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Abstract

There is an increasing trend towards evaluating
NLP models with LLMs instead of human
judgments, raising questions about the validity
of these evaluations, as well as their repro-
ducibility in the case of proprietary models.
We provide JUDGE-BENCH, an extensible
collection of 20 NLP datasets with human an-
notations covering a broad range of evaluated
properties and types of data, and comprehen-
sively evaluate 11 current LLMs, covering both
open-weight and proprietary models, for their
ability to replicate the annotations. Our evalu-
ations show substantial variance across models
and datasets. Models are reliable evaluators
on some tasks, but overall display substantial
variability depending on the property being
evaluated, the expertise level of the human
judges, and whether the language is human
or model-generated. We conclude that LLMs
should be carefully validated against human
judgments before being used as evaluators.

https://github.com/dmg-illc/
JUDGE-BENCH

1 Introduction

For many natural language processing (NLP) tasks,
the most informative evaluation is to ask humans
to judge the model output. Such judgments are tra-
ditionally collected in lab experiments or through
crowdsourcing, with either expert or non-expert an-
notators, as illustrated in Fig. 1. Recently, there has
been a trend towards replacing human judgments
with automatic assessments obtained via large lan-
guage models (LLMs; Chiang and Lee, 2023; Wang
et al., 2023; Liu et al., 2023; Li et al., 2024; Zheng
et al., 2024, inter alia). For example, the LLM

*Authors listed in alphabetical order.

Instruction: On a scale of 1 (very 
unlikely) to 5 (very likely), how plausible 
is it that the last response belongs to the 
dialogue?

A: Made it all the way through four 
years of college playing ball but 
B: I also like The Cosby Show

1 1
1

3

2 1

2

2

non-experts

Instruction: Your task is to evaluate the quality 
of machine translation output on a scale from 0 
to 100 [...]. Evaluation Criteria: [...]

Source: Great backpack but overkill on the straps
Reference: Toller Rucksack, aber bei den Riemen 
übertrieben
Translation: Toller Rucksack, aber übertrieben auf 
den Riemen

90

96

95

expert

59

Switchboard Telephone Corpus WMT 2023 - EnDe

Figure 1: Evaluation by expert and non-expert human
annotators and by LLMs for two tasks involving human-
generated (left) and machine-generated text (right).

could be instructed to rate a response generated
by a dialogue system for its perceived plausibility,
on a scale from 1 to 5. This drastically reduces
the evaluation effort and is claimed to yield more
reliable results across multiple evaluation rounds
(Landwehr et al., 2023; Jiang et al., 2023b; Reiter,
2024; Dubois et al., 2024).

At the same time, the use of LLMs as judges
of linguistic output raises new concerns: LLMs
may be prone to errors or systematic biases that
differ from those of humans, especially on subtle
tasks such as evaluating toxicity, or reasoning.
This may distort evaluation results and lead to
incorrect conclusions. The problem is aggravated
by explicit or implicit data leakage (Balloccu et al.,
2024), which undermines the ability to make broad,
generalisable claims beyond the single specific
dataset under analysis. Specifically for closed
models such as OpenAI’s GPT series, there are
serious reproducibility concerns, as LLMs may be
retrained or retired at any time, making subsequent
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comparisons invalid or impossible.
Previous studies offer mixed evidence regarding

the reliability of LLM evaluators. Some research
concludes that they are effective, correlating well
with human judgments (Liu et al., 2023; Zheng
et al., 2024; Chen et al., 2023; Verga et al., 2024;
Törnberg, 2023; Huang et al., 2024; Naismith
et al., 2023; Gilardi et al., 2023; Kocmi and
Federmann, 2023b), albeit with some caveats
(Wang et al., 2023; Wu and Aji, 2025; Hada
et al., 2024; Pavlovic and Poesio, 2024). In some
cases, LLM evaluators can also provide pairwise
preference judgments (Kim et al., 2024; Liusie
et al., 2024; Liu et al., 2024a; Park et al., 2024; Tan
et al., 2025), or fine-grained evaluation beyond a
single score, such as error spans (Fernandes et al.,
2023; Kocmi and Federmann, 2023a). In contrast,
some studies highlight substantial biases in LLMs’
behaviour as evaluators, both as compared against
human judgments (Koo et al., 2024; Zeng et al.,
2024; Baris Schlicht et al., 2024) and through
intrinsic analyses (Wang et al., 2024; Liu et al.,
2024b; Stureborg et al., 2024). These discrepancies
likely stem from the limitations of this previous
work, which typically relies on a few datasets
and models, often restricted to closed-source
proprietary models. The observation of such
limitations has motivated recent work to develop
finetuning methods for LLM judges designed to
overcome certain biases (Zhu et al., 2025).

In this paper, we examine how well current
LLMs can approximate human evaluators on a
large scale. We prompt 11 among the most re-
cent open-weight and proprietary LLMs to generate
judgments on 20 datasets with human annotations
on a wide range of quality dimensions, prompt
styles, and tasks. Our evaluation goes beyond ex-
isting work by including a wide variety of datasets
that differ in the type of task (e.g., translation, dia-
logue generation, etc.), the property being judged
(e.g., coherence, fluency, etc.), the type of judg-
ments (categorical or graded), and the expertise of
human annotators (experts or non-experts). We
provide JUDGE-BENCH, a benchmark which in-
cludes, upon release, a total of over 70,000 test
instances with associated human judgments with
an extensible codebase.

Our results indicate that LLMs align well with
human judgments on certain tasks, like instruction
following. However, their performance is incon-
sistent across and within annotation tasks. Elici-
tation methods like Chain-of-Thought prompting

(Wei et al., 2022) do not reliably improve agree-
ment, in line with recent findings (Sprague et al.,
2025). Some proprietary models—in particular,
GPT-4o—align better to humans, but there is a
rather small gap with large open-source models,
holding promise for the reproducibility of future
evaluation efforts. Altogether, at the current stage
of LLM development, we recommend validating
LLM judges against task-specific human annota-
tions before deploying them for any particular task.

2 Construction of JUDGE-BENCH

One key feature that differs across the datasets in-
cluded in JUDGE-BENCH is the source of the data
being evaluated, i.e., whether the items to be judged
are generated by a model or produced by humans,
as illustrated in Figure 1.

For model-generated items, the goal is to eval-
uate an NLP system. This includes both classic
tasks such as machine translation or dialogue re-
sponse generation, as well as less standard tasks for
which automation has recently become an option
thanks to LLMs, such as the generation of plans or
logical arguments. For human-generated items, the
goal is to assess properties of interest such as gram-
maticality or toxicity. This distinction allows us
to understand whether LLMs have a positive bias
towards machine-generated outputs—a tendency
reported in prior work (Xu et al., 2024).

The datasets we consider cover a wide span of
properties of interest, ranging from grammaticality
and toxicity to coherence, factual consistency, and
verbosity, inter alia. Many properties are relevant
across multiple tasks (e.g., fluency and coherence),
while others are more task-specific (e.g., the suc-
cess of a generated plan or the correctness of a
multi-step mathematical reasoning trace).

Our study focuses on English datasets or lan-
guage pairs which include English as one of the
languages. We keep track of whether the original
annotation guidelines are available and whether
the annotations are provided by experts or non-
experts. We retain all available individual annota-
tions. Dataset information is summarised in Ta-
ble 2, Appendix A. All 20 datasets are format-
ted following a precise data schema to facilitate
the integration of additional datasets. This makes
JUDGE-BENCH easily extensible. We provide more
details about the data schema in Appendix B.
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Dataset (# properties judged) GPT-4o Llama-3.1-70B Mixtral-8x22B Gemini-1.5 Mixtral-8x7B Comm-R+ σ UB
C

at
eg

or
ic

al
A

nn
ot

at
io

ns

CoLa (1) 0.34 0.46 0.54 0.45 0.55 0.12 0.16 -
CoLa-grammar (63) 0.47 ±0.22 0.28 ±0.24 0.28 ±0.23 0.26 ±0.24 0.21 ±0.18 0.13 ±0.14 0.14 -
ToxicChat (2) 0.49 ±0.36 0.41 ±0.26 0.45 ±0.27 0.45 ±0.35 0.36 ±0.12 0.28 ±0.35 0.1 -
LLMBar-natural (1) 0.84 0.8 0.72 0.79 0.54 0.56 0.13 -
LLMBar-adversarial (1) 0.58 0.46 0.2 0.29 0.06 0.11 0.2 -
Persona Chat (2) 0.24 ±0.34 0.24 ±0.33 0.58 ±0.59 -0.03 ±0.04 0.54 ±0.65 0.48 ±0.74 0.2 0.88
Topical Chat (2) 0.05 ±0.07 -0.02 ±0.02 -0.03 ±0.04 -0.03 ±0.04 0.02 ±0.03 0.01 ±0.02 0.07 0.58
ROSCOE-GSM8K (2) 0.59 ±0.35 0.64 ±0.27 0.62 ±0.38 0.6 ±0.24 0.58 ±0.36 0.0 0.15 -
ROSCOE-eSNLI (2) 0.29 ±0.06 0.38 ±0.08 0.13 ±0.13 0.11 ±0.18 0.1 ±0.11 0.03 ±0.05 0.14 -
ROSCOE-DROP (2) 0.29 ±0.08 0.27 ±0.07 0.2 ±0.12 0.08 ±0.05 0.13 ±0.21 0.03 ±0.04 0.13 -
ROSCOE-CosmosQA (2) 0.16 ±0.07 0.25 ±0.02 0.09 ±0.17 0.14 ±0.17 0.19 ±0.05 -0.03 ±0.01 0.1 -
QAGS (1) 0.72 0.7 0.66 0.65 0.68 0.13 0.23 0.74
Medical-safety (2) 0.01 ±0.03 -0.03 ±0.06 -0.02 ±0.09 -0.03 ±0.08 0.0 ±0.06 0.01 ±0.02 0.03 -
DICES-990 (1) -0.24 -0.17 -0.16 -0.12 -0.2 -0.09 0.05 0.27
DICES-350-expert (1) -0.2 -0.13 -0.15 -0.03 -0.11 0.01 0.08 -
DICES-350-crowdsourced (1) -0.22 -0.18 -0.08 -0.02 -0.11 -0.08 0.07 0.32
Inferential strategies (1) 0.42 0.4 0.02 0.22 0.06 -0.02 0.19 1.0

Average Cohen’s κ 0.28 ±0.32 0.28 ±0.30 0.24 ±0.30 0.22 ±0.28 0.21 ±0.28 0.10 ±0.18

G
ra

de
d

A
nn

ot
at

io
ns

Dailydialog (1) 0.69 0.6 0.55 0.63 0.63 0.52 0.06 0.79
Switchboard (1) 0.66 0.45 0.63 0.59 0.56 0.36 0.11 0.8
Persona Chat (4) 0.22 ±0.11 -0.02 ±0.2 0.16 ±0.1 0.1 ±0.09 0.02 ±0.15 0.07 ±0.13 0.2 0.61
Topical Chat (4) 0.26 ±0.03 0.28 ±0.1 0.13 ±0.04 0.17 ±0.12 0.21 ±0.18 0.14 ±0.05 0.07 0.56
Recipe-generation (6) 0.78 ±0.05 0.66 ±0.07 0.6 ±0.15 0.67 ±0.09 0.57 ±0.24 0.32 ±0.28 0.18 0.65
ROSCOE-GSM8K (2) 0.82 ±0.12 0.83 ±0.11 0.81 ±0.14 0.81 ±0.12 0.79 ±0.13 0.68 ±0.2 0.15 -
ROSCOE-eSNLI (2) 0.49 ±0.24 0.4 ±0.16 0.38 ±0.17 0.35 ±0.21 0.32 ±0.12 0.09 ±0.08 0.14 -
ROSCOE-DROP (2) 0.57 ±0.22 0.59 ±0.16 0.44 ±0.15 0.44 ±0.13 0.32 ±0.12 0.21 ±0.22 0.13 -
ROSCOE-CosmosQA (2) 0.57 ±0.18 0.55 ±0.18 0.51 ±0.16 0.57 ±0.17 0.53 ±0.21 0.33 ±0.25 0.1 -
NewsRoom (4) 0.59 ±0.02 0.59 ±0.03 0.44 ±0.05 0.55 ±0.03 0.5 ±0.07 0.36 ±0.06 0.1 0.62
SummEval (4) 0.35 ±0.06 0.44 ±0.14 0.54 ±0.08 0.38 ±0.02 0.48 ±0.02 0.19 ±0.06 0.13 -
WMT 2020 En-De (1) 0.63 0.37 0.51 0.46 0.2 0.42 0.15 0.81
WMT 2020 Zh-En (1) 0.54 0.39 0.48 0.41 0.25 0.42 0.1 0.62
WMT 2023 En-De (1) 0.22 0.14 0.23 0.16 0.17 0.22 0.04 -
WMT 2023 Zh-En (1) 0.17 0.14 0.19 0.14 0.15 0.15 0.02 -

Average Spearman’s ρ 0.50 ±0.21 0.43 ±0.22 0.44 ±0.19 0.43 ±0.21 0.38 ±0.22 0.30 ±0.17

Table 1: Scores per dataset for the models with ≥98% valid response rates (results for all models in Tab. 6, App. H):
Cohen’s kappa for categorical annotations and Spearman’s correlation for graded annotations. Boldface marks best
model performance per dataset. Spearman’s correlations are generally significant (p < 0.05), with the exception
of the Persona Chat and Topical Chat datasets (see Tab. 6 in Appendix H for more details). Datasets with both
categorical and graded annotations appear twice. Datasets in blue concern human-generated language, while
those in red concern model-generated text. ‘σ’ denotes the standard deviation of the scores across models per
dataset (averaged over properties if more than one is judged per dataset). Upper-bound estimates (UB) indicate the
agreement between individual and aggregated human judgments.

3 Model Selection and Experiment Design

Models. We select representative proprietary and
open-weight models of various sizes that show high
performance across several tasks on the Open LLM
and Chatbot Arena Leaderboards (Chiang et al.,
2024): GPT-4o (OpenAI, 2024), LLaMA-3.1 (8B
and 70B; AI@Meta 2024), Gemini-1.5 (Reid et al.,
2024), Mixtral (8x7B and 8x22B; Jiang et al. 2024),
Command R and Command R+ (Cohere and Co-
here for AI, 2024a,b), OLMo (Groeneveld et al.,
2024), Starling-7B (Zhu et al., 2024), and Mis-
tral (Jiang et al., 2023a). See Appendix E for infer-
ence procedure details.

Prompts. Since most datasets include the origi-
nal instructions used to gather human judgments,
we use these instructions directly as prompts for

the model, with additional guidelines to constrain
the models’ output and minimise verbosity: ‘An-
swer with one of {}. Do not explain your answer.’
When the original instruction for collecting human
judgments is unavailable, we create a prompt based
on relevant information from the original paper,
such as the task description and the definitions of
the evaluation metrics. We also experiment with
alternative prompting strategies, including Chain-
of-Thought, few-shot prompts, and prompt para-
phrases. However, none of these strategies leads to
systematic improvements. See Appendix H for full
details and results. All prompts are provided in the
codebase.

Evaluation. Models do not always respond to
the prompts as requested (e.g., they may refuse to
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Figure 2: Average model correlation with human experts
vs. non-experts in datasets with graded annotations.
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Figure 3: Correlation for properties with graded judg-
ments. Averages and error bars when the property is
present in more than one dataset.

answer if they perceive the prompt as sensitive).
We therefore use the following evaluation protocol:
• To obtain the same number of judgments across

models for a given dataset, we replace invalid
LLM responses with judgments randomly sam-
pled from the relevant set of categorical or graded
annotations. Figure 5 in Appendix F shows the
rate of valid responses per model.

• Graded annotations, such as in WMT 2020 (Fre-
itag et al., 2021), assess language quality on a
continuous scale (e.g., a score from 0 to 100, or
Likert-scale ratings), capturing varying degrees
of fluency, adequacy, or overall translation qual-
ity; whereas categorical annotations, like those in
CoLa (Warstadt et al., 2019), involve binary judg-
ments (e.g., grammatically acceptable or not).
For the former, we compute Spearman’s correla-
tion (ρ) between model and human judgments;
for the latter, we compute Cohen’s κ.

• When multiple individual human judgments are
available (typically three, see Table 2 in Ap-
pendix A), we estimate an upper bound by com-
puting the average Spearman’s ρ or Cohen’s
κ between bootstrapped single-rater responses
and the aggregated responses across raters. Ap-
pendix C provides details on the upper bounds.

4 Results

Scores vary substantially across models. For any
given model, they vary both across datasets and
properties being judged. Table 1 presents detailed
results for the 6 models that exhibit the largest
rate of valid responses (≥98%). GPT-4o ranks
first across several evaluation scenarios, but the
Llama-3.1-70B and Mixtral-8x22B open models
are relatively close and outperform GPT-4o on
some assessment types, such as categorical sen-
tence acceptability (CoLa) and graded summary
quality (SummEval). Overall, the high degree of
variability is not fully accounted for by the inherent
difficulty of the annotation tasks, as reflected in
the human upper bound. Moreover, except for a
few datasets (e.g., QAGS, Recipe-generation, and
NewsRoom), model scores remain notably below
the upper bound.

Among the property types with the lowest
human-model alignment are toxicity and safety
(in particular on DICES and Medical-safety),
where model scores can be even negative and
valid response rates particularly low (see Fig. 6 in
Appendix F). This is due in part to the guardrails
associated with these tasks (Weidinger et al., 2023).
We find that, especially in the medical domain,
many models tend to provide explanations instead
of producing a judgment (see Appendix G).

Despite the high variability across models and
datasets, we observe several notable trends. For
graded annotations (Fig. 2), all models achieve
higher correlations with annotations by non-expert
human judges compared to expert annotators,
echoing recent findings by Aguda et al. (2024).
One possible explanation is that non-experts
might rely on surface-level features, which could
align more closely with the patterns LLMs are
most attuned to, while experts apply stricter,
domain-specific criteria. This remains speculative
and calls for further investigation.

Figure 3 shows correlation results across differ-
ent datasets for the subset of properties that exclu-
sively have graded judgments. When applicable,
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Figure 4: Scores (Cohen’s κ for categorical annotations and Spearman’s correlation for graded annotations) on test
items involving human language vs. machine-generated outputs.

we average results across datasets including anno-
tations for the same property. We provide more
details about these properties in Appendix D. The
proprietary models GPT-4o and Gemini-1.5 exhibit
the highest scores when evaluating acceptability
and verbosity, while the two Mixtral open mod-
els show the strongest correlations for coherence
and consistency. Correlation with the engaging-
ness property remains consistently low across all
models. Overall, no single model demonstrates a
clear superiority over others across all properties;
instead, different quality dimensions are better as-
sessed by different models. This calls into question
the widespread practice of using a single model –
typically a proprietary one like those from the GPT
family—to evaluate a diverse range of linguistic
properties.

Finally, as shown in Figure 4, all models achieve
better alignment with human judgments when
evaluating human language than when assessing
machine-generated text, both for categorical and
graded annotations. This result aligns with the find-
ings by Xu et al. (2024), suggesting that LLMs
display a bias towards their own generation. More
broadly, this trend calls for caution when using
LLMs to automatically evaluate the output of NLP
systems.

5 Conclusions

In response to current trends in evaluation, in this
paper we conducted a large-scale study of the corre-
lation between human and LLM judgments across
20 datasets, considering factors such as the prop-
erties being assessed, the expertise level of the hu-
man judges, and whether the data is model- or
human-generated. On some tasks, such as instruc-

tion following and the generation of mathemati-
cal reasoning traces, models can be reliably used
as evaluators. Overall, however, models’ agree-
ment with human judgments varies widely across
datasets, evaluated properties, and data sources;
and depends on the level of expertise of human
judges. Furthermore, elicitation strategies such as
Chain-of-Thought prompting do not consistently
improve agreement levels, in line with recent find-
ings (Sprague et al., 2025). We recommend valida-
tion and calibration of LLMs against task-specific
human judgments prior to their deployment as eval-
uators. To facilitate this process, we release JUDGE-
BENCH, a benchmark that enables systematic eval-
uation across a diverse range of tasks and is easily
extensible to include any new task of interest.

Limitations

One limitation of the experimental design of our
work is that correlation with human judges may
not be the most appropriate way to validate LLM
evaluators. Indeed, there may be domains where hu-
man annotators and LLM evaluators appear aligned
simply because they are affected by similar biases.
Therefore, depending on the task at hand, it may
be necessary to validate the reliability of human
annotators as well.

Another limitation concerns the use of existing
tasks and datasets without reassessing their quality
or representativeness of actual downstream tasks.
While we did our best to select a wide set of tasks
meaningful to the NLP community, we acknowl-
edge that these tasks could not be equally mean-
ingful for end-users, and that employing existing
datasets could arguably lead to potential risks and
shortcomings, such as data leakage.
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In contrast to approaches that use LLMs for pair-
wise preference evaluation, e.g., PairEval (Park
et al., 2024) or JudgeBench (Tan et al., 2025),1

this paper focuses on evaluating the performance
of LLMs on generating judgements for categorical
and graded responses. We leave the extension of
JUDGE-BENCH to include pairwise preference eval-
uation and other recent evaluation methods, such as
Prometheus 2 (Kim et al., 2024), for future work.

Finally, our work mostly focuses on English-
language datasets—with the exception of datasets
focussing specifically on machine-translation out-
puts. It remains to be seen whether LLMs’ meta-
evaluation abilities vary across different languages.
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Appendix

A Datasets

This section provides brief descriptions of the
datasets employed in our study. Table 2 sum-
marises relevant dataset information. Note that
dataset sizes as reported in Table 2 refer to the
number of annotated samples (not to the total num-
ber of collected annotations) and might therefore
differ from the figures reported in the original pa-
pers. Table 3 reports Krippendorf’s α for those
datasets with multiple public human annotations.

CoLa (Warstadt et al., 2019). The Corpus of
Linguistic Acceptability (CoLA) consists of 10657
sentences from 23 linguistics publications, expertly
annotated for acceptability (grammaticality) by
their original authors.

CoLa-grammar (Warstadt and Bowman, 2020).
The dataset consists of a grammatically annotated
version of the CoLA development set. Each sen-
tence in the CoLA development set is labelled with
boolean features indicating the presence or absence
of a particular grammatical construction (usually
syntactic in nature). Two related sets of features
are considered: 63 minor features correspond to
fine-grained phenomena, and 15 major features cor-
respond to broad classes of phenomena.

ToxicChat (Lin et al., 2023). collect binary judg-
ments on the toxicity and ‘jailbreaking’ nature
(prompt hacks deliberately intended to bypass
safety policies and induce models to generate un-
safe content) of human prompts to LLMs. While
the original dataset contains a mix of human- and
automatically-annotated instances, here we only
consider the human-annotated prompts.

LLMBar (Zeng et al., 2024). LLMBar is a
dataset targeted at evaluating the instruction-
following abilities of LLMs. Each entry of this
dataset consists of an instruction paired with two
different outputs, one correctly following the in-
struction and the other deviating from it. LLMBar
has an adversarial split where deviating outputs
are carefully constructed to ‘fool’ LLM-based eval-
uators and a natural split where deviating outputs
are more naturalistic.
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Dataset Task Size # Annot. Type Guidelines Expert Leaked

CoLA (Warstadt et al., 2019) Acceptability 1,043 - Categorical ✗ ✓ ✓

CoLA-grammar (Warstadt and Bowman, 2020) Acceptability 1,043 - Categorical ✗ ✓ ✓

Switchboard (Wallbridge et al., 2022) Acceptability 100 3-6 Graded ✓ ✗

Dailydialog (Wallbridge et al., 2022) Acceptability 100 3-6 Graded ✓ ✗

Inferential strategies (Mondorf and Plank, 2024) Reasoning 300 - Categorical ✓ ✓ ✗

ROSCOE (Golovneva et al., 2023) Reasoning 756 - Categorical + Graded ✓ ✓

Recipe-generation (Stein et al., 2023) Planning 52 - Graded ✓

Medical-safety (Abercrombie and Rieser, 2022) Toxicity & Safety 3,701 - Preference ✓ ✓

DICES (Aroyo et al., 2023) Toxicity & Safety 1,340 ~70 + ~120 Categorical ✗ Mixed
ToxicChat (Lin et al., 2023) Toxicity & Safety 5,654 - Categorical ✗ ✓

Topical Chat (Mehri and Eskenazi, 2020) Dialogue 60 3 Graded + Categorical ✗ ✓

Persona Chat (Mehri and Eskenazi, 2020) Dialogue 60 3 Graded + Categorical ✗ ✓

WMT 2020 En-De (Freitag et al., 2021) Machine Translation 14,122 3 Graded ✗ ✓

WMT 2020 Zh-En (Freitag et al., 2021) Machine Translation 19,974 3 Graded ✗ ✓

WMT 2023 En-De (Kocmi et al., 2023) Machine Translation 6,588 - Graded ✗ ✓

WMT 2023 Zh-En (Kocmi et al., 2023) Machine Translation 13,245 - Graded ✗ ✓

G-Eval / SummEval (Liu et al., 2023) Summarisation 1,600 - Graded ✓ ✓

QAGS (Wang et al., 2020) Summarisation 953 3 Categorical ✓ ✗

NewsRoom (Grusky et al., 2018) Summarisation 420 3 Graded ✓ ✗ ✓

LLMBar (Zeng et al., 2024) Instruction Following 419 - Categorical ✓ ✓ ✗

Table 2: Overview of the main features of the datasets considered in the study. Note that ‘Size’ refers to the number
of annotated samples, not to the total number of human annotations. ‘# Annot.’ refers to the number of available
individual annotations, if any, which we use to estimate the human upper bound. Note that datasets with only a
single annotation per sample, or which only report the average over multiple annotations are not included in ‘#
Annot.’. Information on possible data leakage was retrieved from Balloccu et al. (2024).

Topical Chat and Persona Chat (Mehri and
Eskenazi, 2020). These datasets contain hu-
man judgments on the quality of machine- and
human-generated responses based on the pro-
vided dialogue context. The annotated dialogues
were selected from Topical Chat (Gopalakrish-
nan et al., 2019)—a dataset collecting human-
human conversations on provided facts—and Per-
sona Chat (Zhang et al., 2018), which contains
human-human persona-conditioned conversations.
Each response is evaluated on 6 attributes: Un-
derstandable, Natural, Maintains Context, Interest-
ing/Engaging, Uses Knowledge, and Overall Qual-
ity.

ROSCOE (Golovneva et al., 2023). collect hu-
man judgments assessing the quality of GPT-
3’s reasonings. The output reasonings are
elicited by inputting GPT-3 with questions selected
from 4 commonly used reasoning datasets, i.e.,
CosmosQA (Huang et al., 2019), DROP (Dua
et al., 2019), e-SNLI (Camburu et al., 2018) and
GSM8K (Cobbe et al., 2021). While ROSCOE
provides annotations on each step of the reasoning
trace, here we only consider the global judgments
over the whole reasoning.

QAGS (Wang et al., 2020). QAGS consists of
annotations judging the factual consistency of one-
sentence model-generated summaries of news arti-
cles. The gold-standard summaries and articles are
collected from CNN/DailyMail (Hermann et al.,

2015) and XSUM (Narayan et al., 2018).

Medical-safety (Abercrombie and Rieser, 2022).
This dataset consists of 3701 pairs of medical
queries (collected from a subreddit on medical
advice) and both machine-generated and human-
generated answers. Queries were classified by hu-
man annotators according to their severity (from
‘Not medical’ to ‘Serious’, with ‘Serious’ indicat-
ing that emergency care would be required) and
answers were categorised based on their risk level
(from ‘Non-medical’ to ‘Diagnosis/Treatment’).

DICES (Aroyo et al., 2023). The DICES
datasets consist of a series of machine-generated
responses whose safety is judged based on the pre-
vious conversation turns (context). While the origi-
nal dataset provides fine-grained annotations with
answers to questions targeting specific aspects of
safety, here we only consider the ‘overall’ cate-
gorisation comprehensive of all aspects. In DICES
990 safety is judged by crowdsourced annotators,
whereas in DICES 350 both expert and crowd-
sourced annotations are provided.

Inferential strategies (Mondorf and Plank,
2024). This dataset contains annotations on the
logical validity of reasoning steps that models—
in this case, Llama-2-chat-hf3 (Touvron et al.,
2023), Mistral-7B-Instruct-v0.2 (Jiang et al.,
2023a) and Zephyr-7b-beta (Tunstall et al.,
2023)—generate when prompted to solve problems
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of propositional logic. Binary labels are assigned to
each response, indicating whether the rationale pro-
vided by the model is sound (True) or not (False).
Each model is assessed on 12 problems of proposi-
tional logic across 5 random seeds, resulting in a
total of 60 responses per model.

Switchboard and Dailydialog (Wallbridge et al.,
2022). Switchboard includes acceptability judg-
ments collected using stimuli from the Switchboard
Telephone Corpus (Godfrey et al., 1992). More
specifically, the judgments refer to how plausible it
is that a specific response belongs to a telephonic
dialogue. The same kind of judgments are provided
for Dailydialog, which collects written dialogues
intended to mimic conversations that could happen
in real life.

Recipe-generation (Stein et al., 2023). This
dataset contains human annotations assessing the
quality of machine-generated recipes based on 6
attributes: grammar, fluency, verbosity, structure,
success, overall.

NewsRoom (Grusky et al., 2018). This dataset
includes human judgments on the quality of system-
generated summaries of news articles. More specif-
ically, annotators evaluated summaries across two
semantic dimensions (informativeness and rele-
vancy) and two syntactic dimensions (fluency and
coherence).

SummEval and G-Eval (Fabbri et al., 2021; Liu
et al., 2023). These datasets include summaries
generated by multiple recent summarisation mod-
els trained on the CNN/DailyMail dataset (Her-
mann et al., 2015). Summaries are annotated by
both expert judges and crowdsourced workers on 4
dimensions: coherence, consistency, fluency, rele-
vance.

WMT 2020 En-De and Zh-En (Freitag et al.,
2021). These datasets are a re-annotated version
of the English-to-German and Chinese-to-English
test sets taken from the WMT 2020 news transla-
tion task. The annotation was carried out by raters
who are professional translators and native speak-
ers of the target language using a Scalar Quality
Metric (SQM) evaluation on a 0–6 rating scale.

WMT 2023 En-De and Zh-En (Kocmi et al.,
2023). These datasets are the English-to-German
and Chinese-to-English test sets taken from the
General Machine Translation Task organised as

part of the 2023 Conference on Machine Transla-
tion (WMT). In contrast to previous editions, the
evaluation of translation quality was conducted by
a professional or semi-professional annotator pool
rather than utilising annotations from MTurk. An-
notators were asked to provide a score between 0
and 100 on a sliding scale.

Dataset Krippendorf’s α

C
at

eg
or

ic
al

Topical Chat 0.08
QAGS 0.49
DICES-990 0.14
DICES-350-crowdsourced 0.16
Persona Chat 0.33
Inferential strategies 1.0

G
ra

de
d

Dailydialog 0.59
Switchboard 0.57
Persona Chat 0.33
Topical Chat 0.08
Recipe-generation 0.41
NewsRoom 0.11
WMT 2020 En-De 0.5
WMT 2020 Zh-En 0.09

Table 3: Inter-rater agreement for datasets with multiple
human annotations. Datasets in blue concern human-
generated language, while those in red concern model-
generated text.

B The JUDGE-BENCH Data Schema

To facilitate extending our benchmark, we adopt a
shared schema used to pre-process all datasets. Our
publicly available code base includes an example2

of this format as well as instructions on how to
verify that newly added datasets comply with it.

The Json-based JUDGE-BENCH data schema en-
sures that the following fields are included for each
dataset:
• dataset: the name of the dataset;
• dataset_url: the URL where the original

dataset can be downloaded, as opensourced by
their creators;

• annotations: an overview of the properties an-
notated for each dataset, along with information
on how they are measured and prompt-like in-
structions similar to those originally given to the
human annotators (when applicable);

• instances: dataset instances including the
piece of text to be judged, aggregated human
2https://github.com/dmg-illc/JUDGE-BENCH/blob/

master/data/example.json
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judgments and, when available, individual hu-
man annotations.

We note that, while we do not systematically ex-
plore inter-annotator variations at the instance level,
the data schema we adopt allows for conducting
this type of analysis in future work.

C Upper Bound Estimation for Model
Correlations

Whenever multiple human annotations were pub-
licly available for a property (see Table 3 for
inter-annotator agreement scores), we computed
upper-bound estimates for the correlations achiev-
able by models. The intuition behind these esti-
mates, borrowed from neuroscience (Nili et al.,
2014), is that the maximum correlation a model
can achieve with aggregated human responses is
bounded by the average correlation between single-
participant responses and the aggregated responses
across participants. We applied a similar logic to
the human judgments used in the present study and
combined it with a bootstrapping approach. For
each annotated property, we bootstrapped single-
participant responses by sampling 1000 times from
the available human responses, excluding data
points where a single annotation was available.
Next, we computed the alignment between each
of the bootstrapped-participant arrays and the array
of aggregated responses. Alignment was computed
as Spearman’s correlation for graded judgments
and Cohen’s kappa for categorical judgments. Fi-
nally, we estimated the upper bound as the average
of the 1000 alignment measures. In cases where
alignment between bootstrapped and aggregated
responses could not be computed—because the
variance of the bootstrapped responses was null—
values were replaced with an average of the ‘non-
nan’ correlations.

We emphasise that these upper bounds are esti-
mates and, as such, are subject to errors. Therefore,
it may happen that model performance exceeds
these upper bounds.

D Properties with Graded Judgments

In Figure 3, we display results for a set of graded
properties annotated in one or more of the datasets
we consider. The properties are defined as follows:

• Acceptability refers to whether it is plausible
or not that a response belongs to a telephonic

dialogue and was annotated in Swithboard and
Dailydialog;

• Coherence was annotated for summaries and
model-generated reasonings as part of the
datasets NewsRoom, ROSCOE, and SummEval;

• Consistency refers to the alignment between facts
described in a summary and in its source text,
and was annotated in SummEval;

• Engaging indicates whether a response gener-
ated in the context of a dialogue is dull or in-
teresting and was annotated in TopicalChat and
PersonaChat;

• Fluency measures whether a piece of text is gram-
matically correct and well-formatted, and was
annotated in NewsRoom, SummEval and Recipe-
generation;

• Informativeness refers to the extent to which a
summary captures the key points of the full text,
and was annotated for summaries as part of the
NewsRoom dataset;

• Relevance refers to whether a summary selects
important information as opposed to including
redundancies, and was annotated for NewsRoom
and SummEval;

• Verbosity indicates whether a generated recipe is
concise and avoids unnecessary repetitions, and
was annotated in Recipe-generation.

E Inference Details

All open-model checkpoints were obtained using
the HuggingFace pipeline and we access all pro-
prietary models using their corresponding API li-
braries. The proprietary models were accessed
from 06-06-2024 to 13-06-2024, for standard
prompting and from 09-10-2024 to 13-12-2024, for
CoT prompting. We obtain the model responses us-
ing greedy decoding, which we operationalise for
the proprietary models by setting the temperature
parameter to 0. We allow open models to generate
a maximum of 25 new tokens and proprietary mod-
els to generate a maximum of 5 new tokens. For
CoT prompting, we allow for a maximum of 1000
new tokens.

We leverage Nvidia A100 (80 GB) GPUs for a
total of 321 compute hours. The cost of running
experiments using Gemini-1.5-flash was C30.31,
while the cost of experiments using GPT-4o was
approximately $565.
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F Valid Response Rates

Table 5 reports the rate of valid responses for each
model and dataset. Valid response rates are sum-
marised per model and dataset in Figures 5 and 6.

St
ar

lin
g-

7B

O
LM

o-
7B

Co
m

m
-R

4

G
PT

-4
o

M
ix

tr
al

-8
x7

B

Co
m

m
-R

+

G
em

in
i-1

.5

Ll
am

a-
3.

1-
8B

Ll
am

a-
3.

1-
70

B

M
ix

tr
al

-8
x2

2B

M
is

tr
al

-7
B

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

 r
es

po
ns

e 
Ra

ti
o

0.70

0.84

0.95 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00

Figure 5: Valid response rate per model.

G More Details on Toxicity and Safety
Evaluation

For the Medical-safety dataset, models often re-
fused to answer. Instead they tended to generate
explanations, copy what they had in the prompt,
or tried to be generally helpful because they saw
that it was a medical issue. Since we take a random
answer when no answer could be detected, this con-
tributes to lower the results obtained on this task.
Scores for the DICES dataset were also low, even
though the valid response rate was high, because in
this case there is the ‘Unsure’ option, which (along
with ‘Unsafe’) models preferred over calling any-
thing ‘Safe’. For ToxicChat, models performed
reasonably well.

H Additional Results

In Table 6 we report human-model alignment
scores per dataset for all models tested, thus com-
plementing Table 1 in the paper.

Chain-of-Thought Prompts. For the results
with CoT prompting, we use the same original
instructions used to gather human judgments as
prompts for the model but adapt the additional
guidelines to emphasise multi-step reasoning rather
than constrain the models’ output. Specifically, we
append the original instructions with the follow-
ing additional guideline: ‘Always end your answer

with either {} regarding the entire context. Let’s
think step by step.’, in which {} is replaced with an
enumeration of all possible answer labels format-
ted as ‘Therefore, {label A} is correct, or therefore,
{label B} is correct, or therefore [...].’. This also
allows for automatically extracting the final an-
swers from model responses during evaluation. In
this study, we evaluate nine models and exclude
Mixtral-8x22B and Comm-R+ due to computa-
tional constraints. For the CoLa-grammar dataset,
we obtain GPT-4o responses only for ten percent
of its instances (that are randomly sampled) to ad-
dress the slow processing times and rate limitations.
While CoT prompting leads to improved agreement
scores and correlations when used with some mod-
els for certain datasets (see Table 7), its overall
effectiveness compared to the results obtained us-
ing standard prompts without CoT (see Table 6) is
inconsistent.

Prompt Paraphrases. We experiment with
paraphrased prompts for three datasets that models
struggle with: DICES-350-expert, WMT 2023
En-De, and WMT 2023 Zh-En. The paraphrase
for dices-350-expert elaborates on the concept
of safety, compared to its short original prompt,
whereas the paraphrases for the WMT datasets
are more concise regarding what comprises a
good translation compared to the original. We do
not observe consistent improvements when using
paraphrased prompts compared to the original
prompts (Table 4).

Few-shot Prompts. For the three datasets
above—DICES-350-expert, WMT 2023 En-De,
and WMT 2023 Zh-En—we also experiment with
few-shot prompts (Table 4), where we provide the
model with 6 examples for DICES-350-expert, 3 of
safe conversations and 3 of unsafe conversations,
and 4 examples for each WMT 2023 dataset, 2
of high-scoring translations and 2 of low-scoring
translations. Using few-shot prompts does not im-
prove correlations for dices-350-expert. On the
WMT 2023 datasets, we observe higher correla-
tions for Llama 3.1 8B but very moderate or no
improvements on the other two models. Given
that these improvements are inconsistent across
datasets, we did not scale up the experiments to all
20 datasets and 11 models.
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Prompt Llama 3.1 8B Llama 3.1 70B Mixtral-8x7B

DICES-350-expert

Original 0.01 -0.13 -0.11
CoT -0.07 -0.26 -0.02
Few-shot 0.01 -0.22 -0.01
Paraphrase -0.13 -0.36 -0.09

WMT 2023 En-De

Original 0.08 (1) 0.14 (1) 0.17 (1)
CoT 0.18 (1) 0.16 (1) 0.20 (1)
Few-shot 0.19 (1) 0.20 (1) 0.20 (1)
Paraphrase 0.01 ±0.09 (3) 0.08 ± 0.12 (3) 0.14 ±0.05 (3)

WMT 2023 Zh-En

Original 0.02 (1) 0.14 (1) 0.15 (1)
CoT 0.13 (1) 0.13 (1) 0.16 (1)
Few-shot 0.15 (1) 0.14 (1) 0.16 (1)
Paraphrase 0.08 ±0.04 (3) 0.09 ±0.07 (2) 0.13 ±0.03 (3)

Table 4: Cohen’s kappa for DICES-350-expert and Spearman’s correlation for two WMT 2023 datasets, comparing
the original prompt and CoT prompt to few-shot prompts and prompt paraphrases for a selection of models. For
datasets with more than one paraphrased prompt, we report the average and standard deviation across paraphrases.
For Spearman’s correlations, we report the number of significant correlations (p < 0.05) for each model and dataset
in brackets.
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Figure 6: Average ratios of valid responses across datasets over the 11 models we tested.
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1.0
1.0

1.0
1.0

0.98
1.0

1.0
1.0

1.0
0.85

0.98
C

oL
a-gram

m
ar(63)

1.0
1.0

1.0
1.0

1.0
1.0

1.0±0.01
1.0

1.0
0.71±0.15

0.87±0.11
L

L
M

B
ar-natural(1)

1.0
1.0

1.0
1.0

0.95
1.0

0.95
1.0

1.0
0.33

0.94
L

L
M

B
ar-adversarial(1)

1.0
1.0

1.0
1.0

0.97
1.0

0.96
1.0

1.0
0.48

0.98
ToxicC

hat(2)
1.0

1.0
1.0

0.99
0.96±0.06

0.99
0.91±0.11

0.98
1.0

0.86±0.02
0.92±0.08

Persona
C

hat(2)
1.0

1.0
1.0

1.0
0.98±0.02

1.0
0.89±0.15

1.0
1.0

0.96±0.01
0.58±0.24

TopicalC
hat(2)

1.0
1.0

1.0
1.0

1.0
1.0

0.99±0.01
1.0

1.0
0.7±0.12

0.77±0.24
R

O
SC

O
E

-G
SM

8K
(2)

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
0.92±0.01

0.8±0.23
R

O
SC

O
E

-eSN
L

I(2)
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

0.6±0.33
0.73±0.18

D
IC

E
S-990

(1)
1.0

1.0
1.0

0.99
0.98

1.0
1.0

1.0
1.0

0.77
0.35

Inferentialstrategies
(1)

1.0
1.0

1.0
1.0

0.99
0.97

1.0
1.0

1.0
0.05

0.53
R

O
SC

O
E

-C
osm

osQ
A

(2)
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

0.49±0.45
0.75±0.19

Q
A

G
S

(1)
1.0

1.0
1.0

0.97
1.0

1.0
1.0

1.0
1.0

0.73
0.78

M
edical-safety

(2)
0.35±0.37

0.96±0.02
0.97±0.04

0.97±0.04
0.85±0.1

0.78±0.31
0.33±0.47

0.89±0.11
1.0

0.22±0.08
0.85±0.19

D
IC

E
S-350-expert(1)

1.0
1.0

1.0
0.99

1.0
0.98

0.99
1.0

1.0
0.55

0.27
D

IC
E

S-350-crow
dsourced

(1)
1.0

1.0
1.0

0.99
0.99

0.98
1.0

1.0
1.0

0.51
0.16

R
O

SC
O

E
-D

R
O

P
(2)

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
0.51±0.51

0.68±0.26

Graded Annotations

D
ailydialog

(1)
1.0

1.0
1.0

0.99
1.0

1.0
0.69

1.0
1.0

0.89
0.62

Sw
itchboard

(1)
1.0

1.0
1.0

1.0
0.99

1.0
0.93

1.0
1.0

0.95
0.77

Persona
C

hat(4)
1.0

1.0
1.0

1.0
1.0

1.0
0.97±0.03

1.0
1.0

0.71±0.27
0.92±0.15

TopicalC
hat(4)

1.0
1.0

1.0
1.0

1.0
1.0

0.99±0.01
1.0

1.0
0.75±0.1

0.91±0.07
R

ecipe-generation
(6)

1.0
1.0

1.0
1.0

1.0±0.01
1.0

0.67±0.2
1.0

1.0
0.11±0.16

0.98±0.01
R

O
SC

O
E

-C
osm

osQ
A

(2)
1.0

1.0
1.0

1.0
1.0

1.0
0.99±0.01

1.0
1.0

0.97±0.01
0.89

R
O

SC
O

E
-D

R
O

P
(2)

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
0.99±0.01

0.85±0.11
R

O
SC

O
E

-eSN
L

I(2)
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
0.89

R
O

SC
O

E
-G

SM
8K

(2)
1.0

1.0
1.0

1.0
1.0

1.0
0.98

1.0
1.0

0.84±0.02
0.91±0.06

N
ew

sR
oom

(4)
1.0

1.0
0.98±0.01

0.99
1.0

1.0
1.0

1.0
1.0

0.89±0.1
0.83±0.04

Sum
m

E
val(4)

0.87±0.13
0.94±0.06

1.0
0.9±0.06

1.0
1.0

0.72±0.3
0.94±0.08

1.0
0.96±0.04

0.79±0.05
W

M
T

2020
E

n-D
e

(1)
1.0

1.0
1.0

0.99
0.87

1.0
1.0

1.0
1.0

0.85
0.75

W
M

T
2020

Z
h-E

n
(1)

1.0
1.0

1.0
1.0

0.87
1.0

1.0
1.0

1.0
0.81

0.7
W

M
T

2023
E

n-D
e

(1)
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

0.79
0.58

W
M

T
2023

Z
h-E

n
(1)

1.0
1.0

1.0
1.0

0.99
1.0

1.0
1.0

1.0
0.78

0.61
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R
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w
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Type
D

ataset(#
properties

judged)
G

PT-4o
L

lam
a-3.1-70B

M
ixtral-8x22B

G
em

ini-1.5
M

ixtral-8x7B
C

om
m

-R
+

C
om

m
-R

4
L

lam
a-3.1-8B

M
istral-7B

Starling-7B
O

L
M

o-7B

Categorical Annotations

C
oL

a
(1)

0.34
0.46

0.54
0.45

0.55
0.12

0.01
0.42

0.43
0.45

0.42
C

oL
a-gram

m
ar(63)

0.47
±0.22

0.28
±0.24

0.28
±0.23

0.26
±0.24

0.21
±0.18

0.13
±0.14

0.08
±0.1

0.1
±0.14

0.09
±0.13

0.07
±0.08

0.04
±0.06

L
L

M
B

ar-natural(1)
0.84

0.8
0.72

0.79
0.54

0.56
0.59

0.57
0.3

0.28
0.24

L
L

M
B

ar-adversarial(1)
0.58

0.46
0.2

0.29
0.06

0.11
-0.2

-0.18
-0.2

-0.12
-0.1

ToxicC
hat(2)

0.49
±0.36

0.41
±0.26

0.45
±0.27

0.45
±0.35

0.36
±0.12

0.28
±0.35

0.2
±0.21

0.34
±0.29

0.45
±0.18

0.27
±0.26

0.3
±0.13

Persona
C

hat(2)
0.24

±0.34
0.24

±0.33
0.58

±0.59
-0.03

±0.04
0.54

±0.65
0.48

±0.74
0.01

±0.01
0.5

±0.7
0.47

±0.75
-0.03

±0.04
0.02

±0.03
TopicalC

hat(2)
0.05

±0.07
-0.02

±0.02
-0.03

±0.04
-0.03

±0.04
0.02

±0.03
0.01

±0.02
0.01

±0.01
0.57

±0.61
-0.03

±0.05
0.04

±0.06
0.03

±0.04
R

O
SC

O
E

-G
SM

8K
(2)

0.59
±0.35

0.64
±0.27

0.62
±0.38

0.6
±0.24

0.58
±0.36

0.0
0.21

±0.03
0.36

±0.31
0.47

±0.34
-0.03

±0.01
-0.01

±0.02
R

O
SC

O
E

-eSN
L

I(2)
0.29

±0.06
0.38

±0.08
0.13

±0.13
0.11

±0.18
0.1

±0.11
0.03

±0.05
-0.01

±0.01
0.14

±0.2
0.02

±0.09
0.01

±0.07
-0.04

±0.09
R

O
SC

O
E

-D
R

O
P

(2)
0.29

±0.08
0.27

±0.07
0.2

±0.12
0.08

±0.05
0.13

±0.21
0.03

±0.04
0.02

±0.07
0.02

±0.02
0.09

±0.08
0.01

±0.03
0.0

±0.01
R

O
SC

O
E

-C
osm

osQ
A

(2)
0.16

±0.07
0.25

±0.02
0.09

±0.17
0.14

±0.17
0.19

±0.05
-0.03

±0.01
-0.01

±0.02
0.08

±0.11
0.29

±0.03
0.03

-0.18
Q

A
G

S
(1)

0.72
0.7

0.66
0.65

0.68
0.13

0.33
0.58

0.43
0.02

0.11
M

edical-safety
(2)

0.01
±0.03

-0.03
±0.06

-0.02
±0.09

-0.03
±0.08

0.0
±0.06

0.01
±0.02

0.01
±0.01

0.01
-0.03

±0.12
0.0

±0.02
-0.02

±0.07
D

IC
E

S-990
(1)

-0.24
-0.17

-0.16
-0.12

-0.2
-0.09

-0.02
-0.11

-0.12
-0.05

0.0
D

IC
E

S-350-expert(1)
-0.2

-0.13
-0.15

-0.03
-0.11

0.01
0.01

0.01
0.01

0.01
-0.06

D
IC

E
S-350-crow

dsourced
(1)

-0.22
-0.18

-0.08
-0.02

-0.11
-0.08

0.01
-0.05

-0.04
0.01

-0.03
Inferentialstrategies

(1)
0.42

0.4
0.02

0.22
0.06

-0.02
-0.12

0.13
0.01

0.01
0.04

Graded Annotations

D
ailydialog

(1)
0.69

(1)
0.6

(1)
0.55

(1)
0.63

(1)
0.63

(1)
0.52

(1)
0.23

(1)
0.61

(1)
0.48

(1)
0.09

(0)
0.07

(0)
Sw

itchboard
(1)

0.66
(1)

0.45
(1)

0.63
(1)

0.59
(1)

0.56
(1)

0.36
(1)

0.53
(1)

0.28
(1)

0.52
(1)

0.13
(0)

0.3
(1)

Persona
C

hat(4)
0.22

±0.11
(2)

-0.02
±0.2

(0)
0.16

±0.1
(1)

0.1
±0.09

(0)
0.02

±0.15
(0)

0.07
±0.13

(0)
0.05

±0.2
(0)

-0.02
±0.14

(0)
-0.09

±0.17
(1)

0.03
±0.13

(0)
-0.06

±0.14
(0)

TopicalC
hat(4)

0.26
±0.03

(2)
0.28

±0.1
(2)

0.13
±0.04

(0)
0.17

±0.12
(1)

0.21
±0.18

(1)
0.14

±0.05
(0)

0.07
±0.07

(0)
0.15

±0.13
(0)

0.29
±0.11

(3)
0.14

±0.16
(1)

0.08
±0.21

(1)
R

ecipe-generation
(6)

0.78
±0.05

(6)
0.66

±0.07
(6)

0.6
±0.15

(6)
0.67

±0.09
(5)

0.57
±0.24

(5)
0.32

±0.28
(5)

0.06
±0.26

(3)
0.34

±0.09
(5)

0.28
±0.08

(4)
0.04

±0.17
(1)

0.1
±0.08

(0)
R

O
SC

O
E

-G
SM

8K
(2)

0.82
±0.12

(2)
0.83

±0.11
(2)

0.81
±0.14

(2)
0.81

±0.12
(2)

0.79
±0.13

(2)
0.68

±0.2
(2)

0.7
±0.08

(2)
0.76

±0.15
(2)

0.63
±0.18

(2)
0.46

±0.13
(2)

0.1
±0.07

(1)
R

O
SC

O
E

-eSN
L

I(2)
0.49

±0.24
(2)

0.4
±0.16

(2)
0.38

±0.17
(2)

0.35
±0.21

(2)
0.32

±0.12
(2)

0.09
±0.08

(0)
0.28

±0.21
(1)

0.19
±0.16

(1)
0.32

±0.12
(2)

0.11
±0.06

(0)
0.11

±0.17
(1)

R
O

SC
O

E
-D

R
O

P
(2)

0.57
±0.22

(2)
0.59

±0.16
(2)

0.44
±0.15

(2)
0.44

±0.13
(2)

0.32
±0.12

(2)
0.21

±0.22
(1)

0.37
±0.18

(2)
0.23

±0.1
(2)

0.22
±0.22

(1)
0.16

±0.17
(1)

0.15
±0.21

(1)
R

O
SC

O
E

-C
osm

osQ
A

(2)
0.57

±0.18
(2)

0.55
±0.18

(2)
0.51

±0.16
(2)

0.57
±0.17

(2)
0.53

±0.21
(2)

0.33
±0.25

(2)
0.48

±0.17
(2)

0.44
±0.26

(2)
0.57

±0.2
(2)

0.13
±0.04

(1)
0.49

±0.24
(2)

N
ew

sR
oom

(4)
0.59

±0.02
(4)

0.59
±0.03

(4)
0.44

±0.05
(4)

0.55
±0.03

(4)
0.5

±0.07
(4)

0.36
±0.06

(4)
0.16

±0.05
(4)

0.45
±0.04

(4)
0.26

±0.06
(4)

0.21
±0.08

(4)
-0.01

±0.04
(0)

Sum
m

E
val(4)

0.35
±0.06

(4)
0.44

±0.14
(4)

0.54
±0.08

(4)
0.38

±0.02
(4)

0.48
±0.02

(4)
0.19

±0.06
(4)

0.13
±0.06

(4)
0.29

±0.09
(4)

0.4
±0.12

(4)
0.15

±0.05
(4)

0.06
±0.02

(2)
W

M
T

2020
E

n-D
e

(1)
0.63

(1)
0.37

(1)
0.51

(1)
0.46

(1)
0.2

(1)
0.42

(1)
0.15

(1)
0.11

(1)
0.36

(1)
0.15

(1)
-0.03

(1)
W

M
T

2020
Z

h-E
n

(1)
0.54

(1)
0.39

(1)
0.48

(1)
0.41

(1)
0.25

(1)
0.42

(1)
0.15

(1)
0.14

(1)
0.39

(1)
0.15

(1)
0.01

(0)
W

M
T

2023
E

n-D
e

(1)
0.22

(1)
0.14

(1)
0.23

(1)
0.16

(1)
0.17

(1)
0.22

(1)
0.19

(1)
0.08

(1)
0.18

(1)
-0.09

(1)
-0.05

(1)
W

M
T

2023
Z

h-E
n

(1)
0.17

(1)
0.14

(1)
0.19

(1)
0.14

(1)
0.15

(1)
0.15

(1)
0.14

(1)
0.02

(1)
0.15

(1)
0.01

(0)
0.01

(0)

Table
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w
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w
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hum

an-generated
language

w
hile

those
in

red
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Type
D

ataset(#properties
judged)

G
PT-4o

L
lam

a-3.1-70B
G

em
ini-1.5

M
ixtral-8x7B

C
om

m
-R

4
L

lam
a-3.1-8B

M
istral-7B

Starling-7B
O

L
M

o-7B
Categorical Annotations

C
oL

a
(1)

0.35
0.41

0.45
0.47

0.3
0.35

0.51
0.39

0.26
C

oL
a-gram

m
ar(63)

-0.04
±0.06

0.35
±0.25

0.33
±0.23

0.21
±0.16

0.05
±0.09

0.24
±0.21

0.19
±0.19

0.16
±0.16

0.04
±0.06

L
L

M
B

ar-natural(1)
0.86

0.86
0.71

0.62
0.37

0.55
0.56

0.46
0.21

L
L

M
B

ar-adversarial(1)
0.67

0.92
0.32

-0.07
-0.25

-0.3
-0.29

-0.25
-0.05

ToxicC
hat(2)

0.42
±0.1

0.37
±0.03

0.41
±0.36

0.33
±0.21

0.33
±0.26

0.22
±0.03

0.41
±0.07

0.33
±0.16

0.31
±0.2

Persona
C

hat(2)
0.83

±0.25
0.13

±0.19
0.57

±0.6
0.0

±0.01
0.47

±0.75
-0.01

±0.01
-0.01

±0.02
-0.03

±0.05
-0.03

±0.05
TopicalC

hat(2)
0.57

±0.61
0.09

±0.13
0.03

±0.04
-0.02

±0.03
0.48

±0.74
-0.0

-0.03
±0.05

-0.03
±0.05

-0.03
±0.05

R
O

SC
O

E
-G

SM
8K

(2)
0.29

±0.77
0.52

±0.26
0.52

±0.25
-0.29

±0.02
-0.24

±0.34
0.12

±0.15
0.38

±0.46
-0.06

±0.18
-0.04

±0.03
R

O
SC

O
E

-eSN
L

I(2)
0.05

±0.16
0.1

±0.09
-0.01

±0.01
-0.03

±0.05
-0.04

±0.04
-0.04

±0.04
-0.01

±0.09
0.06

±0.17
-0.03

±0.06
R

O
SC

O
E

-D
R

O
P

(2)
-0.05

±0.01
0.13

±0.15
-0.08

±0.07
-0.11

±0.15
-0.14

±0.12
-0.05

±0.05
-0.07

±0.09
-0.03

-0.07
±0.04

R
O

SC
O

E
-C

osm
osQ

A
(2)

-0.29
±0.06

0.03
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