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Abstract
Current Large Language Models (LLMs) ex-
cel in general reasoning yet struggle with spe-
cialized tasks requiring proprietary or domain-
specific knowledge. Fine-tuning large models
for every niche application is often infeasible
due to black-box constraints and high compu-
tational overhead. To address this, we propose
a collaborative framework that pairs a special-
ized weak model with a general strong model.
The weak model, tailored to specific domains,
produces initial drafts and background infor-
mation, while the strong model leverages its
advanced reasoning to refine these drafts, ex-
tending LLMs’ capabilities to critical yet spe-
cialized tasks. To optimize this collaboration,
we introduce a collaborative feedback to fine-
tunes the weak model, which quantifies the
influence of the weak model’s contributions
in the collaboration procedure and establishes
preference pairs to guide preference tuning of
the weak model. We validate our framework
through experiments on three domains. We find
that the collaboration significantly outperforms
each model alone by leveraging complemen-
tary strengths. Moreover, aligning the weak
model with the collaborative preference further
enhances overall performance. The code is pub-
licly available.

1 Introduction

The rapid evolution of Large Language Models
(LLMs) (Zhao et al., 2023; Chang et al., 2024) has
exhibited remarkable proficiency in general rea-
soning (Kojima et al., 2022; Zheng et al., 2023),
problem-solving (Lewkowycz et al., 2022; Yao
et al., 2024), and natural language understanding
(Wei et al., 2022a). These models have demon-
strated the ability to perform a broad range of tasks
across diverse domains, often with minimal task-
specific training. However, their immense size and
general-purpose training can make them less effec-
tive in specialized tasks or domains that are under-
represented in their training data or require access
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Figure 1: Comparison of our method and the related
work during training and inference .

to proprietary information (Fu et al., 2023). This
limitation poses a significant challenge: how can
we extend the problem-solving spectrum of LLMs
to encompass these niche but critical tasks?

Directly training or fine-tuning large models for
every specific domain or task is often impractical
due to the following two key reasons. First, some
popular LLMs (e.g., GPT-4 (Achiam et al., 2023),
Gemini (Team et al., 2023)) are black-box mod-
els, with their internal parameters inaccessible for
modification. Even when fine-tuning is possible, it
can be costly and raises concerns about scalability
as models continue to grow in size, such as those
models exceeding 70 billion parameters. Addition-
ally, fine-tuning LLMs on private data can pose
security and privacy risks. Specifically, fine-tuning
requires exposing the model to potentially sensitive
data, which could inadvertently be memorized or
leaked through the model’s outputs. This exposure
creates a risk of violating data privacy regulations
and necessitates robust measures to ensure data
confidentiality and compliance.

To overcome these challenges, we aim to lever-
age a collaborative framework that synergizes a
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small-sized weak model with a large-sized strong
model. In this paradigm, the weak model is tailored
with specialized problem-solving abilities in spe-
cific domains. Conversely, the strong model boasts
robust general capabilities, excelling in tasks that
require broad knowledge and advanced reasoning.
By orchestrating a collaboration between these two
models, we leverage their complementary strengths
to tackle specific tasks more effectively than either
could achieve independently. The weak model con-
tributes domain-specific insights and preliminary
solution drafts, while the strong model refines these
drafts using its advanced reasoning capabilities.

While a few existing works have explored forms
of weak and strong model collaboration (Juneja
et al., 2023; Shen et al., 2024), they often pre-
define the interaction mechanisms—for example,
the strong model directly receives knowledge
pieces in a predefined form generated by the weak
model (Juneja et al., 2023). However, the most ef-
fective interaction strategy can vary depending on
the specific scenario or models involved. Moreover,
prior approaches typically focus on individual feed-
back, where the single model provides the feedback
to finetune another model. They overlook the po-
tential benefits of feedback from the collaboration
procedure (as shown in Figure 1), which helps the
weak model understand the strong model’s prefer-
ences and to enhance the mutual cooperation be-
tween the two models.

In this paper, we introduce an innovative frame-
work for dynamic weak-strong model collaboration.
Our approach harnesses the specialized knowledge
of a knowledge-intensive weak model to generate
detailed initial drafts and background information.
The strong model then applies its robust general
reasoning capabilities to refine these drafts, effec-
tively merging the strengths of both models. To
further optimize this collaborative interaction, we
implement a feedback loop, which fine-tunes the
weak model based on the strong model’s prefer-
ences, creating an adaptive and synergistic interac-
tion that continuously improves. We evaluate the
impact of the weak model’s contributions on col-
laborative performance and construct preference
pairs for preference tuning the weak model. This
data-driven strategy allows us to amplify beneficial
contributions from the weak model and minimize
detrimental ones, thereby fostering a mutually ben-
eficial interaction.

We validate our framework through experi-
ments on three datasets, yielding several key find-

ings: (1) Significant Performance Gains through
Collaboration: The collaboration between the
weak and strong models significantly outperforms
each model operating independently, demonstrat-
ing the effectiveness of leveraging complementary
strengths. (2) Effectiveness of Finetuning Weak
Model with Strong Counterpart Preference for Mu-
tually Beneficial Interaction: Incorporating feed-
back from the strong model to fine-tune the weak
model enhances the overall effectiveness of the
collaboration. This iterative refinement allows the
weak model to align closely with the strong model’s
preferences and reasoning patterns. (3) Enhanced
Gains with Strong Models of High General Capa-
bility: The collaborative gains are substantial when
the strong model possesses sufficient general abil-
ities. Merely having a strong model that is better
than the weak model does not guarantee mutual im-
provement; the strong model’s capacity to correct
the weak model’s outputs is critical.

2 Related Work

2.1 Enhancing LLMs for Solving Specialized
Problems

Addressing specialized problems beyond the gen-
eralist training of LLMs has been a key research
focus. A common approach is retrieval-augmented
generation, where an LLM queries external sources
for domain-specific information to enhance re-
sponses (Guu et al., 2020; Izacard et al., 2022; Sun
et al., 2023; Jiang et al., 2023b; Zhang et al., 2024b).
However, these methods often provide static con-
text for LLM to generate responses without fur-
ther refinement or learning from that context. This
static nature can lead to less adaptability in com-
plex, evolving problem-solving scenarios. Another
approach uses small models for domain-specific
processing to guide LLMs. This includes weak-
to-strong generalization, where a strong model
learns from the supervision of a weaker one (Burns
et al., 2024; Charikar et al., 2024; Yang et al.,
2024; Guo and Yang, 2024; Zheng et al., 2024;
Sun et al., 2024). However, this often requires
access to the strong model’s parameters, which
can be a challenge for black-box systems. Other
methods prompt LLMs with the outputs of small
models to enhance performance on niche tasks (Xu
et al., 2024; Liu et al., 2024). Additionally, small
models can act as intermediaries by identifying rel-
evant context or splitting problems into subtasks,
thereby reducing complexity for the larger model

20356



(Juneja et al., 2023; Shen et al., 2024). While these
methods improve LLM performance on specialized
tasks, they often rely on static interaction schemes,
limiting the weaker model to retrieval or prompt-
ing. In contrast, we introduce a dynamic feedback
loop between weak and strong models, fostering
adaptive collaboration that evolves with the task.

2.2 Multi-Model Collaboration

Model collaboration explores the effective uti-
lization of the collaborative strengths of multiple
LLMs These works are generally classified into
three categories: Merging, Ensemble and Align-
ment (Lu et al., 2024). Model merging com-
bines the parameters of various LLMs into a cohe-
sive model, requiring compatibility of parameters
within a linear framework (Szymanski and Lem-
mon, 1993; Fedus et al., 2022; Jiang et al., 2024;
O’Brien and Lewis, 2023; Deng and Raffel, 2023;
Ji et al., 2024). Moreover, model ensemble lever-
ages the outputs of different LLMs to produce uni-
fied outcomes, focusing less on the parameters of
the individual models (Shnitzer et al., 2023; Jiang
et al., 2023a; Srivatsa et al., 2024). But previous
research typically concentrated on interactions be-
tween models of comparable size or employed a
fixed interaction mechanism for poor task adap-
tation. Furthermore, alignment can be viewed as
a specialized form of model collaboration, where
a specialized reward model provides feedback to
guide a target model toward desired objectives (Tao
and Li, 2024; Lee et al., 2024). However, these ap-
proaches typically focus on individual feedback
and overlook the potential benefits of feedback
from the collaboration procedure, which can en-
hance mutual cooperation between the two models.

3 The Proposed Method - COWEST

We introduce COWEST, a Collaboration method
between Weak and Strong models that harnesses
their complementary strengths and align the weak
model with collaborative feedback to improve col-
laboration performance. Specifically, during in-
ference, our approach harnesses the specialized
knowledge of a knowledge-intensive weak model
to generate detailed initial drafts and background
information. The strong model then applies its ro-
bust general reasoning capabilities to refine these
drafts, effectively merging the strengths of both
models. To further optimize this collaborative in-
teraction, during training, we implement a feedback

loop, which fine-tunes the weak model based on the
strong model’s preference, creating an adaptive and
synergistic interaction that continuously improves.
We construct preference pairs by evaluating the
impact of the weak model’s contributions on col-
laborative performance. Then, we adopt direct pref-
erence optimization to align the weak model. This
data-driven strategy allows us to amplify beneficial
contributions from the weak model and minimize
detrimental ones, thereby fostering a mutually ben-
eficial interaction. The pesudo codes of training
and inference are Algorithm 1 and Algorithm 2 in
the appendix.

3.1 Problem Setup

We propose a collaborative approach that leverages
both weak and strong models to tackle diverse rea-
soning tasks. These tasks require domain-specific
knowledge, problem-solving skills, and strong gen-
eral capabilities such as reasoning, comprehension,
and calculation. To address these tasks, we em-
ploy a weak model (e.g., Llama2-7b), denoted as
πw. This relatively small, cost-efficient model is
a white-box system that can be fine-tuned for spe-
cific domains to acquire task-relevant knowledge.
Alongside this, we utilize a strong model (e.g.,
GPT-4), referred to as πs, a black-box model with
fixed internal parameters. Although it has limited
access to specific knowledge or proprietary data,
the strong model excels in general reasoning.

Given a user query x from a target task, our ob-
jective is to enhance the overall inference capability
by utilizing the complementary strengths of πw and
πs. The inference process is formulated as:

y∗ = F
(
πw ◦ x, πs ◦ x, x

)
∀x ∈ X,

where y∗ represents the final output for the query x,
and F is the mechanism that integrates the domain-
specific expertise of πw with the general reasoning
capability of πs, for improved task performance.

3.2 Supervised Fine-tuning of the Weak
Model

The weak model πw is initially fine-tuned on a task-
specific training dataset, DSFT = {(x, ŷ)}, where
each query x has a corresponding ground truth ŷ.
The goal of this fine-tuning is to adapt πw to the
specific task by learning from these examples. This
is achieved by optimizing the following objective:

πSFT
θ = argmin

θ
LSFT (πθ; DSFT) , (1)
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where πSFT
θ is the policy after fine-tuning, and LSFT

is the supervised loss function to minimize the neg-
ative log-likelihood:

LSFT(πθ) = −E(x,y)∼D [log πθ(y | x)]

This optimization allows the weak model to spe-
cialize in the task domain, preparing it for effective
collaboration with the strong model.

3.3 Aligning the Weak Model with Strong
Model Feedback

This subsection describes how to align the weak
model with feedback from the strong model. Pref-
erence triplets are constructed by comparing the
outputs produced solely by the strong model with
those generated in collaboration with the weak
model. An external evaluator scores these outputs
based on reasoning coherence and alignment with
the ground truth, identifying instances where the
weak model’s contributions improve the final result.
These triplets are then used to fine-tune the weak
model through preference optimization, aligning
it with the strong model’s preferences to facilitate
better collaboration.

3.3.1 Preference Feedback from the Strong
Model

Given a set of training data, {(x, ŷ)}, where x is
the query and ŷ the groundtruth, our goal is to
construct preference triplets (x, y+, y−), where y+
and y− represent the preferred and non-preferred
outputs of the weak model. These triplets indicate
whether the weak model’s output enhances the final
result in its collaboration with the strong model.

To construct these preference triplets, we intro-
duce two generation scenarios:

• Strong Model Only: The query x is directly fed
into the strong model, which generates an expla-
nation and a final output using a chain-of-thought
(CoT) prompt. This approach helps the model
break down complex tasks into intermediate rea-
soning steps. The resulting output is denoted as
z ∼ πs(z | x).

• Weak-Strong Model Collaboration: The query
x is first processed by the weak model to produce
an explanation and an initial result, y ∼ πw(y |
x). This output, along with the original query, is
then passed to the strong model for refinement,
resulting in the final response y∗ ∼ πs(y

∗ | y).
Here, the weak model’s explanation may contain
knowledge-intensive information that the strong
model analyzes to detect potential flaws or gaps
in reasoning.

Preference Evaluation To assess the output qual-
ity, we introduce an external evaluator, E(y, x),
which is a large language model with strong gen-
eral capabilities (e.g., GPT-4). While various mod-
els can serve as the evaluator, using the same large
language model as the strong model ensures consis-
tency in reflecting the strong model’s preferences.
The evaluator scores the outputs based on a man-
ually defined rubric: (1) Coherence of reasoning
logic: whether the explanation is logically sound.
(2) Consistency with ground truth: how closely the
final result aligns with the ground truth.

The evaluator E assigns a fine-grained score
to each output, providing a nuanced assessment
of both the reasoning process and the final result.
This model-based evaluation approach is preferred
over traditional metrics like BLEU or ROUGE, as
it captures not just surface similarity but also the
depth of reasoning and logical coherence.

Preference Data Construction For each query
x, we construct the preference triplet (x, y+, y−)
by comparing the evaluation scores of the strong
model’s output, z ∼ πs(z | x), and the collabora-
tive output, πs ◦ y. The preference is determined
by the difference:

∆ = E(πs ◦ y, x)− E(z, x).

If ∆ > 0, the weak model’s contribution is deemed
beneficial, and its output y is selected as the posi-
tive response y+. Conversely, if ∆ ≤ 0, y is desig-
nated as the negative response y−. The preference
data is formalized using two conditional probability
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distributions over the weak model’s outputs:

p+(y+ | z, x) =
πw(y+ | x)1 {E(πs ◦ y+, x) > E(z, x)}∫
πw(y | x)1 {E(πs ◦ y, x) > E(z, x)} dy .

p−(y− | z, x) =
πw(y− | x)1 {E(πs ◦ y−, x) ≤ E(z, x)}∫
πw(y | x)1 {E(πs ◦ y, x) ≤ E(z, x)} dy .

These distributions represent the preferred and
non-preferred outputs when collaborating with the
strong model. After obtaining the sets of the posi-
tive and negative responses, we pair them to con-
struct the preference triplets.

3.3.2 Preference Tuning for the Weak Model
Using the constructed preference triplets DPT =
{(x, y+, y−)}, we fine-tune the weak model πw to
align its outputs with those that are preferred in
collaboration with the strong model. We employ
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) to adjust the weak model’s policy πw.
The DPO objective is formulated as :

LDPO = min
π∗
w

−E x, z∼πs(z|x),
y+∼pw(·|z,x),
y−∼p−(·|z,x)

[

log σ

(
α log

π∗
w(y+ | x)

πw(y+ | x)
− α log

π∗
w(y− | x)

πw(y− | x)

)]

where σ(·) is the logistic sigmoid function, and α
is a scaling parameter. By optimizing this objective,
we encourage the weak model to generate outputs
that lead to higher scores when refined by the strong
model.

The overall objective is to find the optimal policy:

π∗
w = argminLDPO(πw;π

SFT
w ;DPT), (2)

where π∗
w is the optimal policy aligned with the

strong model’s preferences, and πSFT
w is the ref-

erence weak model obtained through supervised
fine-tuning.

3.4 Collaborative Inference
During inference, the input query x is first pro-
cessed by the weak model π∗

w to generate an initial
output. This output, along with the original query,
is then passed to the strong model πs for refinement,
resulting in the final answer:

y∗ = πs ◦ (x, π∗
w ◦ x).

This process effectively combines the weak
model’s specialized knowledge with the strong
model’s general reasoning capabilities to produce
an enhanced final response.

3.5 Theoretical Insight
In this section, we build on the methodology dis-
cussed earlier to present a formal theoretical anal-
ysis of how the proposed preference-based align-
ment affects the weak model’s behavior and perfor-
mance. The theory hinges on how the weak model
optimizes its policy to align with the strong model’s
preferences using DPO.

For simplicity, we assume that the evaluator
scores for the strong model’s outputs are constant
for all z, i.e. E(z, x) = p(x) for all z when given
x. This means the strong model’s response to any
question x is uniformly at the same level. Under
this assumption, we aim to understand the behavior
of the newly optimized weak model π∗

w.
Regarding the optimization objective LDPO in

Section 3.3.2, the key aspect is that the positive
(p+(·|z, x)) and negative (p−(·|z, x)) responses
have disjoint support. This means they represent en-
tirely different sets of possible outputs. As a result,
the optimized weak model π∗

w allocates zero prob-
ability to any output y that results in an evaluator
score E(πs ◦ y, x) ≤ p(x). This finding implies:

π∗
w(y | x) = 0,∀y such that E(πs ◦ y, x) ≤ p(x).

The implication here is that the optimized weak
model learns to avoid producing responses that
fail to improve upon the baseline quality set by
the strong model’s standalone performance. Thus,
the model’s optimization drives it to focus only
on generating outputs that surpass this baseline,
ensuring that the weak model contributes positively
to the collaborative outcome.

Next, we relax the assumption above, which di-
rectly leads to the following corollary.

Corollary 1: Assuming the strong model’s re-
sponses are not just uniform but also bounded be-
low by some quality threshold: p(z) ≤ E(z, x) for
all z, the newly optimized weak model π∗

w(x) will
strictly avoid producing any response y for which
the collaborative evaluation score fails to exceed
the baseline:

E(πs ◦ y, x) ≤ p(x).

The proof idea is exactly as the analysis above. In
addition, this means that the weak model, through
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Methods Models
Counterfactuals Medicine Ethics
EM F1 Acc. F1 Acc. F1

Weak Only
Llama-3-8B 68.57 71.85 59.48 46.99 38.10 36.40
Llama-3-8B (SFT) 69.71 72.69 73.08 58.26 64.29 62.40
Llama-3-8B (Self-Refine) 70.52 72.99 60.71 47.07 35.89 35.06

Strong Only
GPT-4 49.44 60.93 65.87 54.86 36.75 35.25
GPT-4 (CoT) 57.42 65.60 71.80 57.69 39.00 39.58
GPT-4 (Self-Refine) 61.54 68.83 72.95 59.10 38.16 37.87

RAG
SKR (Wang et al., 2023) 59.75 68.33 71.90 56.37 56.46 55.40
FLARE (Jiang et al., 2023b) 62.07 70.59 72.40 58.89 55.27 54.97

Collaboration

RLWF (Tao and Li, 2024) 70.52 75.04 72.01 57.65 64.85 62.10
RLAIF (Lee et al., 2024) 71.69 72.17 71.91 57.55 62.74 59.65
SuperICL (Xu et al., 2024) 68.85 74.82 73.64 58.33 66.18 63.86
CoWest (Ours) 75.85 77.34 75.10 60.13 68.33 65.61

Table 1: Experiment results across three datasets. Results are reported as Exact Match (EM) and F1 scores for the
Counterfacual dataset, Accuracy (Acc) and F1 for the Medical and Ethics datasets. Here, CoT is Chain of thought
(Wei et al., 2022b) while Self-Refine means iterative refining LLM with self-feedback from Madaan et al. (2024).

preference optimization, learns to consistently pro-
duce only those responses that align with or surpass
the evaluator’s expectations. In doing so, it natu-
rally filters out weak or unhelpful contributions,
thereby ensuring that every output it generates en-
hances the overall performance in collaboration
with the strong model.

4 Experiment

4.1 Experiment Setting

Dataset We evaluate our framework on three spe-
cialized datasets from different domains: (1) Coun-
terfactuals: IfQA (Yu et al., 2023) is a counterfac-
tual QA benchmark with questions based on hy-
pothetical “if” clauses, requiring reasoning about
imagined situations that may contradict factual
knowledge. (2) Medicine: MedMCQA (Pal et al.,
2022) is a multiple-choice QA dataset of real-world
medical exam questions, demanding in-depth lan-
guage understanding and reasoning. (3) Ethics:
Prosocial-Dialog (Kim et al., 2022) is a multi-turn
English dialogue dataset covering diverse unethical
content, with responses classified by safety levels.
More details can be found in Appendix B.1.

Evaluation Metrics For IfQA, an open-ended
question answering task, we use two commonly
used metrics to evaluate the performance: exact
match (EM) and F1 score following the setting of
previous work (Sachan et al., 2023; Yu et al., 2023).
For MedMCQA, a multi-choice question answer-

ing task, we use accuracy as the primary evaluation
metric. Additionally, we consider using macro-
averaged F1 score to capture the model’s perfor-
mance across all answer categories. For Prosocial-
Dialog, a classification task, we utilize macro-F1
scores and accuracy as evaluation metrics to as-
sess the model’s capability in classifying responses
based on prosocial behaviors.

Implementation Details In our experiments, we
utilize two models: the weak model, LLaMA3-8B
(Dubey et al., 2024), and the strong model, GPT-
4-0613 (Achiam et al., 2023) for Counterfactuals
and Medicine and GPT-3.5-Turbo for Ethics. For
the evaluator, we use the same model as the strong
model. For the fine-tuning of the weak model, we
employ Low-Rank Adaptation (LoRA) (Hu et al.,
2021). We generate 2,000 pieces of data for IFQA
and 5,000 pieces for MedMCQA and Prosocial-
Dialog. More details of model training and prompt
design can be found in Appendix B.2.

Baselines The baselines include the following
categories: (1) Weak Model: We employ both
weak and strong models alone. For weak mod-
els, we include Llama-3-8B (Dubey et al., 2024),
Llama-3-8B-SFT and Llama-3-8B with Self-Refine
(Madaan et al., 2024). (2) Strong Model: we test
zero-shot GPT-3.5-Turbo-0613 and GPT-4-0613,
including their variants with chain-of-thought (Wei
et al., 2022b) and Self-Refine (Madaan et al., 2024).
(3) Retrieval-Augmented Generation: We in-
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volve two methods, SKR (Wang et al., 2023) and
FLARE (Jiang et al., 2023b). For fair compari-
son, we adopt GPT-4 as their backbone. (4) Model
Collaboration: There are three prior methods, in-
cluding SuperICL (Xu et al., 2024), RLWF (Tao
and Li, 2024) and RLAIF (Lee et al., 2024). Please
find more details in Appendix B.3.

4.2 Experiment Result

According to the evaluation results in Table 1,
our major observation is weak-strong model col-
laboration leads to substantial improvements
over single models. Our collaborative framework,
COWEST, demonstrates clear performance gains
across all datasets when compared to the single
models. For instance, COWEST improves over the
best-performing single model (LLaMA3-8B after
finetuning) by a significant margin, particularly
on the IfQA and Prosocial-Dialog datasets. This
underscores the effectiveness of combining a spe-
cialized weak model with a general-purpose strong
model, allowing each to compensate for the other’s
limitations. While RAG methods such as SKR and
FLARE exhibit notable gains over single models,
they fall short compared to our weak-strong model
collaboration. Because the fine-tuned weak model
develops a stronger generalization ability on the
test set, allowing it to provide insightful, domain-
specific responses that the strong model can further
refine. In contrast, RAG methods rely on retriev-
ing information from a large corpus. It lacks the
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Figure 5: Analysis of adopting different weak or strong
models in COWEST while fixing the other.

adaptability needed for specialized tasks.

4.3 Analysis

Interaction strategies between weak-strong
models In our experiments, we examine two key
interaction strategies between weak and strong
models: (1) W/o Alignment, where the weak model
generates initial responses that the strong model
then refines without any model alignment, and (2)
With Alignment, which involves fine-tuning the
weak model based on the strong model’s prefer-
ences. We further explore different formats for the
weak model’s output to inform the strong model:
(1) Direct Answer, providing a straightforward re-
sponse to the user query; (2) Domain Knowledge,
supplying background information relevant to the
reasoning; and (3) Chain of Thought (CoT), of-
fering detailed explanations with the answer. By
combining these two interaction strategies with the

20361



three formats, we assess each combination’s effec-
tiveness in handling specialized tasks. We report
the EM scores for Counterfactuals and the accuracy
scores for Medicine and Ethics.

As shown in Figure 5, our experiments clearly
demonstrate the effectiveness of model alignment
across all three datasets comparing the results
with and without alignment. Particularly, the
Chain of Thought (CoT) format stands out as the
most advantageous, surpassing both Direct An-
swer and Domain Knowledge formats. Its de-
tailed reasoning path significantly assists the strong
model in handling complex queries, as seen in its
stronger performance on the ethics and counterfac-
tual datasets—both of which demand advanced rea-
soning. In contrast, the medicine dataset, requiring
substantial domain knowledge, shows less variation
across interaction strategies, suggesting that task-
specific expertise can outweigh interaction style
when the knowledge requirement is paramount.

Impact of different strong models: General
capabilities enhance problem-solving. In this
setup, we standardized the strong model for specific
domains. Llama-3-8B served as the weak model
across all datasets, allowing us to evaluate the
performance of different strong models—GPT-4,
Llama-3-70B (Dubey et al., 2024), GPT-3.5-Turbo,
and Llama-2-70B (Touvron et al., 2023)—across
various domains. According to the experiment re-
sults in Figure 5, the strong model GPT-4, when
engaged in the domain of Counterfactuals, exhibits
the highest accuracy at 75.9%, demonstrating its
proficiency in handling complex conditional rea-
soning. Conversely, in domains requiring nuanced
ethical considerations, GPT-3.5-Turbo outperforms
other models with an accuracy of 68.3%. This
indicates that the effectiveness of strong models
is highly domain-dependent, where their inherent
strengths can enhance overall performance.

Impact of different weak models: Foundation
and adaptability are key. In this setup, we use
GPT-4 as the strong model for Counterfactuals and
Medicine due to its complex reasoning capabili-
ties, and GPT-3.5-Turbo was used for Ethics to
handle nuanced moral dilemmas. The involved
weak models include Llama-3-8B (Dubey et al.,
2024), Llama-2-7B (Touvron et al., 2023), Phi-3-
mini-3B (Abdin et al., 2024), and TinyLlama-1B
(Zhang et al., 2024a). According to the experiment
results in Figure 3, the selection and performance
of weak models, such as Llama-3-8B and Llama-

2-7B, clearly show a superior handling of tasks
across all domains compared to smaller models
like Phi-3-mini-3B and TinyLlama-1B. This obser-
vation underscores the importance of the founda-
tional training of weak models in our collaborative
framework. While smaller models are less effective
initially, the iterative refinement process guided by
the feedback from strong models allows even these
smaller models to enhance their outputs and con-
tribute more effectively.

Impact of different sizes of training data for
preference tuning As shown in Figure 3, in-
creasing training data generally improves perfor-
mance, but its impact varies across datasets. For
Counterfactuals, where the original dataset con-
tains only 2K samples, expanding preference tun-
ing data requires repeated sampling, potentially
lowering quality. This likely explains why perfor-
mance peaks at 1K, with larger datasets introduc-
ing redundancy. In contrast, Medicine and Ethics
have larger original datasets, allowing for selective
expansion while maintaining quality, leading to
continued gains up to 2K samples. These results
highlight the trade-off between data quantity
and quality—larger datasets help, but only when
high-quality samples can be ensured.

5 Conclusion

In conclusion, our research has demonstrated the
significant potential of leveraging a collaborative
framework between weak and strong models to ad-
dress specialized tasks effectively. By combining
the specialized problem-solving abilities of a weak
model with the broad reasoning capabilities of a
strong model, we have shown that it is possible to
achieve superior outcomes compared to when each
model operates independently. The dynamic inter-
action and feedback mechanisms introduced in our
framework ensure that the collaboration is not only
effective but also adaptive, allowing for continuous
improvement based on preference alignment.

For future work, we can explore more complex
interaction mechanisms between weak and strong
models, particularly focusing on varied feedback
types. Additionally, extending this framework to
encompass a broader spectrum of specialized tasks
and examining the scalability across different do-
mains is crucial. We also aim to address the ethi-
cal implications and potential biases introduced by
model collaborations to ensure fairness and relia-
bility in their outputs.
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Limitations

Single-Iteration Feedback In this study, we pri-
marily concentrated on incorporating a single feed-
back iteration between the weak and strong models.
While this choice simplified our experimental setup
and allowed for initial insights, it does not capture
the full potential of iterative refinement. Future
work should explore multiple rounds of feedback
to determine how repeated interactions could fur-
ther enhance model performance and adaptation.

Restricted Model Families Our experiments fo-
cused on GPT-related and Llama-related model.
Although these models are representative of strong
and weak reasoning capabilities, respectively, our
findings may not generalize to other model families
or architectures. Examining whether similar col-
laborative benefits can be observed with additional
models remains an open avenue for future research.

Computational Overhead Analysis While we
highlight the promise of feedback-driven collabo-
ration, a detailed examination of the computational
cost associated with these iterative interactions was
beyond the scope of this work. Analyzing over-
head—such as the number of passes required, mem-
ory utilization, and latency—will be essential for
understanding the practical limits of deploying this
framework at scale.
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A Preliminary

A.1 Supervised Finetuning
Supervised fine-tuning is a key method for adapt-
ing large language models to specific tasks using
labeled data. Given an input prompt x, a model
with policy πθ is trained to maximize the likelihood
of producing the correct output y. The dataset for
fine-tuning is defined as: D = {(x, y)}, where
x is the input, and y is the corresponding target
output. The objective is to minimize the negative
log-likelihood:

LSFT(πθ) = −E(x,y)∼D [log πθ(y | x)]

This process adjusts the model’s parameters to
align its outputs with the labeled data, providing
a solid foundation for further post-training tech-
niques like preference tuning.

A.2 Preference Tuning
Preference tuning aims to fine-tune language mod-
els and align their behavior with desired outcomes.
Given an input prompt x, a language model with
policy πθ can produce a conditional distribution
πθ(y | x) with y as the output text response. The
preference data is defined as: D = {(x, y+, y−)},
where y+ and y− denote the preferred and dispre-
ferred responses for the input prompt x. Preference
optimization leverages the preference data to opti-
mize language models. Taking Direct Preference
Optimization (DPO) (Rafailov et al., 2023) as a rep-
resentative example, it formulates the probability
of obtaining each preference pair as:

p(y+ ≻ y−) = σ
(
r(x, y+)− r(x, y−)

)
,

where σ(·) is the logistic sigmoid function.
DPO optimizes the language models with the

following classification loss:

LDPO(πθ;πref) = −E(x,y+,y−)∼D

[

log σ

(
α log

πθ(y+ | x)
πref(y+ | x)

− α log
πθ(y− | x)
πref(y− | x)

)]
,

where πref(y|x) represents the reference policy, i.e.,
the language model after supervised fine-tuning.

B Experiment Setting

B.1 Dataset
We incorporate three datasets from the specialized
domains across counterfactual, medical, and ethical

Algorithm 1 Training for COWEST

1: Input: Training data DSFT = {(x, ŷ)}; The
strong model πs; The initial weak model πw;
The evaluator E; Sampling count K

2: Output: The trained weak model π∗
w

3: 1. Supervised Fine-tuning of Weak Model:
4: Train πw on DSFT to obtain πSFT

w according to
Equation 1

5: 2. Preference Fine-tuning of Weak Model
6: Initialize the preference triplet set
7: for each (x, ŷ) ∈ DSFT do
8: Initialize the positive sample set Y+ and

the negative sample set Y−
9: Generate the strong model output: z ∼

πs(z | x)
10: Evaluate the model output: Ez = E(z, ŷ)
11: for i = 1 to K do
12: Generate the weak model output: y ∼

πSFT
w (y | x)

13: Generate the collaborative output:
y∗ ∼ πs(y

∗ | y)
14: Evaluate the output: Ey∗ = E(y∗, ŷ)
15: if Ey∗ > Ez then
16: Y+ ← Y+ ∪ {y}
17: else
18: Y− ← Y− ∪ {y}
19: end if
20: end for
21: Let N = min (|Y+|, |Y−|)
22: for j = 1 to N do
23: DPT ← DPT ∪ {(x, Y+[j], Y−[j])}
24: end for
25: end for
26: Preference Fine-tuning: Optimize πSFT

w using
DPT to obtain π∗

w according to Equation 2

Algorithm 2 Collaborative Inference for COWEST

1: Input: User query x; Trained weak model π∗
θ ;

Strong model πs
2: Output: The final answer y∗

3: Generate the weak model output: y = π∗
θ(y |

x)
4: Generate the final output through collaboration:

y∗ = πs(y
∗ | y)
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Dataset # Training # Validation # Testing

IfQA (Yu et al., 2023) 2.4K 700 700

MedMCQA (Pal et al., 2022) 183K 4.18K 6.15K

Prosocial-Dialog (Kim et al., 2022) 120K 20.4K 25K

Table 2: Overview of datasets used in the study.

dimensions. Each presenting unique challenges
that require nuanced understanding and reasoning.
Table 2 includes the dataset statistics. Please find a
few examples for each dataset in Table 6.

(1) IfQA (Yu et al., 2023) is a human annotated
counterfactual QA benchmark where each ques-
tion is based on a counterfactual presupposition
via an “if” clause. Such questions require models
to retrieve and reason about an imagined situation
that may even go against the facts built into their
parameters.

(2) MedMCQA (Pal et al., 2022) is a multiple-
choice question-answering dataset to address real-
world medical entrance exam questions. Each sam-
ple contains a question, correct answers, and other
options which require a deeper language under-
standing and reasoning. Note that the testing set of
MedMCQA is not public. Thus, we test the models
on validation set.

(3) Prosocial-Dialog (Kim et al., 2022) is the
large-scale multi-turn English dialogue safety clas-
sification dataset covering diverse unethical, prob-
lematic, biased, and toxic situations. Following
social norms, this dataset classifies the model re-
sponds to multiple safety levels, including casual,
needs caution, and needs intervention. Since the
testing set is as large as 25K, we randomly sample
a subset of 2K data instances.

B.2 Implementation Details

In our experiments, our framework utilizes two
models: the weak model, LLaMA3-8B (Dubey
et al., 2024), and the strong model, GPT-4 (Achiam
et al., 2023), with GPT-4 also serving as the eval-
uator. For the fine-tuning of the weak model, we
employ Low-Rank Adaptation (LoRA) for both the
supervised tuning and Direct Preference Optimiza-
tion (DPO) stages. All the prompts involved in the
framework are listed in Figure 7

Parameters of Supervised Tuning: For super-
vised tuning of the weak model, we use LoRA with
a rank (lora_r) of 16 and an alpha (lora_alpha) of
16. Training is performed with a learning rate of

1.4e-5, a batch size of 1, and gradient accumulation
over 8 steps to effectively increase the batch size.
The model is trained for 1 epochs with gradient
checkpointing enabled to optimize memory usage,
and we use mixed-precision training to further re-
duce computational overhead. Regarding the train-
ing data, for the datasets of IfQA and Prosocial-
Dialog, we use the training data according the
original dataset spilt. For the dataset of MedM-
CQA, we directly adopt an existing finetuned
model, ProbeMedicalYonseiMAILab/medllama3-
v20, from an Open Medical-LLM Leaderboard 1.

Preference Data Generation for Preference Tun-
ing: For Direct Preference Optimization, we gener-
ate the training data by running the weak model for
inference 5 times on each data instance with param-
eters: max_new_tokens=1028, eos_token_id set to
terminators, temperature=1.0, and top_p=0.9. The
strong model inference is performed with tempera-
ture=1 and no maximum token constraint. Finally,
we generate 2,000 pieces of data for the IFQA
dataset and 5,000 pieces for the MedMCQA and
Prosocial-Dialog datasets.

Parameters of Direct Preference Tuning: The
weak model undergoes DPO training using the
LoRA configuration (lora_r=16, lora_alpha=16),
a learning rate of 1.41e-5, a batch size of 1 with
gradient accumulation over 16 steps, and the RM-
SProp optimizer. The training is conducted for
1 epoch with gradient checkpointing enabled and
mixed-precision training.

Computation Cost: The experiments are con-
ducted using 4 NVIDIA A6000-48G GPUs and the
OpenAI API for interactions with GPT models.

B.3 Baselines

The baselines include the following categories: (1)
Weak Model: We employ both weak and strong
models alone. For weak models, we include Llama-
3-8B (Dubey et al., 2024), Llama-3-8B-SFT and
Llama-3-8B with Self-Refine (Madaan et al., 2024)

1https://huggingface.co/spaces/
openlifescienceai/open_medical_llm_leaderboard
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(up to a maximum of 4 iterations). (2) Strong
Model: we test zero-shot GPT-3.5-Turbo-0613 and
GPT-4-0613, including their variants with chain-
of-thought (Wei et al., 2022b) and Self-Refine
(Madaan et al., 2024). (3) Retrieval-Augmented
Generation: SKR (Wang et al., 2023) leverages
large language models (LLMs) to self-elicit knowl-
edge and adaptively call a retriever. FLARE (Jiang
et al., 2023b) continuously retrieves new docu-
ments when confidence in the produced sentences
is low. For fair comparison, we adopt GPT-4 as
the backbone for both RAG models. We use the
default implementations of these models in their
repositories. (4) Model Collaboration: SuperICL
(Xu et al., 2024) involves a small model to pre-
dict the labels and the confidence scores, based
on which a large model generates the final pre-
dictions. RLWF(Tao and Li, 2024) uses a weak
model to automatically provide feedback for prefer-
ence tuning while RLAIF (Lee et al., 2024) adopts
an ultra-large LLM feedback model. We adapt
these two methods by involving difference models
for preference data annotation to train the weak
model, without considering model collaboration
for affective generation. In addition to our full
model, COWEST, we also explore the variant with-
out preference tuning for ablation study, where the
weak model is LLaMA3-8B-SFT and the strong
models are GPT-3.5-Turbo-CoT and GPT-4-CoT
respectively. For fair comparison, we adopt the
same backbone models for the above methods.

B.4 Case Study
For the case study in Figure 8, we demonstrate the
efficacy of our collaboration framework, CoWeSt,
in the domain of medical diagnosis, specifically
identifying the causative agent of subdural effusion
in bacterial meningitis. The task involved discern-
ing the correct bacterium associated with subdural
effusion among four candidates: H. influenza, Neis-
seria meningitidis, Streptococcus pneumonia, and
Enterococcus.

The output from the strong model alone sug-
gested Streptococcus pneumoniae as the causative
agent, rating its confidence at 3.0 on a scale of 10.
This model emphasized the prevalence of subdural
effusion with Streptococcus pneumoniae due to its
ability to invade the meningeal spaces and cause
fluid buildup beneath the dural membrane.

Conversely, when the weak model, specialized
in pediatric infections, collaborated with the strong
model, the combined output correctly identified H.

influenza as the causative agent, significantly im-
proving the confidence score to 6.0. This joint out-
put highlighted that while other agents are known
causes of meningitis, H. influenza is specifically
linked with complications like subdural effusion,
especially in children.

The positive sample from this collaborative ef-
fort underscored the effectiveness of CoWeSt, show-
ing an accurate diagnosis with enhanced confi-
dence. In contrast, the negative sample, where the
models failed to collaborate effectively, mistakenly
identified Streptococcus pneumoniae again, with a
low confidence score of 1.0, illustrating the need
for the weak model’s specialization to guide the
strong model’s broad capabilities. This case study
not only reinforces the value of model collaboration
but also demonstrates how our framework can lead
to more precise and confident medical diagnostics.
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IfQA
Given a context, answer the following question as briefly as possible.

Context:
The 2022 Grand National (officially known as the 2022 Randox Health Grand National for sponsorship 
reasons) will be the 174th annual running of the Grand National horse race. It will take place on Saturday, 
9 April 2022, at Aintree Racecourse in Liverpool, England. The event will once again be sponsored by 
Randox Health…

Question: 
If Noble Yeats hadn't been victorious in the 2022 Grand National horse race, which horse would have 
claimed the title?

MedMCQA
Given a question, choose the right answer from four options.

Question:
Which vitamin is supplied from only animal source:

Options
(A): Vitamin C (B): Vitamin B7 (C): Vitamin B12 (D): Vitamin D

Prosocial-Dialog
Given a context and the model‘s response, classify the safety level of the response into three categories: 
(1) casual, (2) needs caution, (3) needs intervention.

Context:
I tried a bit of shadowboxing today. Got one guy called Jamal on the chin and another called Tyson 
between the eyes.

Response:
This isn't a joke about black people, right? If it is, it isn't funny.

Figure 6: The task example of three datasets.
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Prompt for the weak model
{{query}} Can you provide the explanation and output the final results?

Prompt for the strong model
Given a question and the output of an expert model, please refer to this output if you think it's helpful and 
correct, otherwise generate the final result based on your own knowledge.
Query:
{{query}}

Output of expert model:
{{weak_model_output}}

Note that strictly keep to the following output format and don't output any other information:

Explanation:
{{One paragraph to analyze the question and explain the reason}} 

Answer:
{{A few words. As brief as possible}}

Prompt for model inference
{{query}} Can you provide the explanation and output the final results? Note that strictly keep to the 
following output format and don't output any other information:

Explanation:
{{One paragraph to analyze the question and explain the reason}} 

Answer:
{{A few words. As brief as possible}}

Prompt for the evaluator
Given the groundtruth and the model output (including the explanation and the answer), score the model 
output with respect to correctness on a scale from 1 to 10. Here is the rubric:
1 means "the answer and the explanation have major errors"
3 means "the answer is partially correct, and the explanation has minor errors"
6 means "the answer is slightly different with the groundtruth but semantically corrct, and the explanation is 
reasonable" 
10 means "the answer is the exactly same with the groundtruth, and the explanation is reasonable". 

Please just output a number as the score. Don't output any other information. 
Groundtruth:
{{groundtruth}}

Model output:
{{model_output}}

Please only output an integer from 1 to 10 as the score. Don't output any other information. 

Figure 7: The prompts used in our framework.
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User Query

Which of the following bacterial meningitis is associated with sudural effusion??  A. H. influenza.  B. 
Neisseria meningitits.  C. Streptococcus pneumonia.  D. Enterococcus.

Groundtruth
Explanation:
Chronic Subdural Empyema It may be primary infection of subdural space from sinusitis focus causing suppuration 
and pus formation. It can be complication of the chronic subdural haematoma. It is due to secondary bacterial 
infection of collected clot/fluid. Infection is from sinusitis scalp (common)/through earlier trauma 
wound/haematogenous. Commonly Gram positive organisms cause empyema like streptococci (viridans/milleri) but 
other virulent organisms like Gram negative bacteria (H.influenzae) occasionally can cause. There is coical venous 
thrombophlebitis and coical infarction. Headache, fever, meningism and convulsions are the features. MRI is ideal 
than CT to diagnose. Treatment: Antibiotics, craniotomy and drainage; anticonvulsants, ICU care, proper monitoring, 
regular follow up. Condition has got 10% moality. Ref: SRB's Manual of Surgery 5th edition Pgno : 1097
Answer: A

Output of strong model alone (Evaluator: 3.0)
Explanation:
Subdural effusion, a complication of meningitis, is most commonly associated with Streptococcus pneumoniae. 
Subdural effusion occurs when an infection in the meninges causes an excess buildup of fluid beneath the dural
membrane, and Streptococcus pneumoniae is known to invade these spaces. The other options, Haemophilus
influenzae, Neisseria meningitidis, and Enterococcus are also causes for meningitis, but they tend to cause other 
forms of complications and have less correlation with subdural effusions.
Answer: C

Positive Sample (Evaluator: 6.0)

Weak model output
Explanation:
H. influenza type b is responsible for causing meningitis in children.\n- Other organisms that cause meningitis in 
children include Neisseria meningitidis, Streptococcus pneumonia and Listeria monocytogenes.\n- Streptococcus 
pneumoniae is the most common cause of childhood bacterial meningitis, while Haemophilus influenzae type b is 
responsible for the majority of cases in children less than 5 years of age.\n- Listeria monocytogenes is most 
commonly seen in pregnant women, neonates and immunosuppressed individuals.\n- Neisseria meningitidis is 
typically seen in older children and adolescents.
Answer: A

Strong model output
Explanation:
H. influenza (Haemophilus influenzae type b) is often associated with complications such as subdural effusion, which 
is a collection of fluid between the brain and its outermost covering, the dura. Other causative agents such as 
Neisseria meningitidis, Streptococcus pneumoniae, and Enterococcus are not typically associated with subdural 
effusion
Answer: A

Negative Sample (Evaluator: 1.0)

Weak model output:
Explanation:
Ans: c (Streptococcus pneumoniae)
Answer: C

Strong model output
Explanation:
Streptococcus pneumoniae (Answer C) is frequently associated with subdural effusion, a condition where fluid 
accumulates between the outermost and middle layers of the meninges - the protective layers covering the brain and 
spinal cord. Complications like subdural effusions are commonly seen in bacterial meningitis, particularly in cases 
caused by Streptococcus pneumoniae.
Answer: C

Figure 8: Case Study.
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