
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 553–561
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Multilingual Gloss-free Sign Language Translation:
Towards Building a Sign Language Foundation Model

Sihan Tan1,2, Taro Miyazaki2, Kazuhiro Nakadai1

1Institute of Science Tokyo, 2NHK Science & Technology Research Laboratories
{tansihan, nakadai} @ra.sc.e.titech.ac.jp

miyazaki.t-jw@nhk.or.jp

Abstract

Sign Language Translation (SLT) aims to con-
vert sign language (SL) videos into spoken lan-
guage text, thereby bridging the communica-
tion gap between the sign and the spoken com-
munity. While most existing works focus on
translating a single sign language into a sin-
gle spoken language (one-to-one SLT), leverag-
ing multilingual resources could mitigate low-
resource issues and enhance accessibility. How-
ever, multilingual SLT (MLSLT) remains unex-
plored due to language conflicts and alignment
difficulties across SLs and spoken languages.
To address these challenges, we propose a mul-
tilingual gloss-free model with dual CTC ob-
jectives for token-level SL identification and
spoken text generation. Our model supports 10
SLs and handles one-to-one, many-to-one, and
many-to-many SLT tasks, achieving competi-
tive performance compared to state-of-the-art
methods on three widely adopted benchmarks:
multilingual SP-10, PHOENIX14T, and CSL-
Daily.1

1 Introduction

Sign language translation (SLT) is a sophisticated
cross-modal task that converts sign language (SL)
into spoken language, serving as a crucial bridge be-
tween the deaf and hard-of-hearing community and
the hearing world. Recent advancements in deep
learning have significantly improved SLT perfor-
mance, particularly through either gloss-based or
gloss-free2 approaches (Camgoz et al., 2018; Chen
et al., 2022). While gloss-based methods benefit
from intermediate linguistic supervision, they suf-
fer from an information bottleneck, limiting their
real-world applicability (Müller et al., 2023). In
contrast, gloss-free methods directly learn from
raw SL videos, making them more practical yet

1Codes and model are available:https://github.com/
Claire874/Gloss-free-MLSLT.

2Gloss is another written representation of sign language
to help localize sign motions and simplify SLT tasks.

Figure 1: Overview of multilingual gloss-free model.
Here, gsg = German Sign Language, csl = Chinese Sign
Language, and bfi = British Sign Language.3

challenging. Despite progress in SLT, existing
research predominantly focuses on translating a
single SL into a single spoken language (one-to-
one SLT). However, collecting large-scale anno-
tated SL datasets is difficult. Leveraging multilin-
gual resources could mitigate low-resource issues
and enhance accessibility. Existing multilingual
SLT (MLSLT) studies (Yin et al., 2022; Zhang
et al., 2025) are mostly limited to specific datasets
(e.g., SP-10) or restricted to many-to-one transla-
tion. While MLSLT holds great potential, it of-
ten suffers from performance degradation due to
language conflicts. For instance, we observed a
BLEU drop of 1.50 in our universal training setting
(In § 5 many-to-one). In addition, alignment chal-
lenges between SLs and spoken languages hinder
the development of MLSLT. To address these limi-
tations, we propose a multilingual gloss-free SLT
model with token-level sign language identification
(SLI), capable of handling diverse multilingual SLT
scenarios. Our contributions are as follows:

• We introduce Sign2(LID+Text), a novel SLT
approach that adopts dual CTC alignments:
one with token-level SL IDs and the other with
spoken languages, addressing the language
conflicts and alignment challenges in MLSLT.

3We use the ISO639-3 and the ISO693-1 standard to repre-
sent sign language and spoken language.
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• To the best of our knowledge, this is the
first study to comprehensively explore one-to-
one, many-to-one, and many-to-many gloss-
free MLSLT, using multiple datasets (SP-10,
PHOENIX14T, and CSL-Daily) and achieve
state-of-the-art performance for each task.

2 Related work

Previous SLT studies mainly take a cascading or
end-to-end approach. Cascading SLT, such as
Sign2Gloss2Text, introduces gloss as intermediate
supervision, simplifying SLT into two stages: sign
language recognition (Sign2Gloss) and gloss-to-
text translation (Gloss2Text) (Yin and Read, 2020).
In contrast, end-to-end SLT directly converts sign
videos into spoken texts. Camgoz et al. (2018)
first proposed Sign2Text; however, it underper-
formed cascading SLT due to the challenging sign-
text alignment. Later, Sign2Text was integrated
with multi-task learning into Sign2(Gloss+Text)
to alleviate the alignment issue (Camgoz et al.,
2020). Recent work further advanced gloss-free
SLT. Hamidullah et al. (2024) improved perfor-
mance by introducing sentence embeddings as
supervisions. In addition, large language mod-
els (LLMs) opened a new path for gloss-free
SLT (Wong et al., 2024; Gong et al., 2024; Chen
et al., 2024), but their applicability to multilingual
settings is limited.

What is the current status of MLSLT? MLSLT
remains underexplored due to several challenges.
First, SLT itself involves the complex alignment
between SL and spoken text, as SLs rely on fine-
grained articulations such as finger spelling, palm
orientation, and non-manual features (Liddell and
Johnson, 1989). Second, language conflicts arise
when training a unified model across diverse SLs.
While certain SLs exhibit similarities, others differ
greatly in structure and lexicon.4 (Wei and Chen,
2023; Zhang et al., 2025). An intuitive solution is to
introduce utterance-level SLI (Gebre et al., 2013);
however, it is an ill-defined task, as models can
learn to identify signers for particular SLs (Jiang
et al., 2024). Inspired by token-level language iden-
tification in multilingual automatic speech recog-
nition (ASR) (Chen et al., 2023), token-level SLI
could offer a more flexible solution. Beyond re-
solving language conflicts, it could aid the model
in mapping SLs to a large multilingual text space by

4Examples are provided in Appendix A.

providing fine-grained language cues throughout
the sequence. Lastly, MLSLT suffers from a lack of
large-scale datasets, and despite recent efforts (Yin
et al., 2022; Gueuwou et al., 2023; Tanzer, 2024),
data resources remain scarce.

3 Method

To address the language conflict and alignment dif-
ficulties in MLSLT, we propose Sign2(LID+Text),
a novel approach that predicts token-level SL IDs
(LIDtok) and translates SLs into spoken languages.
Unlike previous studies (Gebre et al., 2013; Jiang
et al., 2024) which predict an utterance-level LID
(e.g., a single label <ase> and <en> for American
sign language), we introduce two auxiliary CTC ob-
jectives (Graves et al., 2006) to explicitly supervise
LIDtok and target spoken text alignment, enabling
hierarchical encoding under a joint CTC/Attention
framework, as illustrated in Figure 2. This allows
the early encoder layers to focus on token-level
SLI, while the later layers reorder the latent sign
representations for translation using a text-oriented
CTC objective (TxtCTC). Table 1 summarizes the
defined tasks and labels.

Tasks Labels
MLSLT (many-to-many) <en> hello world
MLSLT (many-to-one) hello world
SLT (one-to-one) hello world
Token-level SLI <ase> <ase> <ase>

Table 1: Training label examples of Sign2 (LID+Text).
In token-level SLI, all tokens are replaced with LIDs,
while utterance-level SLI contains a single LID label.

Figure 2: Overview of multilingual gloss-free model.

3.1 Feature extractor
In previous studies (Zhang et al., 2023; Tan et al.,
2025), a pre-trained feature extractor on glosses has
been used as sign embeddings, which is inherently
designed for gloss-based SLT. Since our approach
is gloss-free, we instead adopt a pre-trained feature
extractor based on the SlowFastSign network (Ahn
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et al., 2024) but trained on spoken texts. Pre-trained
sign embeddings are further used to extract the
sign feature F from the sign video sequence V ={
v1, v2, ..., v|V|

}
consisting of |V| frames. This

process is formulated as:

F = SignEmbedding(V), (1)

where F =
{
f1, f2, . . . , f|F|

}
denotes the ex-

tracted feature with |F| sign representations.

3.2 Hierarchical encoder
We employ a CTC-based hierarchical encoder,
widely used in ASR (Sanabria and Metze, 2018)
and machine translation (Yan et al., 2023), to facil-
itate multi-task learning and improve cross-modal
alignments in MLSLT. The hierarchical encoder
consists of two modules: an initial token-level SLI
(Sign2LID) module and a subsequent Sign2Text
module that reorders multilingual sign represen-
tations within a joint CTC/Attention framework,
optimized with separate CTC objectives.

Sign2LID module is to predict the LIDtok,
Itok =

{
i1, i2, ..., i|T |

}
with the same length as

the spoken text T =
{
t1, t2, ..., t|T |

}
. We incor-

porate the LIDtok-oriented CTC loss as part of the
multi-task Sign2(LID+Text) objective function.

LLID = −logPCTC(Itok|F). (2)

As in hierarchical conditioning, deeper layers han-
dle increasingly complex predictions (Higuchi
et al., 2022); the initial encoder layer suffices for
the Sign2LID task. We assign this auxiliary task
to the initial encoder layer, where the |T |-length
LIDtok sequence explicitly aligns the sign represen-
tations with each spoken word as

hint = Encint(F). (3)

The intermediate sign representations hint from the
initial encoder layer, Encint, are then forwarded to
the subsequent encoder layers for Sign2Text.

Sign2Text module reorders the sign representa-
tions into the spoken text sequence. While CTC
is typically constrained to monotonic alignments,
neural network encoders allow for latent reorder-
ing (Zhang et al., 2022), enabling CTC to handle
the non-monotonic alignment between the SL and
spoken text. We apply TxtCTC to align the final
encoder representation hfin with the target spoken
text sequence T :

LTxt = − logPCTC(T |hfin). (4)

Following previous work (Yan et al., 2023),
we frame our decoding process within a joint
CTC/Attention setup, where the attention decoder
plays a leading role in generating the output se-
quence, and the TxtCTC score provides auxiliary
guidance during beam search. The overall training
objective function jointly optimizes the hierarchical
encoder and the attention decoder:

Ltotal = λ1LLID + λ2LTxt + λ3LAttn, (5)

where LAttn denotes the maximum likelihood es-
timation (MLE) loss for MLSLT, and λs control
contributions of the Sign2LID, Sign2Text, and at-
tention decoder objectives.

4 Experimental settings

To validate our proposed method, we conduct ex-
periments on three tasks: one-to-one, many-to-one,
and many-to-many SLT.

Datasets. We utilize three widely adopted
datasets for our experiments: the multilingual SP-
10 (Yin et al., 2022), RWTH-PHOENIX-2014T
(PHOENIX14T) (Camgoz et al., 2018), and CSL-
Daily (Zhou et al., 2021). SP-10 supports a broader
range of tasks, featuring video recordings of 10 SLs
from SpreadTheSign (Hilzensauer and Krammer,
2015). In contrast, PHOENIX14T and CSL-Daily
are designed for one-to-one SLT. Appendix C pro-
vides statistics for the three datasets.

Implementation Details. We adopt a
Transformer-based architecture within a joint
CTC/Attention decoding framework (Tan et al.,
2025). To evaluate the effectiveness of our method,
we compare it with a vanilla Transformer base-
line (Vaswani et al., 2017). Full implementation
details and hyperparameters are provided in
Appendix B.

Evaluation metrics. Following the previous stud-
ies, we evaluate performance using BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004). BLEU
is calculated through SacreBLEU (Post, 2018).

5 Results and Discussion

One-to-one evaluates the alignment capability
of TxtCTC in standard single-pair SLT. Since
Sign2LID is not utilized in this task, it is a purely
gloss-free SLT setting. Tables 2 and 3 present
results on SP-10, PHOENIX14T, and CSL-Daily,
respectively. Our TxtCTC, integrated within the
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joint CTC/Attention framework, achieves 1.71 and
2.24 BLEU improvements on PHOENIX14T and
CSL-Daily. To further investigate the effect of
TxtCTC, we present the token length distribution
of PHOENIX14T and CSL-Daily along with the
average BLEU4 score on each interval (see Fig-
ures 3 and 4). We observed that proposed TxtCTC
within the joint CTC/Attention framework tends
to be more effective for short and medium-length
sentences. The impact of TxtCTC diminishes as
sentence length increases. CTC tends to be more
effective for segments with fewer ambiguities and
clearer frame-to-token correspondences, which are
more common in shorter sequences. For longer
sequences, the model relies more on the attention
mechanism to capture global context, which may
naturally reduce the marginal contribution of the
TxtCTC objective. In addition, Gloss-free SLT in-
troduces an additional challenge that the input SL
frame sequence is typically much longer than the
spoken sentence. This inherent length difference
increases the alignment difficulty, particularly for
long sentences.

As no prior work reports one-to-one SLT re-
sults on SP-10 beyond English, we provide the
first benchmark to facilitate future research.

Language Pairs Dev Test

BLEU ROUGE BLEU ROUGE
csl → zh 8.79 35.59 7.32 32.40
ukl → uk 7.47 32.56 6.84 30.12
rsl → ru 6.20 31.79 4.23 28.98
icl → is 4.79 27.57 4.25 30.45
gsg → de 6.07 33.73 5.77 32.20
ise → it 5.88 30.13 4.76 27.91
bqn→bg 4.77 28.93 2.59 23.91
swl → sv 7.47 31.31 7.23 30.45
lls → lt 2.33 26.70 2.42 24.36
bfi → en 7.80 33.77 6.23 32.33

Table 2: One-to-one SLT results on the SP-10 dataset.

Many-to-one evaluates many-to-one SLT on the
SP-10 dataset. Following previous studies (Yin
et al., 2022; Zhang et al., 2025), we selected En-
glish as the target spoken language. A major
challenge in the many-to-one setting is the lan-
guage conflict, as confirmed by a preliminary ex-
periment: the baseline many-to-one model suf-
fers an average BLEU drop of 1.50 compared to
individually trained one-to-one models (see Ta-
ble 4 individual(10) and universal (1)). Instead,
our Sign2(LID+Text) approach mitigates the lan-
guage conflict and surpasses individual translation
by 0.58 BLEU. Table 4 reports the results of each

SL. Overall, our model outperforms previous ML-
SLT systems. However, the limited target vocab-
ulary (∼1.1k words) constrains further improve-
ments. Data augmentation could be a promising
way to address this limitation.

Figure 3: Average BLEU score on different token length
intervals on PHOENIX14T.

Figure 4: Average BLEU score on different token length
intervals on CSL-Daily.

Many-to-many is the most challenging setting.
We incrementally add language pairs based on their
performance in Table 2, from highest to lowest on
the dev set (see Appendix F). Table 5 presents the
comparison with one-to-one SLT. Our many-to-
many model maintains comparable performance
as the number of language pairs increases to five.
This stability benefits from cross-lingual informa-
tion sharing, which reduces the reliance on large-
scale data, particularly in low-resource SLT sce-
narios. To further validate LIDtok, we conduct
an ablation study (see Appendix E) and find that
LIDtok is especially effective under more challeng-
ing translation conditions. These results suggest
that our many-to-many model provides a promising
and scalable solution to mitigating the data scarcity
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Methods
PHOENIX14T CSL-Daily

Dev Test Dev Test

BLEU ROUGE BLEU ROUGE BLEU ROUGE BLEU ROUGE
Gloss-free
NSLT+Luong (Camgoz et al., 2018) 10.00 32.60 9.00 30.70 7.96 34.28 7.56 34.54
CSGCR (Zhao et al., 2022) 15.08 38.96 15.18 38.85 – – – –
GFSLT-VLP (Zhou et al., 2023) 22.12 43.72 21.44 42.49 11.07 36.70 11.00 36.44
Sign2GPT (Wong et al., 2024) – – 22.52 48.90 – – 15.40 42.36
Fla-LLM (Chen et al., 2024) – – 23.09 45.27 – – 14.20 37.25
SignLLM (Gong et al., 2024) 25.25 47.23 23.40 44.49 12.23 39.18 15.75 39.91
Baseline 22.59 49.88 22.52 49.85 12.23 36.39 11.76 36.25
Ours w TxtCTC 24.18 51.74 24.23 50.60 13.66 39.33 14.18 40.00

Table 3: Experimental results on PHOENIX14T and CSL-Daily dataset for gloss-free SLT (one-to-one SLT).

Part/Metrics Methods csl ukl rsl bqn icl gsg ise swl lls bfi Mean
Individual (10) 8.02 6.32 5.56 4.88 5.03 5.54 4.78 7.54 5.15 6.42 5.92

Dev Universal (1) 5.93 5.32 4.91 3.15 4.69 4.65 4.52 6.63 4.47 4.59 4.89
/ Google Multi (Johnson et al., 2017) 2.46 3.14 2.93 2.21 3.44 2.71 3.18 2.89 1.81 3.49 2.83

BLEU MLST (Yin et al., 2022) 5.16 5.42 4.95 3.28 6.76 5.18 7.05 6.33 6.08 7.03 5.72
Ours 7.06 6.77 7.38 3.56 6.59 5.59 4.83 7.76 4.54 7.79 6.19
Individual (10) 36.60 33.61 30.05 27.70 31.51 32.47 29.88 35.80 31.44 32.57 28.53

Dev Universal (1) 32.74 31.64 31.37 26.19 30.18 29.26 30.12 33.19 31.16 30.22 30.61
/ Google multi (Johnson et al., 2017) 28.50 28.93 30.01 24.66 29.91 29.75 28.33 31.01 27.7 32.42 29.12

ROUGE MLSLT (Yin et al., 2022) 34.59 34.04 31.62 27.98 35.29 33.50 37.96 36.02 34.48 37.25 34.27
Ours 36.77 34.86 36.02 26.74 35.64 34.95 31.67 37.97 31.43 37.56 34.36
Individual (10) 6.24 4.00 3.69 3.63 3.30 3.77 3.40 6.21 4.49 6.23 4.60

Test Universal (1) 2.72 2.36 2.19 3.02 4.14 3.31 1.19 3.94 3.20 4.70 3.10
/ Google Multi (Johnson et al., 2017) 2.28 2.38 2.06 1.10 1.38 1.82 2.09 2.13 2.68 3.27 2.12

BLEU MLSLT (Yin et al., 2022) 5.19 4.18 3.66 2.85 3.93 4.97 6.70 3.70 5.72 5.73 4.66
Ours 5.92 4.52 5.80 2.93 5.10 4.65 5.00 6.40 5.13 6.36 5.18
Individual (10) 34.51 30.93 30.90 27.19 28.00 30.19 27.66 33.92 31.36 35.73 31.04

Test Universal (1) 29.57 29.03 28.96 26.66 31.75 30.12 26.73 31.11 30.33 32.41 29.67
/ Google multi (Johnson et al., 2017) 29.37 28.63 29.57 23.95 28.53 29.36 29.30 29.83 30.03 30.76 28.93

ROUGE MLSLT (Yin et al., 2022) 33.33 34.07 31.54 25.75 33.25 32.13 35.37 33.09 33.11 35.34 32.70
Ours 35.18 33.17 34.17 24.55 34.57 32.83 34.27 34.98 31.48 36.16 33.14

Table 4: Many-to-one SLT results on the SP-10 dataset, we select English as the target spoken language. The best
performance is bolded, and the second-best is underlined.

problem and paves the way toward a unified SL
foundation model in challenging SLT settings.

Language Pairs One-to-one Many-to-many

BLEU ROUGE BLEU ROUGE
(2→2) 6.28 32.37 6.22 34.53
(3→3) 6.44 31.73 6.15 34.02
(4→4) 6.41 34.59 6.31 32.76
(5→5) 6.33 33.88 5.36 31.79
(6→6) 6.08 33.40 4.91 31.17
(7→7) 5.97 34.37 4.63 29.51
(8→8) 5.84 32.70 4.75 30.24
(9→9) 5.27 32.14 4.74 28.65
(10→10) 5.06 32.31 4.58 30.83

Table 5: One-to-one vs. many-to-many SLT.

6 Conclusion

To address language conflicts and alignment chal-
lenges in multilingual sign language translation
(MLSLT), we proposed Sign2(LID+Text), a mul-
tilingual gloss-free SLT model combining token-
level sign language identification (Sign2LID) and

sign-to-text CTC alignment (Sign2Text). Our ap-
proach achieved comparable performance with
the state-of-the-art across one-to-one, many-to-
one, and many-to-many SLT tasks on three widely
adopted benchmarks, covering a total of 10 dif-
ferent sign languages (SLs). We showed that
Sign2LID effectively mitigates language conflicts
and Sign2Text improves sign-to-text alignment, es-
pecially for shorter and medium-length sequences.
Our work encourages and lays the foundation for
future exploration of large-scale multilingual gloss-
free SLT and shows potential for enhancing cross-
lingual SL processing, contributing to the develop-
ment of a universal SL foundation model.

Limitations

The limitations of this work can be summarized
as follows. First, data scarcity remains a major
challenge. The SP-10 dataset is currently the only
publicly available multilingual SLT corpus, and
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as shown in Appendix C, each language in SP-10
contains only 830 training samples (8.3k overall),
which is extremely small for training deep learning
models. Moreover, as discussed in the many-to-one
setting, the target language vocabulary is limited to
approximately 1.1k words, further constraining the
model’s capacity to generate diverse outputs. Sec-
ond, our many-to-many SLT evaluation is set to, at
most, 10 language pairs. Extending the evaluation
to the full 10×10 combinations poses a greater chal-
lenge and requires more computational resources.
Future work will focus on scaling to more sign
languages and more challenging settings.
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A Examples of sign language conflict

As shown in Figure 5, many sign languages share
similarities in expressing certain concepts. For ex-
ample, when signing rain, signers often mimic the
shape of raindrops falling, which is relatively uni-
versal. However, for evening, although the core
concept involves representing the sun setting, vari-
ations in expression still exist across different sign
languages.

Figure 5: Sign language similarities and differences
across languages. Sign videos are from SpreadTheSign.
Note for privacy: we anonymize signers.

B Implement details

The Transformer model with a CTC/Attention
setup uses a hidden size of 256 and a feed-forward
dimension of 2048. Both the encoder and decoder
have six layers. Training is conducted using the
Xavier initializer and the Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 1× 10−3. We

train the model on an NVIDIA A100 (80GB) GPU
with a batch size of 64. The total trainable #params
is 39.48M. The training objective weights are set
as λ1 = 1, λ2 = 5, and λ3 = 3. When token-level
LID is not used, λ1 is set to 0.

C Summary of different SLT datasets

We summarize the statistics of the different datasets
in Table 6, SP-10 consists of 10 different sign lan-
guages, with each having 830 training samples. In
addition, Table 7 shows the involved sign languages
with their abbreviations in SP-10.

Datasets Lang Statistics

#Signer Vocab #Train #Dev #Test
SP-10 multilingual 79 16.7k 8,300 1,420 2,021
PHOENIX14T gsg 9 2.9k 7,096 519 642
CSL-Daily csl 10 2.3k 18,401 1,077 1,176

Table 6: Statistics of SP-10, PHOENIX14T, and CSL-
Daily datasets.

Languages Abbr.
Chinese sign language csl
Ukrainian sign language ukl
Russian sign language rsl
Icelandic sign language icl
German sign language gsg
Italian sign language ise
Bulgarian sign language bqn
Swedish sign language swl
Lithuanian sign language lls
British sign language bfi

Table 7: Sign language abbreviations of the SP-10
dataset.

D The language conflict in SP-10

We performed a preliminary experiment to inves-
tigate language conflicts in multilingual SLT. The
baseline model is adopted for individual (10) and
universal (1) many-to-one SLT. The individual and
universal translation performances are presented in
Table 8. In general, the universal has an average
1.50 BLEU performance drop.

E Ablation study of token-level LID

Performance deteriorates as the number of lan-
guages involved in the many-to-many translation
increases, and the translation task becomes more
complex. As shown in Table 9, our method using
token-level LID can suppress this deterioration and
is effective in more complex translation settings.
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Language Pairs Individual (10) Universal (1) Variation
BLEU BLEU

csl →en 6.24 2.72 −3.52
ukl → en 4.00 2.36 −1.64
rsl → en 3.69 2.19 −1.50
icl → en 3.30 4.14 +0.84
gsg → en 3.77 3.31 −0.46
ise → en 3.40 1.19 −2.21
bqn→en 3.63 3.02 −0.61
swl → en 6.21 3.94 −2.27
lls → en 4.49 3.20 −1.29
bfi → en 6.23 4.70 −1.53
Mean 4.60 3.10 −1.50

Table 8: Language conflicts in SP-10, we present the
individual and universal translation results on the base-
line.

Language Pairs w/o LIDtok w LIDtok
BLEU BLEU

(2→2) 7.48 6.22
(3→3) 6.50 6.15
(4→4) 4.98 6.31
(5→5) 4.74 5.36
(6→6) 4.57 4.91
(7→7) 3.70 4.63
(8→8) 4.27 4.75
(9→9) 3.56 4.74
(10→10) 3.87 4.58

Table 9: Ablation study of token-level language ID
(LIDtok) in many-to-many SLT.

F Details of language pairs in
many-to-many SLT

Table 10 shows each language pair used in our
many-to-many translation experiment.

Language Pairs
(2→2) (csl→zh) (bfi→en)
(3→3) (csl→zh) (bfi→en) (swl→sv)
(4→4) (csl→zh) (bfi→en) (swl→sv) (ukl→uk)
(5→5) (csl→zh) (bfi→en) (swl→sv) (ukl→uk) (gsg→de)
(6→6) (csl→zh) (bfi→en) (swl→sv) (ukl→uk) (gsg→de) (ise→it)
(7→7) (csl→zh) (bfi→en) (swl→sv) (ukl→uk) (gsg→de) (ise→it) (rsl→ru)
(8→8) (csl→zh) (bfi→en) (swl→sv) (ukl→uk) (gsg→de) (ise→it) (rsl→ru) (icl→is)
(9→9) (csl→zh) (bfi→en) (swl→sv) (ukl→uk) (gsg→de) (ise→it) (rsl→ru) (icl→is) (bqn→bg)
(10→10) (csl→zh) (bfi→en) (swl→sv) (ukl→uk) (gsg→de) (ise→it) (rsl→ru) (icl→is) (bqn→bg) (lls→lt)

Table 10: Language pairs used in many-to-many SLT
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