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Abstract

We study word learning in subword and char-
acter language models with the psycholinguis-
tic lexical decision task. While subword LMs
struggle to discern words and non-words with
high accuracy, character LMs solve this task
easily and consistently. Only when supplied
with further contexts do subword LMs perform
similarly to character models. Additionally,
when looking at word-level and syntactic learn-
ing trajectories, we find that both processes are
separable in character LMs. Word learning hap-
pens before syntactic learning, whereas both
occur simultaneously in subword LMs. This
raises questions about the adequacy of subword
LMs for modeling language acquisition and po-
sitions character LMs as a viable alternative to
study processes below the syntactic level.

1 Introduction

When humans acquire their first language(s), they
first learn to recognize single words, mostly from
short, fragmentary utterances (Cameron-Faulkner
et al., 2003; Bunzeck and Diessel, 2024), before
fully understanding the grammatical processes gov-
erning them (Tomasello, 1992; Behrens, 2021).
This simple fact about language acquisition has
received surprisingly little attention in the body of
work that treats LMs as models of language learn-
ers (Warstadt and Bowman, 2022; Portelance and
Jasbi, 2024). While word learning in children is
comparatively well studied (Plunkett, 1997; Yu and
Ballard, 2007; Waxman and Gelman, 2009; Bergel-
son and Swingley, 2012; Clark and Casillas, 2015;
Frank et al., 2021), the implicit word learning pro-
cesses in LMs are not. Current studies focus on syn-
tax (Mueller et al., 2022; Choshen et al., 2022), or
investigate word learning in close connection with
syntax through surprisal (Chang and Bergen, 2022;
Portelance et al., 2023; Shafiabadi and Wisniewski,
2025; Ficarra et al., 2025). Architecture-wise, a
key limitation to the precise study of word learning
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Figure 1: Illustration of word learning in human learners
and transformer LLMs (top), and of our lexical decision
test that probes discrimination of words from non-words
(bottom). While human learners build up an mental lex-
icon from experience with language, artificial learners
assign probabilities to strings based on their frequency.

is subword tokenization (e.g., BPE, Gage, 1994),
which splits words into linguistically (Arnett and
Bergen, 2025) and cognitively implausible units
(Beinborn and Pinter, 2023).

To gauge word learning in a syntax-independent
manner, we use the psycholinguistic lexical deci-
sion task (Meyer and Schvaneveldt, 1971; Le Go-
dais et al., 2017), i.e., deciding which word in a
given word/non-word pair is real. We find that mod-
els with character-level tokenization learn this task
quickly and reliably. In contrast, subword LMs of
all sizes perform significantly worse in a syntax-
independent setting and only achieve comparable
accuracy when stimuli are measured through sur-
prisal, or “unexpectedness,” in linguistic context.
By comparing word and syntactic learning (mea-
sured via BLiMP, Warstadt et al., 2020), we further
find that character models quickly acquire word
knowledge and only later develop syntactic knowl-
edge. In subword models, word and syntax learning
happen concurrently. This demonstrates how ele-
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mentary modeling decisions, such as tokenization
methods, significantly impact learning trajectories
in LMs, a fact that warrants more scrutiny when
using LMs as models of language acquisition.

2 Related work

Word learning in humans is a multifaceted phe-
nomenon that involves different kinds of (ex-
tra)linguistic knowledge (Waxman and Gelman,
2009): while phoneticians are concerned with word
recognition and sequence segmentation (Jusczyk,
1999), developmental psychologists frequently
equate word learning with correct reference to real
world objects (Stager and Werker, 1997; Acker-
mann et al., 2020). Psycholinguists usually focus
on the mental lexicon and learning which words be-
long to it (Goldinger, 1996), whereas usage-based
scholars take into account children’s productions
and their ability to be competent language users,
even with few words (Tomasello, 1992).

Although aspects like word recognition and se-
quence segmentation have been studied in LMs (e.g.
Goriely and Buttery, 2025a), the most common ap-
proach to word learning in LMs is measuring the
predictability of words via surprisal (negative log-
probability, Hale, 2001). Chang and Bergen (2022)
train LMs on book texts and wiki data. They de-
fine a surprisal threshold below which words are
said to be learned and find that frequent function
words are learned earliest. Here, the alignment
between models and real learners is questionable:
children first utter nouns and verbs (Tomasello,
2000), but also rely on function words for chal-
lenges like speech segmentation (Dye et al., 2019).
Portelance et al. (2023) show that in LSTMs trained
on child-directed speech, surprisal correlates with
word-level age of acquisition. Chang et al. (2024)
observe that learning curves for surprisal values are
stable for frequent tokens, while infrequent tokens
are “forgotten” again over pre-training. Shafiabadi
and Wisniewski (2025) introduce anti-surprisal (in
incorrect contexts) to track false usage, which also
fluctuates over pre-training. These studies cast
word learning as the ability to anticipate words’
expectedness in a given syntactic (and semantic)
context. We note a certain conceptual leap to the
original works on surprisal, where it is primarily
viewed as an incremental measure of processing
difficulty in syntactic comprehension (Levy, 2008;
Demberg and Keller, 2009). A simple word like
dog might be surprising and therefore hard to parse

in some contexts, but very expected in others, in-
dependently of being already learned on the pure
word level. A further methodological drawback
of surprisal as a measure of word learning is that
it corresponds almost directly to the next-token
prediction objective LMs are trained on. This con-
trasts with typical probing paradigms used in the
domain of syntax, which implement the idea to
“challenge” models in minimal pair set-ups that are
not observed directly as string sequences in train-
ing, thereby testing abstracted, implicit linguistic
knowledge rather than observed patterns in the data.
In a similar vein, we want to probe the word knowl-
edge of an LM at a fundamental level and beyond
surface-level word sequences that LMs are known
to excel in predicting. We want to know if the arti-
ficial learner knows that the word doggie exists in
the English language, but moggie does not.

Lexical decision is widely used in human stud-
ies but remains an underexplored LM benchmark.
Le Godais et al. (2017) show that character-based
LSTMs achieve about 95% accuracy on such tasks.
Lavechin et al. (2023) find that speech-based LMs
need significantly more input to still perform poorly
(56.8%) than phoneme-level LSTMs (75.4%) on a
phonetic dataset. For the same data, Goriely et al.
(2024) find that GPT-2-based subword BabyLMs
achieve 70% accuracy and a comparable charac-
ter models reach nearly 90%. Finally, for an-
other lexical decision dataset, Bunzeck et al. (2025)
report near-perfect accuracy for character-based
grapheme Llama models, while phoneme models
perform at 60–70%.

3 Experiments

Models We train triplets of increasingly larger
Llama models (Touvron et al., 2023) with char-
acter/subword tokenization on the BabyLM 10M
corpus (Choshen et al., 2024). Training details
are found in Appendix A. As ablations, we test
subword Pythias (Biderman et al., 2023) and char-
acter/subword GPT-2 models (Goriely et al., 2024).

Test data We follow the idea of forced-choice
lexical decision (Baddeley et al., 1993), where par-
ticipants must decide which is real: an existing
word or a synthesized non-word. We use wuggy
(Keuleers and Brysbaert, 2010) to generate mini-
mal pairs of words/non-words that differ in one or
two syllables, akin to syntactic minimal pair tests
such as BLiMP. We derive 1,000 non-words (e.g.
monding) each from 1,000 high-frequency/low-
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Lexical decision Surprisal Anti-surprisal
Tokenization Model Parameters Data size highFrq lowFrq highFrq lowFrq highFrq lowFrq

Su
bw

or
d

(B
PE

)

Pythia

14M

825GB

66.6 62.5 90.5 85.5 71.4 77.7
70M 72.5 68.8 94.5 94.0 77.0 83.6

160M 77.8 73.0 96.4 95.8 78.0 85.7
410M 81.9 78.1 97.7 97.9 77.1 84.1

1B 87.5 83.2 97.7 97.9 76.6 83.8
1.4B 87.8 81.6 97.9 97.9 76.5 84.7

GPT-2 97.5M 100M words 35.6 79.1 99.0 99.2 84.7 86.9

Llama
2.51M

10M words
70.9 58.4 86.7 70.9 78.6 67.7

7.77M 79.5 63.2 91.3 78.1 81.1 72.9
30.03M 83.6 68.6 92.7 81.1 83.7 76.1

C
ha

ra
ct

er GPT-2 85.3M 100M words 98.7 97.3 99.8 99.4 98.0 96.3

Llama
0.49M

10M words
97.6 83.0 98.2 84.3 98.0 83.1

3.73M 98.9 90.2 99.4 90.3 98.5 88.8
21.94M 99.0 93.3 99.8 94.7 99.0 92.5

Table 1: Accuracy scores (in %) for (i) lexical decision, (ii) surprisal and (iii) anti-surprisal experiments

frequency words (e.g. sending), which preserve
syllable-bigram frequencies and match their origin
words in length (cf. Appendix B).

Lexical decision For a word/non-word
pair (w, ∗w), we measure −log(P (w|␣))
and −log(P (∗w|␣)), i.e. how “surprised”
a LM is by the word in the context of a
prepended whitespace (and BOS token). If
−log(P (w|␣)) < −log(P (∗w|␣)), the LM’s
lexical decision is correct. As autoregressive
LMs are sequence prediction models, we need
a preceding context for which we can calculate
surprisal. A single whitespace is the most neutral
starting token available (and for subword models
also signals that the first subword is word-initial).
For all experiments, we calculate the average
surprisal over all tokens of a word (which, in
some cases, is characterized by a mismatch in
token numbers between words and non-words, cf.
Appendix B) with minicons (Misra, 2022).

Surprisal To measure LMs’ knowledge of words
presented in regular syntactic contexts, we calcu-
late the surprisal of words and non-words (w, ∗w)
as −log(P (wi|wn<i)), i.e. the degree to which the
LM is “surprised” by the word in the context of
plausible preceding tokens, including a BOS to-
ken. We create stimuli by sampling sentences that
contain our target words from OpenSubtitles (Li-
son and Tiedemann, 2016) and substituting them
with matching non-words for the false stimuli. If
−log(P (wi|wn<i)) < −log(P (∗wi|wn<i)), the
LM’s decision is correct.

Anti-surprisal Inspired by Shafiabadi and Wis-
niewski (2025), we include anti-surprisal, a mea-

sure of word surprisal on negative instances. We
create negative samples by selecting sentences that
our original words do not occur in, and then ran-
domly1 placing words/non-words into these sen-
tences at the same index, where index ≥ 3. By
doing so, we compromise between lexical decision
and surprisal measurement. There are two reasons
to include this measure: i) surprisal in negative sam-
ples provides the model with word material as con-
text, but without semantic or syntactic signals that
could prime the model towards recognizing it; this
allows us to assess whether the mere presence of
other words in context makes it easier for the model
to distinguish words from non-words, compared
to our lexical decision set-up where only whites-
pace is given. In addition, ii) we want to see if the
presence of an ill-fitting context actively deterio-
rates performance in the sense of a model suddenly
preferring non-words over existing words. Again,
if −log(P (wi|wn<i)) < −log(P (∗wi|wn<i)), the
LM’s decision is correct.

Learning trajectories To assess when word
learning happens in relation to syntax learning, we
further evaluate intermediate checkpoints of our
models on our word learning tests and BLiMP as
a syntactic benchmark. In line with previous stud-
ies (Chang and Bergen, 2022; Viering and Loog,
2023), we space our checkpoints logarithmically
– 10 for the first 10% of training, 9 more for the
remaining 90%. For the Pythia models, we extract
similarly spaced checkpoints (the GPT-2 models
do not provide checkpoints, so we exclude them).

1In line with Shafiabadi and Wisniewski (2025), we do not
further characterize the resulting violations on a syntactic or
semantic level.
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4 Results

Lexical decision The lexical decision results (Ta-
ble 1) show a strong contrast between character
and subword models. Character models achieve
near-perfect accuracy (97–99%) on high-frequency
words, regardless of model size. The performance
on low-frequency words steadily increases with
model size and reaches a near-perfect level for our
largest character Llama and the character GPT-2.
On the other hand, all BPE models get surprisingly
low scores on high-frequency words: The smallest
Pythia model discriminates between word and non-
words with an accuracy of only 67%, and the BPE
GPT-2 performs below the chance baseline. Even
the largest and best BPE model reaches only 87.8%
on high-frequency words – almost 10% less than
the smallest character model.

Scaling laws generally hold, with larger models
outperforming smaller ones. Interestingly, for the
BPE models, there is a consistent gap between high
and low-frequency words that cannot be closed by
larger models. Smaller character models also show
a performance gap between high and low-frequency
words, but it narrows considerably with larger mod-
els. These results point to substantial differences
in how subword and character models learn words.
Such a surprising lack of ability in distinguishing
words from non-words (without context) is a bla-
tant, hitherto overlooked gap in subword models.

Surprisal and anti-surprisal Results for the sec-
ond experiment (Table 1) differ from those for lex-
ical decision. In the surprisal setting, the differ-
ence between BPE and character models is less pro-
nounced. On high-frequency data, nearly all mod-
els (except the smallest BPE Llama) achieve over
90% accuracy. Still, larger character models yield
the best results. In the low-frequency data condi-
tion, the pattern is similar, though scores are gen-
erally lower. Very large BPE models outperform
our Llamas there, but the character GPT-2 remains
superior. This may be attributed to the limited lexi-
cal exposure of our Llamas, trained on only 10M
tokens. In the anti-surprisal setting, character mod-
els again drastically outperform BPE models and
achieve nearly perfect scores on high-frequency
data, while BPE models only reach 70–80% accu-
racy. This setting is the only one where Pythia mod-
els get better scores on low-frequency data, with a
gap of 6–8%, which increases with model size (not
the case for BPE Llamas or character models). This
contrast between surprisal and antisuprisal might
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Figure 2: Selected lexical and syntactic learning curves

be an indicator of the entanglement of word learn-
ing and syntactic learning in subword models. It is
plausible that for high-frequency words, the BPE
models have strong expectations about which word
should come next in a certain context, and because
this expectation is not matched by the real (but
ill-fitting) word, a made-up non-word is preferred.
We argue that this should still not be the case for
an ideal language model – if a model is indeed
well-tuned, it should assign a higher probability
to an ill-fitting but existing word which is still in
distribution, than to a completely ill-fitting string
that is out-of-distribution. In any case, BPE models
catch up to character models if (and only if) pro-
vided with additional syntactic/semantic context
information. While random context somewhat aids
BPE models, a substantial gap remains between
the largest BPE models and the character models,
where performance remains excellent, even in the
presence of implausible contexts.

Learning trajectories Figure 2 displays learning
curves for syntactic agreement phenomena, lexical
decision, and both surprisal conditions across the
19 saved checkpoints (complete curves reproduced
in Appendix C). The first 10 checkpoints corre-
spond to the first 10% of pretraining, the remaining
9 checkpoints represent 10% of training steps over
the remaining 90% of pretraining. For character
models, the high-frequency, low-frequency, and
syntactic curves are clearly separated. On high-
frequency data, word learning is rapid and follows
power-law curves; the low-frequency scores im-
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prove a little later and at a lower rate, but with
the same trajectory. Syntactic phenomena improve
later, mostly in s-shaped curves (e.g., det.-noun
agreement), or are not learned at all in small models
(subj.-verb agreement). In contrast, the syntactic
and lexical curves for BPE models form sheaves
of s-shaped trajectories. There is no principal dif-
ference in learning dynamics between the syntactic
and the word level, improvements2 occur simulta-
neously. This further confirms the results of our
previous experiments: in BPE models, word learn-
ing is dependent on syntax learning, and words
cannot be recognized reliably outside of plausi-
ble contexts. Additionally, these different levels
of learning cannot be disentangled in BPE mod-
els, whereas in character models, syntactic learning
follows word learning.3

5 Discussion

In contrast to previous work, this study set out to
explore when (and if) LMs learn what valid words
are, and not how LMs learn when words are validly
used. How should these results now be interpreted
in the light of language acquisition and the use
of BabyLMs to model corresponding processes?
In reality, words are not learned in isolation, but
from usage. Yet, words have been widely shown
to be represented as solid “standalone” units in the
mental lexicon, and to be units that human learn-
ers acquire early on (cf. Waxman and Gelman,
2009, also Montag et al., 2018). Usage-based ap-
proaches have tested aspects of word learning in-
dependently from syntax (mostly in object naming
tasks, cf. Tomasello and Todd, 1983) and relate
it to pragmatic aspects of communication. For ex-
ample, children only react to words they know and
ignore similar-sounding words. They even struggle
with learning words that are phonetically extremely
similar (like our stimuli), and only later gain this
capacity (Stager and Werker, 1997). Similarly, in
production, the earliest words come in isolation,
slowly emerge into pivot schemas and holophrases
(Tomasello, 1992, 2003), and only then finally turn
into complex sentences. Of course, syntax also
aids in discovering aspects of “wordiness”, like
SV(X)-sentences offering cues for agent-patient
relationships. It would be very interesting to fur-
ther disentangle these levels of word knowledge

2We calculate Spearman-rank correlation between ordered
accuracies for word-level tasks and BLiMP in Appendix D.

3Interestingly, the learning process is not finished when
accuracy curves stabilize, cf. Appendix F.

in a follow-up study, but our current study is not
concerned with the “you shall know a word by the
company it keeps”-level of word knowledge, but
rather with the “what do valid words of the lan-
guage look like”-level, which can be assessed via
lexical decision. As such, we believe that the sepa-
rated learning curves of our character-level models
represent more human-like learning than the highly
correlated curves found in the subword models, but
in reality, an overlap between them is definitely
expected.

Reasons for the tremendous performance dif-
ferences between subword and character models
remain open to further inquiry. One plausible ex-
planation is that character models have much more
context available to calculate meaningful sequence
probabilities, as words are split into many more
tokens. While this is true, it is also exactly the
point that we are stressing here: it is hard to imag-
ine that arbitrary subword units lead to human-like,
plausible word-level representations (like in exem-
plar models of lexical storage, cf. Bybee, 2010),
whereas character models might offer a more justi-
fied level of granularity (and, e.g., better fit reading
times, cf. Oh et al., 2021). Our findings also align
with results on LMs’ sensitivity to character-level
perturbations (Moradi and Samwald, 2021; Zhu
et al., 2024) and their inability to solve character-
level tasks, like counting occurrences of the letter r
in the word strawberry (Zhang and He, 2024; Shin
and Kaneko, 2024; Cosma et al., 2025).

6 Conclusion

We have shown that the lexical decision approach
to the study of word learning in LMs complements
surprisal-based approaches and reveals difficulties
that surprisal hides: subword LMs struggle with
lexical decision, whereas character models mas-
ter this task with ease. Additionally, in subword
LMs, lexical and syntactic learning are inseparable,
whereas word learning in character models pre-
cedes syntactic learning; the processes are related,
yet separable. It is plausible that the a priori token
splitting in subword models preempts a word dis-
covery process in them, whereas character models
first have to pass through this developmental stage,
possibly in a somewhat more human-like manner.
In any case, as we have shown, decisions about
the representational levels of LMs tremendously
influence their learning pathways on the different
levels of linguistic analysis.
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Limitations

The generalizability of our findings is constrained
by a few factors. The present study has only fo-
cused on the English language, but it is plausible
that other languages with different writing systems
or graphematic and phonotactic rule systems ex-
hibit different patterns under different tokeniza-
tion schemes. Here, phonetic transcriptions might
provide a viable alternative, but real narrow tran-
scriptions that accurately capture the whole breadth
of human input are scarce and extremely costly
and laborious to manually produce (although novel
datasets like Goriely and Buttery, 2025b provide
an alternative through automatic transcription). Be-
sides, for the character LMs, we focus only on
small models, as very large models with such tok-
enization, especially ones providing intermediate
checkpoints, are nonexistent at this moment. It
would still be interesting to see how they compare
to subword models in a setting where parameter
size and training data are greatly increased.

As already mentioned in Section 2, from a de-
velopmental perspective, word learning in humans
also includes other processes than statistical pattern
recognition from the input: semantic aspects and
real-world reference are equally important, as are
multimodal input and communicative intent. The
ongoing form-vs.-function debate on LMs (Ma-
howald et al., 2024) has begun to consider these
aspects, and further studies should aim at incor-
porating them; for example, the object naming
paradigm used in many developmental psychol-
ogy studies would lend itself naturally to the study
of multimodal models.

Finally, we also want to mention that there are
attempts to add more linguistic theory to tokenizers.
Looking into different tokenizers that, for example,
try to be more morphology-aware (Hofmann et al.,
2022; Bauwens and Delobelle, 2024; Yehezkel and
Pinter, 2023; Uzan et al., 2024) or implement other
optimization tricks (Schmidt et al., 2024) could
yield even more fine-grained points of comparison,
but for the present study and its limited scope we
focused on the most popular tokenization scheme
(BPE) and the most linguistically minimalist alter-
native (characters).

Ethical considerations

Due to the nature of this work, no concrete ethi-
cal aspects or repercussions need to be discussed.
However, we would like to stress that, of course,

BabyLMs not supposed to simulate real babies,
but only abstractions of a very specific part of
their learning capacity (frequency-driven, domain-
general learning mechanisms such as entrenchment
or resonance), and therefore all claims about their
implications for language development in the real
world should be interpreted in this light.
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A Model hyperparameters and training
details

We use the transformers library (Wolf et al.,
2020) to train our models. The corresponding hy-
perparameters are listed in Table 2. We opted for
very small LMs and little training data because the
BabyLM paradigm has consolidated itself as a well-
established method of developmentally plausible
language modeling (Warstadt et al., 2023; Choshen
et al., 2024). Also, we noticed the word learning
to occur quite rapidly in our models, so we argue
that small LMs offer more fine-grained opportu-
nities for investigating these processes – in larger
LMs, even a singular training step can already influ-
ence performance on such a brittle task like lexical
decision tremendously.

The subword models feature a considerably
higher number of parameters, as the embedding
layer of transformer language models accounts for
a quite large share of overall model parameters. In
light of our vastly different vocabulary sizes (102
for character models, 8,002 for subword models),
these differences are not surprising. The subword
tokenizer is a regular BPE tokenizer self-trained
with the tokenizers library and contains 8,000
subword tokens, a beginning-of-sequence token
and a combined end-of-sequence/padding token.
The character tokenizer contains these two special
tokens and all printable ASCII characters, which
are sufficient to represent all graphemes of the En-
glish language.

Our models were trained on a Apple M2 Pro
processor with the MPS backend. For the small
models, training lasted approx. 20min, for the
medium-sized models it took approx. 1h and for
the largest models approx. 10h (no principal dif-
ferences between character and subword models).
We share our models with their checkpoints on the
HuggingFace hub.4

Loss curves for all models can be found in Fig-
ure 3. For the test loss, we calculated the perplex-
ity over a held-out portion of our training corpus
that is comparable in composition to the training
data. We find no principal differences in loss devel-
opment, although the character models converge
faster. Larger models also tend to converge faster
and generally reach smaller absolute loss values.
As the similar train and test loss curves indicate, all
Llama models succeed in optimizing for their next-

4https://huggingface.co/collections/bbunzeck/
word-learning-in-small-lms-67bdc218688856162b3be08f

token prediction objective. However, it remains
open to further inquiry how much these scores are
constrained by the comparatively small capacity of
our BabyLMs, and whether larger models would
enhance performance further.

B Data creation and tokenization analysis

Data creation Word frequency influences lexi-
cal decision performance greatly (McClelland and
Rumelhart, 1981; Allen et al., 2005). To incorpo-
rate this effect into our study, we create two dis-
tinct data sets from words included in wuggy: (i)
high-frequency stimuli with a frequency score over
7.0 (occurrences per 1M words in BNC, COCA
and other English corpora, as reported in CELEX,
Baayen et al., 1995) and (ii) low-frequency stimuli
with a frequency score over 0.0 but below 0.7 (so
at least one order of magnitude lower). We opted
to rely on the CELEX frequency scores because
we compare models trained on different corpora –
our models are trained on the 10M BabyLM cor-
pus, the models by Goriely et al. (2024) are trained
on the 100M BabyLM corpus and the Pythia mod-
els are trained on The Pile (Gao et al., 2020). As
such, frequency scores from these corpora would
taint analyses of other models and hinder compa-
rability. For the contextualised stimuli, we sample
sentences from the OpenSubtitles (Lison and Tiede-
mann, 2016) portion of the BabyLM 2024 corpus
(Choshen et al., 2024). Both Wuggy and BabyLM
data are licensed under the MIT license5, therefore
we release our own stimuli artifacts on Hugging-
Face6 under the same license. The data contain
no information that names or uniquely identifies
individual people or offensive content, and are com-
monly used in computational linguistics.

Analysis of tokenization To further assess the
influence that these frequency scores have on the
resulting tokenization for our own models, we offer
a brief analysis: Figure 4 shows a pairplot between
three numerical variables – (i) the number of tokens
that our original words are split into, (ii) the number
of tokens that the derived non-word are split into
and (iii) the corresponding frequency score from
CELEX. While the three plots on the diagonal axis
show a layered kernel density estimate (KDE) for

5As per license information found at https://github.
com/WuggyCode/wuggy and https://github.com/babylm/
evaluation-pipeline-2024.

6https://huggingface.co/datasets/bbunzeck/
lexical-decision
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small-char medium-char large-char small-bpe medium-bpe large-bpe

Embedding size 128 256 512 128 256 512
Hidden size 128 256 512 128 256 512
Layers 4 8 12 4 8 12
Attention heads 4 8 12 4 8 12
Context size 128 128 128 128 128 128
Vocab. size 102 102 102 8,002 8,002 8,002
Parameters 486,016 3,726,592 21,940,736 2,508,416 7,771,392 30,030,336

Table 2: Model hyperparameters for our self-trained Llama models
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Figure 3: Loss curves for our self-trained Llama models

each individual variable, the other plots are scat-
terplots which visualize the relationship between
the variables. The data points are colored for their
tokenization scheme.

In the upper left and lower right plot we can see
that both real and non-words are split similarly in
the two distinct tokenization schemes. Words split
by the BPE tokenizer tend to have fewer tokens,
mostly between one and six. For the character-
based tokenizer, a normal distribution is visible,
with its peak at six tokens.

The upper right and lower left scatter plots show
the relationship between tokenization for real and
non-words. The character-level tokenization ex-
hibits perfect alignment between both kinds of
stimuli, they are always split into the exact same
number of tokens. Subword tokenization is slightly
skewed towards the non-word tokens. This means
that non-words are more often split into more to-
kens than real words, although the reverse case is
not completely infrequent.

C Full learning curves for BLiMP and
word learning

Figure 5 shows the full learning curves of all phe-
nomena included in BLiMP (individual syntactic
paradigms belonging to one phenomenon are dis-
played in the same sub-figure) as well as our own
lexical benchmarks (all displayed in individual sub-
figures), for our six self-trained models and the six
Pythia models that we compare them to. We fit a
fifth-order polynomial curve to the individual data
points and display it on a logarithmic scale.

It should be noted that we plot the number of
the checkpoint on the x-scale. However, the indi-
vidual amounts of actual textual data seen between
these checkpoints differs vastly between our self-
trained models (10M lexical tokens) and the Pythia
models (825GB of textual data; as the dataset has
since been taken down, no lexical token counts are
possible anymore).
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Figure 4: Pairplot displaying (i) number of tokens of words, (ii) frequency scores from CELEX (Baayen et al., 1995)
and (iii) number of tokens of non-words (for BPE and character tokenization)

D Correlations between word learning
and syntactic learning

As an additional measure of commonalities be-
tween word learning and syntactic learning, we cal-
culate Spearman-rank correlation scores between
ordered accuracy scores for our lexical tasks and
BLiMP paradigms. Table 3 shows the underlying
numerical values for the correlation heatmap pro-
vided in Figure 6 (please note that the heatmap
is rotated in comparison to the table). All scores
are statistically significant (p < 0.05). Due to
the similar learning curves found in Figure 2, we
average accuracy scores over all lexical phenom-
ena (lexical decision and both surprisal settings),
and then calculate correlations between them (both
high and low frequency) and the coarse-grained
BLiMP phenomena. For BPE models, lexical per-
formance is highly correlated with more than half
of the BLiMP phenomena. The character mod-
els show much weaker correlation with syntactic
learning. This further confirms our findings about
the strong entanglement of lexical and syntactic
learning in subword models and their weaker ties

in character models.

E Final BLiMP scores for all models

We reproduce the final syntactic evaluation scores
for all models that we incorporated in our lexical
analyses in Table 4. Generally, scores improve
with larger models and with more training data.
Most strikingly, subword models are consistently
superior to comparable character models trained
on the same amount of data. These differences,
however, are most pronounced for the small models
trained on very little data, like our Llama models
trained on 10M tokens (7% for smallest models,
2% for largest models). For the comparable GPT-2
models trained on 100M tokens, the gap becomes
much smaller (0.4%).

F Development of word/non-word
differences

In Figure 7, we plot the average difference between
word and non-word negative log-probability values
across training, for both high-frequency and low-
frequency data. Positive scores indicate preference
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Figure 5: Learning curves for all paradigms in BLiMP and high/low frequency lexical decision data, separated for
models (rows) and phenomenon sets (columns)
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for real words. For the character models, the differ-
ences are generally less pronounced and get most
extreme at the end of pre-training (where accuracy
scores do not change anymore), especially for the
lexical decision data, which is already consistent
at very early training stages. For the BPE models,

we see that at the beginning they actually prefer
non-words in the lexical decision task. Only af-
ter the first 10% of training they begin to discern
words and non-words. While overall tendencies
remain the same for both frequency conditions, the
absolute differences are generally lower and the
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small-char medium-char large-char small-bpe medium-bpe large-bpe
BLiMP phenomenon highFrq lowFrq highFrq lowFrq highFrq lowFrq highFrq lowFrq highFrq lowFrq highFrq lowFrq

Anaphor agr. -0.393 -0.435 0.580 0.277 0.332 0.555 0.569 0.559 0.930 0.910 0.772 0.759
Argument structure 0.339 0.589 0.467 0.825 0.545 0.895 0.949 0.959 0.970 0.987 0.979 0.986
Binding -0.718 -0.629 0.660 0.918 0.653 0.922 0.901 0.889 0.992 0.993 0.979 0.977
Control raising 0.904 0.837 0.909 0.776 0.791 0.892 0.777 0.780 0.974 0.974 0.930 0.936
Det.-noun agr. 0.686 0.870 0.524 0.869 0.521 0.890 0.989 0.989 0.990 0.993 0.994 0.989
Ellipsis -0.912 -0.766 -0.285 0.209 0.180 0.662 0.857 0.822 0.897 0.868 0.865 0.856
Filler gap -0.765 -0.586 -0.554 -0.146 -0.200 0.209 -0.715 -0.722 -0.589 -0.602 -0.063 -0.031
Irregular forms 0.612 0.724 0.507 0.856 0.397 0.787 -0.116 -0.098 0.636 0.662 0.816 0.832
Island effects -0.937 -0.840 -0.862 -0.657 -0.556 -0.214 -0.321 -0.334 0.473 0.418 -0.088 -0.094
NPI licensing 0.535 0.641 0.748 0.782 0.616 0.568 -0.425 -0.407 0.520 0.526 -0.069 -0.049
Quantifiers -0.476 -0.202 0.059 0.299 0.547 0.848 0.789 0.767 0.779 0.770 0.716 0.695
Subj.-verb agr. -0.386 -0.400 0.329 0.529 0.351 0.730 0.963 0.961 0.982 0.981 0.967 0.974

Table 3: Spearman-rank correlation scores between ordered accuracy scores for our lexical tasks and BLiMP
paradigms

Tok. Model Params BLiMP score

Su
bw

or
d

(B
PE

)

Pythia

14M 65.86%
70M 73.30%

160M 77.50%
410M 81.63%

1B 82.21%
1.4B 81.92%

GPT-2 85M 77.80%

Llama
2.51M 59.80%
7.77M 64.55%

30.03M 64.56%

C
ha

ra
ct

er GPT-2 85M 77.40%

Llama
0.49M 52.69%
3.73M 51.07%

21.94M 62.14%

Table 4: BLiMP scores for all models

differences between the curves are less pronounced
in the low-frequency setting.

299



0

1

2

3

D
iff

er
en

ce

small-char medium-char large-char

10
2

10
3

10
4

Training steps

0

1

2

3

D
iff

er
en

ce

small-bpe

10
2

10
3

10
4

Training steps

medium-bpe

10
2

10
3

10
4

Training steps

large-bpe

Lexical decision Surprisal Anti-surprisal

(a) High-frequency data

0

1

2

3
D

iff
er

en
ce

small-char medium-char large-char

10
2

10
3

10
4

Training steps

0

1

2

3

D
iff

er
en

ce

small-bpe

10
2

10
3

10
4

Training steps

medium-bpe

10
2

10
3

10
4

Training steps

large-bpe

Lexical decision Surprisal Anti-surprisal
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Figure 7: Average differences between surprisal values across pretraining
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