (OOD)
test sets. Here, in-domain refers to data where en-
tities align with those in the train set, allowing for

3To ensure σ > 0, we apply a softplus activation function
on the raw ouput σ′ of the SLP, i.e., σ = softplus(σ′)

4Dataset statistics can be obtained from the original papers.

overlapping entity mentions. Meanwhile, out-of-
domain data where entities are replaced to elimi-
nate overlap with the train set. We generate OOD
test sets following the approach by Wang et al.
(2023c), using entities from Wikepedia dumps.5

We experiment with LUKE-Large (Yamada et al.,
2020) and RoBERTa-Large (Liu et al., 2019) as
PLM backbones.6

5 Main Results

The results in Table 1 highlight the performance of
LUKE-Large and RoBERTa-Large backbone mod-
els. We find that traditional methods like Entity
Masking (Zhang et al., 2017a) and Entity Substitu-
tion (Longpre et al., 2021) show underperformance,
highlighting the importance of retaining some in-
formation about the original entity. Both SCM
and VIB retain some information about the orig-
inal entity, leading to their stronger performance
compared to early methods.

For LUKE-Large in ID settings, VIB achieves
Micro-F1 scores: 70.4% on TACRED, 75.4% on
REFinD and 61.2% on BioRED, outperforming
SCM by about 1.8%, 0.9% and 2.9%, respectively.
Under entity-replaced conditions (OOD), VIB con-
sistently shows competitive or better performance
compared to SCM. Specifically, VIB achieves Mi-
cro F1 scores: 66.5% on TACRED, 74.8% on RE-
FinD, and 58.7% on BioRED, outperforming SCM
by about 1.7%, 1% and 5.3%, respectively. For the
RoBERTa-Large backbone, SCM and VIB achieve
comparable performance, with SCM slightly out-
performing VIB in OOD TACRED (67.5% vs.
67.2%) and OOD BioRED (52.5% vs. 52.5%).
VIB has an edge in ID and OOD REFinD, and ID
for both TACRED and BioRED.

Comparing the results of VIB across the back-
bones, LUKE’s knowledge-based entity representa-
tions appear to amplify VIB’s ability to effectively
balance the utilization of entities and context. This
highlights VIB’s strength in leveraging entity-rich
backbones for improved generalization, especially
in domain-specific datasets like REFinD.

5https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-
pages-articles.xml.bz2

6We adapted the source code provided by Wang
et al. (2023a) under the Apache-2.0 license. Source
code available at https://github.com/luka-group/
Causal-View-of-Entity-Bias/ Hyperparameters were
tuned for β in {0.1, 0.2 . . . , 1}, Learning rates in {1e-5, 1e-4,
1e-3}, using Adam as the optimizer. Best hyperparameter
β = 0.5 with learning rate lr = 1e-3. All experiments were
conducted on an AWS g5.24xlarge.
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TACRED REFinD BioRED

Method ID OOD ID OOD ID OOD

LUKE-Large (Yamada et al., 2020) 71.1±0.3 63.8±1.5 75.0±0.2 73.4±0.3 56.9±0.7 51.8±1.2

w/ Ent. Mask (Zhang et al., 2017a) 63.6±0.1 61.7±1.2 71.4±0.4 71.4±0.9 53.2±0.6 40.2±1.1

w/ Ent. Substitution (Longpre et al., 2021) 66.6±0.3 60.3±0.6 74.3±0.5 72.9±1.2 56.2±0.4 46.7±1.0

w/ SCM (Wang et al., 2023a) 68.6±0.2 64.8±0.4 74.5±0.6 73.8±0.6 58.3±1.7 53.4±1.7

w/ VIB (β = 0.5) 70.4±0.4 66.5±0.4 75.4±0.2 74.8±1.5 61.2±0.8 58.7±0.6

RoBERTa-Large (Liu et al., 2019) 70.8±0.1 61.5±0.9 75.1±0.2 72.7±0.1 57.7±1.9 47.9±2.3

w/ Entity Mask (Zhang et al., 2017a) 62.0±0.7 60.6±0.8 70.4±1.5 71.2±1.0 55.2±1.9 45.7±1.1

w/ Entity Substitution (Longpre et al., 2021) 67.1±0.3 61.2±1.1 73.5±0.9 71.9±0.2 56.9±1.1 46.8±3.7

w/ Structured Causal Model (Wang et al., 2023a) 70.5±0.6 67.5±0.3 74.9±1.0 73.7±1.1 57.3±3.3 52.5±3.3

w/ VIB (β = 0.5) 70.7±0.3 67.2±0.3 75.4±0.1 74.4±0.2 63.0±2.3 52.5±3.6

Table 1: Main Results: Micro-F1 scores of compared methods with the RoBERTa-Large and LUKE-Large
backbones on the TACRED, REFinD, and BioRED datasets, evaluated in both in-domain and out-of-domain settings.
Results are averaged over 3 runs, with standard deviations reported.

Var. Bin Prop. Dominant Relations (Correct Predictions / Total Gold)

L
U

K
E

-L
ar

ge
w

/V
IB

In-Domain

0.0-0.1 4.6% pers:title:title (43/71), org:gpe:headquartered_in (11/11), org:money:revenue_of (9/10)
0.1-0.2 85.8% pers:title:title (503/600), org:gpe:operations_in (419/536), pers:org:employee_of (329/352)
0.2-0.3 9.6% org:date:formed_on (73/78), org:gpe:operations_in (55/60), org:org:subsidiary_of (4/6)
0.3-0.4 0.1% org:date:formed_on (3/3)

Out-of-Domain

0.0-0.1 13.2% pers:title:title (59/107), pers:org:employee_of (49/89), org:gpe:operations_in (19/30)
0.1-0.2 82.8% pers:title:title (463/564), org:gpe:operations_in (433/550), pers:org:employee_of (259/283)
0.2-0.3 3.8% org:date:formed_on (66/68), org:gpe:operations_in (22/25), pers:org:employee_of (2/2)
0.3-0.4 0.2% org:date:formed_on (8/8)

R
oB

E
R

Ta
-L

ar
ge

w
/V

IB

In-Domain

0.0-0.1 13.9% pers:title:title (476/479), pers:org:employee_of (31/40), org:gpe:operations_in (12/14)
0.1-0.2 43.4% pers:org:employee_of (287/297), org:gpe:operations_in (280/332), pers:title:title (75/181)
0.2-0.3 35.0% org:gpe:operations_in (157/222), pers:org:employee_of (34/37), org:org:agreement_with (24/74)
0.3-0.4 6.4% org:date:formed_on (57/60), org:gpe:operations_in (25/34), org:org:subsidiary_of (5/10)
0.4-0.5 1.0% org:date:formed_on (15/15), org:gpe:headquartered_in (1/1), org:gpe:operations_in (1/2)
0.5-0.6 0.1% org:date:formed_on (1/1), org:gpe:operations_in (1/1), org:org:subsidiary_of (1/1)

Out-of-Domain

0.0-0.1 15.0% pers:title:title (424/442), pers:org:employee_of (49/75), org:gpe:operations_in (33/40)
0.1-0.2 56.3% org:gpe:operations_in (299/397), pers:org:employee_of (254/277), pers:title:title (102/221)
0.2-0.3 24.8% org:gpe:operations_in (114/151), pers:org:employee_of (19/21), org:date:formed_on (16/20)
0.3-0.4 3.2% org:date:formed_on (53/55), org:gpe:operations_in (12/17), org:money:revenue_of (1/2)
0.4-0.5 0.7% org:date:formed_on (12/12), no_relation (0/0), org:org:shares_of (0/4)
0.5-0.6 0.0% org:date:formed_on (1/1)

Table 2: Variance analysis of REFinD ID and OOD test sets, categorized by variance bins (Var. Bin). The table
highlights the proportion of samples (Prop.) within each bin and identifies dominant relations based on correct
predictions versus total gold labels. Results are presented for both LUKE- and RoBERTa-Large w/VIB models.

5.1 Variance Analysis

During inference, σ is predicted by the learned SLP
that parameterizes the distribution N (µ, σ), with
variance computed as σ2. Variance σ2 reflects the
model’s reliance on entities versus context, where
low variance indicates stronger reliance on entities
and high variance reflects greater use of contextual
cues. We analyze Micro-F1 performance and data

distribution across in-domain and out-of-domain
settings on REFinD to understand this balance in
the financial domain.

Micro-F1 Distribution Across Variance Fig-
ure 2 illustrates VIB’s Micro-F1 scores for in-
domain and out-of-domain datasets. Samples are
grouped by ascending mean variance, where sub-
sets with lower percentages (e.g., 10%) corre-
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Figure 2: Micro-F1 scores across sample subsets (sorted
by variance) for ID and OOD on REFinD.

spond to the highest variance. For in-domain data,
the scores remain stable across subsets (75.7% to
71.9%), indicating that VIB effectively mitigates
entity bias while leveraging both entity and con-
textual information. In out-of-domain data, how-
ever, the sharper decline in Micro-F1 scores (74.0%
to 54.6%) indicates that while VIB reduces over-
reliance on entities by mapping entities into distri-
butions of high variances, contextual signals may
not always provide strong predictive cues. This un-
derscores the importance of robust context-entity
interaction for generalization.

Data Distribution Across Variance In Ta-
ble 2, we group instances into bins based on
mean variance - average variance across entity
tokens. Each bin reports the proportion of sam-
ples, and the dominant relations, highlighting
the most accurately predicted relations. The re-
sults highlight VIB’s ability to balance entity and
contextual information while adapting to vary-
ing data distributions in in-domain and out-of-
domain settings. For in-domain data, most sam-
ples (85.8%) fall into the 0.1–0.2 variance bin,
dominated by relations like pers:title:title
and org:gpe:operations_in, with smaller pro-
portions in lower (0.0–0.1, 4.6%) and moder-
ate (0.2–0.3, 9.6%) variance bins. This concen-
trated distribution explains the stability of Micro-
F1 scores observed in the bar graph, as remov-
ing high-variance samples has minimal impact
on performance. In contrast, out-of-domain data
shifts more samples into the lowest variance bin
(0.0–0.1, 13.2%), reflecting stronger reliance on
entities; however, entity replacements disrupt pre-
dictive utility, leading to lower performance in the
bar graph. Additionally, sparsely populated high-
variance bins (e.g., 0.2–0.3, 3.8%) correspond to
sharp performance drops (e.g., 30%–10%), high-

lighting challenges with relying on context alone
and the need for stronger contextual adaptability in
out-of-domain scenarios (see examples in A.2).

6 Conclusions

We proposed a novel robust, interpretable, and the-
oretically grounded method for mitigating entity
bias in relation extraction. We evaluated this ap-
proach on general and domain-specific datasets,
TACRED, REFinD and BioRED, and showed that
it achieves state-of-the-art results on each.

Limitations

In this study, we focus on the application of PLMs,
acknowledging that our work does not easily extend
to LLMs, which have become increasingly signifi-
cant in recent advancements. Future research will
aim to expand our VIB method to encompass gen-
erative models such as T5 and LLMs, potentially
uncovering new insights and applications.

Furthermore, our research is conducted solely
in the English language, which may limit its rele-
vance to non-English contexts. Language-specific
challenges and nuances could influence the perfor-
mance of PLMs, and future studies should consider
incorporating multiple languages to enhance the
generalizability and impact of our findings.
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A Appendix

A.1 Performance Across Different Relations

REFinD Table 3 shows a detailed compar-
ison of SCM and VIB performance across
multiple relations in REFinD, evaluated in
both ID and OOD settings. VIB outper-
forms SCM in many cases, particularly for
relations like org:org:agreement_with and
pers:org:member_of, where contextual cues
are critical, demonstrating its ability to ef-
fectively balance entity and context. For
high-frequency relations such as no_relation
and org:gpe:operations_in, VIB also shows
slight but consistent improvements. How-
ever, SCM often matches or outperforms
VIB on relations like org:money:loss_of and
org:gpe:headquartered_in. While both meth-
ods achieve comparable overall performance, VIB
provides the added advantage of quantifying the re-
liance on entity versus context information, making
it more insightful for understanding model behav-
ior.
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TACRED Table 4 compares SCM and VIB
performance on TACRED in both ID and
OOD settings, across various relation types.
While SCM excels in high-frequency rela-
tions like no_relation and per:title, VIB
consistently outperforms SCM in challeng-
ing relations such as per:employee_of and
org:top_members/employees, particularly under
entity replacement in OOD. VIB’s strength lies in
leveraging contextual information effectively when
entity reliability diminishes. For rare relations
like per:city_of_death and org:dissolved,
VIB often surpasses SCM, though both meth-
ods struggle with extremely sparse relations like
org:shareholders. Overall, VIB demonstrates
strong generalization under entity replacement,
making it a robust approach for mitigating entity
bias while maintaining competitive performance
across diverse relations.

REFinD-ID REFinD-OOD

Relation SCM VIB SCM VIB

no_relation 85.01 86.91 85.01 86.91
pers:title:title 77.79 77.79 77.79 77.79
org:gpe:operations 76.20 78.35 76.20 78.35
pers:org:employee 93.05 82.89 93.05 82.89
org:org:agrmnt 26.95 35.46 26.95 35.46
org:date:formed 86.32 87.37 86.32 87.37
pers:org:member 9.47 15.79 9.47 15.79
org:org:subsidiary 38.55 49.40 38.55 49.40
org:org:shares 27.87 6.56 27.87 6.56
org:money:revenue 74.47 82.98 74.47 82.98
org:money:loss 96.77 90.32 96.77 90.32
org:gpe:headqtr 79.31 79.31 79.31 79.31
org:date:acquired 54.17 37.50 54.17 37.50
pers:org:founder 40.00 30.00 40.00 30.00
org:gpe:formed 23.53 64.71 23.53 64.71
pers:univ:employee 58.33 66.67 58.33 66.67
org:org:acquired 18.18 0.00 18.18 0.00
pers:gov:member 12.50 0.00 12.50 0.00
pers:univ:attended 85.71 85.71 85.71 85.71
org:money:profit 80.00 80.00 80.00 80.00
pers:univ:member 60.00 40.00 60.00 40.00
org:money:cost 75.00 0.00 75.00 0.00

Table 3: LUKE-Large Performance of SCM and VIB
models on various relations within the REFinD dataset,
evaluated in both in-domain and out-of-domain settings.
Relations are ordered by their frequency in the dataset,
with the most frequent at the top (i.e., no_relation).
Bolded values indicate the best performance for a rela-
tion in either ID or OOD settings.

A.2 Mask Experiment Vrs Variance Analysis

The mask experiment, as proposed by (Sun et al.,
2019), evaluates token-level relevance by measur-
ing the contribution of individual tokens to the

TACRED-ID TACRED-OOD

Relation SCM VIB SCM VIB

no_relation 93.71 92.61 93.60 92.26
per:title 94.20 89.60 93.90 92.20
org:top_memb/empl 80.64 82.66 74.28 76.30
per:employee 53.41 71.59 38.64 55.30
org:alt_names 91.08 91.55 80.75 78.87
per:age 96.00 95.50 97.63 97.63
per:cities_res 48.68 57.14 40.31 54.26
per:countries_res 5.41 43.92 5.77 48.08
per:origin 65.91 48.48 65.79 54.39
org:country_of_hq 37.04 58.33 30.84 38.32
per:charges 88.35 93.20 91.25 91.25
per:parents 79.55 79.55 79.52 78.31
org:city_hq 73.17 67.07 67.07 65.85
per:state_res 49.38 59.26 45.61 49.12
org:founded_by 86.76 85.29 82.35 80.88
per:spouse 50.00 78.79 46.77 75.81
org:parents 35.48 43.55 20.97 24.19
per:other_fam 51.67 51.67 58.82 56.86
per:siblings 67.27 76.36 72.55 76.47
per:date_death 18.52 44.44 23.08 58.97
per:cause_death 40.38 48.08 42.50 50.00
org:state_hq 76.47 74.51 74.51 72.55
per:religion 42.55 40.43 51.61 48.39
org:subsidiaries 40.91 45.45 36.36 34.09
org:founded 83.78 83.78 86.11 80.56
per:children 40.54 43.24 40.63 50.00
org:members 0.00 0.00 0.00 3.23
per:sch_attended 60.00 83.33 46.67 70.00
per:city_death 0.00 39.29 0.00 52.17
org:website 84.62 84.62 41.67 79.17
org:num_empl/memb 68.42 57.89 70.59 54.90
org:member 0.00 0.00 0.00 0.00
per:state_death 0.00 42.86 0.00 42.42
org:shareholders 0.00 0.00 0.00 0.00
per:alt_names 27.27 18.18 21.21 6.06
org:pol/relig_affil 40.00 40.00 48.15 44.44
per:date_birth 77.78 77.78 75.00 75.00
per:country_death 0.00 0.00 0.00 0.00
per:state_birth 25.00 50.00 27.78 50.00
per:country_birth 0.00 20.00 0.00 26.67
per:city_birth 20.00 40.00 20.00 40.00
org:dissolved 0.00 50.00 0.00 50.00

Table 4: Luke-Large Performance of models SCM and
VIB on various relations within TACRED dataset, eval-
uated in both in-domain and out-of-domain settings. Re-
lations are ordered by their frequency in the dataset, with
the most frequent at the top (i.e., no_relation). Bolded
values indicate the best performance for a relation in
either ID or OOD settings.

final relation representation, effectively visualiz-
ing the model’s attention patterns. Complemen-
tary to this, variance analysis provides a quanti-
tative measure of reliance on entity or contextual
information, where low variance indicates strong
reliance on entity tokens and high variance re-
flects greater dependence on contextual cues. As
demonstrated in Figure 3, entities in relations like
pers:org:employee_of exhibit low mean vari-
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Figure 3: Visualization of attention and prediction results for VIB. Subject and object entities are marked with
@ and # respectively. Low mean variance indicates strong reliance on entity tokens, while high mean variance
reflects a shift toward contextual cues. Highlighted tokens show entity-focused attention, visualized using the mask
method (Sun et al., 2019)

ance (e.g., 0.108), aligning with the mask experi-
ment’s focus on entity tokens such as “@Brenda
Snipes@” and “#Prosper Funding LLC#”. Con-
versely, for relations like org:date:formed_on,
higher mean variance (e.g., 0.2254 and 0.3217) sug-
gests greater reliance on context, consistent with
the mask experiment, where contextual words like
“incorporated” contribute prominently. This align-
ment between variance analysis and the mask ex-
periment highlights the model’s ability to balance
entity and contextual cues, reinforcing interpretabil-
ity.
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