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Abstract

Dyslexia, a common learning disability, re-
quires an early diagnosis. However, current
screening tests are very time- and resource-
consuming. We present an LSTM that aims to
automatically classify dyslexia based on eye
movements recorded during natural reading
combined with basic demographic information
and linguistic features. The proposed model
reaches an AUC of 0.93 and outperforms the
state-of-the-art model by 7 %. We report sev-
eral ablation studies demonstrating that the fix-
ation features matter the most for classification.

1 Introduction

One of the most common learning disabilities is
dyslexia, a difficulty that specifically affects read-
ing and spelling in individuals with otherwise intact
cognitive abilities. The prevalence of dyslexia is es-
timated to be between 9% and 12% (Katusic et al.,
2001; Shaywitz et al., 1998). Early diagnosis is the
key factor for getting the needed support and stay-
ing on track in the educational system (Glazzard,
2010; Torgesen, 2000; Vellutino et al., 2004).

There are various testing batteries for dyslexia,
but most must be administered one-on-one by a
trained specialist, who is not always present at
school. Moreover, such batteries are still often eval-
uated using paper-and-pencil methods, which are
time-consuming and error-prone. Without a cheap,
fast, and reliable mass testing method, the only
way to get proper support for a struggling reader
is through the educator, who may notice reading
difficulties and recommend additional testing.

For mass screening, data should be quick and af-
fordable to obtain. Automatic classification based
on (f)MRI and ERP recordings, while suitable from
the machine learning perspective, does not fit this
criterion. Eye tracking technology is more promis-
ing: It provides a rich signal, is unobtrusive, and
is growing cheaper. Research on dyslexia and

eye movements has a long history. Attempts to
tie dyslexia to some characteristics of eye move-
ments go at least as far back as 1980s (Olson et al.,
1983; Pavlidis, 1981; Rayner, 1985). Since then, it
has been established that the underlying deficit in
dyslexia lies not in oculomotor control but rather
in phonological decoding (International Dyslexia
Association, 2024). Given that eye movements re-
flect phonological decoding in beginner and adult
readers (Rayner et al., 1995, 1998; Blythe, 2014;
Leinenger, 2019; Milledge and Blythe, 2019), in-
ferring dyslexia from eye movements is strongly
theoretically motivated.

Several machine-learning solutions based on
eye movements have been proposed for the mass
screening for dyslexia (Asvestopoulou et al., 2019;
Nilsson Benfatto et al., 2016; Haller et al., 2022;
Jothi Prabha and Bhargavi, 2022; Raatikainen et al.,
2021; Rello and Ballesteros, 2015; Shalileh et al.,
2023). Yet almost all of these models were trained
on very modest samples of 61 (Asvestopoulou et al.,
2019) to 185 participants (Nilsson Benfatto et al.,
2016). This paper presents a comparison of two
models that aim to automatically classify dyslexia
on a large dataset comprising eye-movements while
reading from 293 young readers of different ages.

1.1 Problem Setting

Inferring whether a child has dyslexia is a binary
classification task, and the model’s performance
can be characterized by a false positive and a true
positive rate. By altering the decision threshold,
one can observe a receiver operator characteristic
curve (ROC curve). The area under the ROC curve
(AUC) provides an aggregated measure of perfor-
mance for all possible classification thresholds.
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2 Experiments

2.1 Eye-movement data

The cross-sectional dataset contains eye move-
ments while reading in 293 native speakers of Rus-
sian, from the 1st to the 6th grade (published by
Shalileh et al. 2023). In Russia, grades 1 through
4 correspond to primary school, and grades 5 and
6 – to secondary school. Based either on a read-
ing assessment or a speech therapist assessment,
children were classified as typically developing
(N = 221) or having developmental dyslexia
(N = 72). Among children with dyslexia, 43 re-
ceived their diagnosis based on reading assessment,
and 29–based on therapist assessment. Reading
assessment was based on the Standardized Assess-
ment of Reading Skills test (SARS, Kornev and
Ishimova 2010) and recent normative cut-offs re-
ported by ?. SARS requires a test-taker to read a
short text aloud as quickly and as accurately as pos-
sible. The number of words read accurately in the
first minute is taken as a measure of reading fluency.
If a child scores at least 1.5 standard deviations be-
low their corresponding age mean, a dyslexia label
is assigned. Speech therapist assessment is based
on a phonological test battery. Note that there are
children with dyslexia (diagnosis based on a phono-
logical assessment) whose reading speed is higher
than that of some age-matched children in the con-
trol group.

All children had nonverbal intelligence scores
within the normal range. The typically-developing
children had age-appropriate reading fluency and
comprehension. Their parents or primary caretak-
ers reported no history of reading disorders. The
detailed composition of both groups can be found
in Table 1.

2.2 Reading materials

All children were asked to read the same set of 30
sentences comprising the Child Russian Sentence
Corpus (Lopukhina et al. 2022). Sentence difficulty
was at the level of 3rd to 4th grade, according to an
automatic text difficulty measurement developed
for Russian (Laposhina and Lebedeva, 2021), and
estimated to be 7.42 on the Flesch-Kincaid scale
adapted to Russian (Readability Test). Sentences
were six to nine words long (M = 7.6, SD =
0.85). In total, children read 227 words, which
contained 182 unique word forms (as words could
be repeated across sentences). Individual words
were on average 5.6 letters long (range 1–13), and

had average lemma frequency of 50.29 items per
million (median: 0.73, range: 0.0001− 667). The
frequency was calculated from the sub-corpus of
texts for children of the years 1920–2015 of the
Russian National Corpus.

Since Russian is a morphologically rich lan-
guage, and morphological composition of a word
affects its reading time, the number of morphemes
comprising each word was annotated. The anno-
tation was first done by an automated parser and
then reviewed by a trained linguist. Finally, each
word’s predictability was estimated using an online
cumulative cloze task with 46 children who did not
participate in the eye-tracking study. Predictabil-
ity was measured as the number of correct guesses
divided by the total number of guesses. Zero prob-
abilities were replaced with 1

2×46 , where 46 is the
number of guesses for the word.

For a more detailed description of the dataset
and reading materials, see Lopukhina et al. 2022.

2.3 Reference method

As a baseline, we use a state-of-the-art (SOTA)
SVM-RFE with a linear kernel described and im-
plemented by Haller et al. (2022). This approach
was first proposed by Nilsson Benfatto et al. (2016),
who reported 96% accuracy on a balanced dataset.
As input, the SOTA model uses the means and stan-
dard deviations of 12 eye-movement features, such
as first fixation duration, first-pass reading time,
etc. (for the full list, refer to Haller et al. 2022).

Note that Haller et al. had a homogenous data set
of age-matched readers, and did not include age as
a predictor. Given that the present dataset includes
readers of different ages, we report the performance
of the SOTA model both without grade, for full
comparability with Haller et al.’s results, and with
grade, for a fairer comparison.

2.4 Proposed model

The model introduced by Haller et al. relied on
aggregated reading measures. This aggregation,
however, results in the loss of significant temporal
and word-level information. We address this limi-
tation by employing a sequential method—namely,
LSTMs (Hochreiter and Schmidhuber, 1997)—to
preserve and leverage temporal information. As
demonstrated by previous studies (Ahn et al., 2020;
Reich et al., 2022), this choice effectively cap-
tures the temporal dynamics necessary for eye-
movement classification.
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Table 1: Demographic and cognitive characteristics of both participant groups, organized by grade. Values before
the slash (“/”) represent the control group, while those after the slash correspond to participants with dyslexia.

Grade 1 2 3 4 5 6
(N=50/8) (N=40/10) (N=37/20) (N=39/28) (N=31/6) (N=24/0)

Gender
Female: N (%) 22 (44%) / 2 (25%) 24 (60%) / 2 (20%) 19 (51%) / 12 (60%) 18 (46%) / 9 (32%) 12 (39%) / 2 (33%) 10 (42%) / -

Age
Mean ± SD 7.320.51 / 7.250.46 8.350.48 / 8.400.84 9.300.46 / 9.300.57 10.180.56 / 10.250.59 11.290.78 / 11.170.41 12.000.59 / -

Nonverbal
intelligence

Mean ± SD 29.883.99 / 29.754.74 31.003.23 / 29.003.74 31.243.50 / 31.405.75 31.903.59 / 32.143.33 32.812.12 / 28.504.85 33.172.39 / -
Reading
speed (wpm)

Mean ± SD 63.8027.06 / 17.388.52 79.017.54 / 30.7010.68 95.5713.93 / 52.2020.48 119.2820.67 / 57.5022.29 122.4829.38 / 56.5016.60 124.6223.50 / -

Our proposed model’s input is a participant’s
fixation sequence on a sentence. Each input vector
consists of basic demographic information, gaze-
specific, and linguistic features:

(i) Demographic features: participant’s age, grade,
and gender. Age and grade are relevant for classi-
fication because reading skills in primary school
are noticeably different between grades, and many
reading evaluations are normed for a certain age
(grade). Participant’s gender is important from
a clinical perspective. Boys are diagnosed with
dyslexia more often than girls: the male-to-female
sex ratio ranges from about 3:1 to 5:1 in self-
identified samples, and from 1.5:1 to 3.3:1 in ran-
dom samples. Arnett et al. (2017) claim that the
difference in dyslexia rates between sexes is valid
and is driven by lower and more variable process-
ing speed in boys.
(ii) Gaze-specific features: fixation duration, fix-
ation horizontal and vertical coordinates on the
screen, landing position on the word, next fixa-
tion distance, next saccade amplitude, next saccade
angle, next saccade velocity, and next saccade di-
rection. We used all fixation features available
through the eye movement recording device and
reasoned that the importance of different features
can be estimated through ablation studies.
(iii) Linguistic features: fixated word’s length in
letters, predictability and frequency (these features
explain most of the eye-movement variance, see
Kliegl et al. 2004; Shain 2019), as well as number
of morphemes comprising the word.

We choose an BiLSTM-based architecture,
where the mean of the hidden states is fed into
two sequential linear layers, projecting it down to a
single sigmoid output to represent the label predic-
tion. Optimized hyperparameters and search space
are reported in Appendix A.

3 Results

3.1 Model evaluation
The models are evaluated in two settings: predic-
tion of the reader’s status based on a single sentence
data (sentence prediction setting) or based on all
available reading data (reader prediction setting).
In the reader prediction setting, predictions for in-
dividual sentences are aggregated to produce the
final outcome. The motivation for introducing the
sentence prediction setting was to identify whether
some sentences serve as a better diagnostic mate-
rial than others, and to evaluate model precision
depending on the amount of input.

All models were evaluated and tuned using 10-
fold nested cross-validation and random grid search
(see Appendix A). Data from the same person is
always constrained to one fold, so that the models
always make predictions for unseen participants.
The ratio of persons with/without dyslexia is bal-
anced across all folds.1

3.2 Results
For all methods, we report AUC for reader- and
sentence-level settings (see Table 2). A visual
summary of ROC AUC performance can also be
found in Figure 1. Classification performance
in the reader-prediction setting was numerically
higher than in the sentence-prediction setting. How-
ever, according to an unpaired one-tailed t-test,
the difference between settings was not signif-
icant in any model (LSTM: t(15.55) = 1.22,
p = 0.12; SOTA+Grade: t(16.21) = 0.81, p =
0.21; SOTA-Grade: t(17.83) = 0.24, p = 0.41).
The SOTA model that included information on
grade performed numerically better, but the differ-
ence was not significant (reader prediction setting:
t(17.96) = 1.03, p = 0.16; sentence prediction
setting: t(16.64) = 0.71, p = 0.24). Importantly,
the proposed LSTM significantly outperformed

1All code is available online: https://github.com/
annlaurin/Rus_dyslex_classification
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the SOTA+Grade model in both reader-prediction
(t(12.146) = 2.12, p = 0.028) and sentence-
prediction settings (t(17.92) = 2.20, p = 0.021).

3.2.1 Ablation Studies

In the reader-prediction setting, we run additional
ablation studies, assessing model performance
without saccade-related measures (next fixation
distance, next saccade amplitude, angle, veloc-
ity, and direction), without linguistic information
(word length, frequency, predictability, and the
number of morphemes), without demographic in-
formation (age, grade, and gender), and without
all eye-movement features. In all ablation stud-
ies, AUC score was lower, but the decrease was
not significant except for the model without all
eye-movement features (LSTM-Saccade: t(14.70) =
0.95, p = 0.17; LSTM-Ling: t(17.80) = 0.06,
p = 0.47; LSTM-Demographic: t(16.14) = 1.66,
p = 0.058; LSTM-All eye movement: t(17.93) =
3.25, p = 0.002).

On average, children with dyslexia make more
fixations than normally developing children. To
evaluate whether the LSTM predictions are based
mainly on the input length, we reduced the number
of fixations to 29. The resulting AUC score did not
differ from the score obtained on the whole input
(t(18) = 0.20, p = 0.42).

Figure 1: Summary of model performance. SOTA
baseline model used grade information.

4 Discussion

The finding that the information on the grade of
the reader did not significantly improve the perfor-
mance of either model is rather surprising. In the
present dataset, at least in some cases, dyslexia was
diagnosed based on age-specific normative reading
speed cut-offs (see Section 2.1). Consequently, in-
formation about reader’s grade should be crucial for

AUC

R
ea

de
r

SOTA 0.86±0.10

SOTA-Grade 0.81±0.11

LSTM 0.93±0.05

LSTM-Ling 0.92±0.05

LSTM-Saccade 0.91±0.07

LSTM-Demographic 0.90±0.06

LSTM29 fixations 0.93±0.04

LSTM-All eye movement 0.87±0.04

Se
nt

en
ce SOTA 0.83±0.07

SOTA-Grade 0.80±0.10

LSTM 0.90±0.07

Table 2: Summary of AUC ± standard error in the
reader- and sentence-prediction settings.

the classification performance. Grade-invariant per-
formance might reflect that the model has captured
some invariant property of the eye movements of
readers with dyslexia. For the SOTA model trained
exclusively on aggregated features, we consider
this explanation unlikely. For the LSTM trained on
a sequence of fixations, this explanation is more
likely, but it is precisely the LSTM that shows a
greater numerical decrease in performance with-
out the grade information. In general, we believe
that a successful model should be able to uncover
the relationship between reading speed, grade, and
dyslexia label.

Another surprising outcome is the lack of differ-
ence between the sentence- and reader-prediction
settings. Given that the reader-prediction setting re-
lies on 10× to 30× more data, we expected perfor-
mance to be higher. The difference in performance
may not be significant due to the relatively small
size of the dataset and insufficient statistical power.

The finding that removing linguistic features did
not significantly affect LSTM model’s performance
is less surprising. Arguably, the most crucial fea-
ture for dyslexia classification, word’s orthographic
transparency (Borleffs et al., 2017), was not avail-
able. Including a measure of word orthographic
transparency might be a promising next step in
improving model performance.

Most importantly, the proposed LSTM outper-
formed the SOTA model. We can confidently state
that better performance is not a trivial result of hy-
perparameter tuning, as SOTA model was tuned
for the same parameters within a similar search
space. In the same vein, LSTM did not simply rely
on the number of fixations made by children with
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and without dyslexia for classification. Based on
the outcomes of ablation experiments, we conclude
that model performance increased due to the more
detailed information about how the sequence of eye
movements unfolds.

5 Conclusions

The model of automatic dyslexia detection pro-
posed here has outperformed the SOTA model. Im-
portantly, unlike most of the models proposed so far
(Nilsson Benfatto et al., 2016; Haller et al., 2022;
Asvestopoulou et al., 2019; Jothi Prabha and Bhar-
gavi, 2022), the present LSTM was trained on an
unbalanced dataset of eye movements of children
of different ages, and might therefore be more ro-
bust and potentially more appropriate for the real-
world applications.
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Limitations

This decision to include information from partici-
pants who did not read all 30 sentences could po-
tentially lead to data leakage: The model may learn
that incomplete sessions are more likely to come
from a child with dyslexia. We think that this is
unlikely for two reasons: First, the proportions of
incomplete sessions are not drastically different be-
tween the two groups. Second, this potential data
leakage should only affect the reader-prediction
setting (where the model expects to see 30 sen-
tences), not the sentence-prediction setting (where
the model expects to see one sentence). In the
present case, there was no significant difference in
performance between the reader prediction and the
sentence prediction settings (see Section 3.2), so
the reader-prediction setting is unlikely to have an
unfair advantage.

Ethical considerations

Using demographic variables, such as age and gen-
der, might lead to reproducing existing biases. For
example, males are diagnosed with dyslexia more
frequently, but at least part of the difference may be
attributed to referral bias (Wadsworth et al., 1992).
One way to control for bias is to withhold the poten-
tially biasing feature. The ablation experiment that
removed the demographic information performed
on par with the full model. Therefore, we conclude
that the model at least does not enhance the bias
that might be present in the data set.
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A Model parameters

Model search space is summarized in Table 3.

Batch size 8, 16, 32, 64, 128
Learning rate 15× U ∼ (1.0× 10−5, 1.0× 10−1)
LSTM hidden layer size 30, 40, 50, 60, 70

Table 3: Hyperparameter search space.

The optimal parameters can be found in Table 4.

Batch size Learning rate Hidden layer size
Reader prediction setting

64 0.001 40
16 0.001 40
64 0.01 30
64 0.001 40
64 0.001 40
64 0.001 40
16 0.01 30
32 0.01 30
16 0.01 50
64 0.001 40

Sentence prediction setting
8 7.07× 10−5 30
8 0.0003 50
128 4.21× 10−5 70
64 0.0025 50
8 7.07× 10−5 30
64 0.0025 50
128 0.0025 30
8 7.07× 10−5 30
32 5.34× 10−5 70
8 4.21× 10−5 50

Table 4: Resulting optimal parameters.

66


